Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference

Strategy Inference in Stochastic Games
Using Belief Networks

D. Michael Franklin
Kennesaw State University
Marietta, GA, USA

Abstract

In many gaming and real-world scenarios players try to
predict the behavior of the other players. This assumes
some underlying strategies that players follow, that they
can be inferred, and that a reasonable player can counter
them in real-time. This paper seeks to formulate a def-
inition for strategies and their relationship with poli-
cies, determine the viability of inferring strategies, and
formulate counter-strategies in real-time. If successful,
players utilizing dominant strategies should defeat those
using weaker strategies, the weaker strategies should be
shifted to a better policy within that strategy, and this
should result in improved performance. We will show
that strategies offer significant performance enhance-
ment, strategies can be recognized in real-time, and Al’s
utilizing strategy inference will outperform their origi-
nally superior opponents.

Introduction

In well-formed machine learning algorithms we seek to pro-
vide a mapping of which action to take in a given state. this
mapping is a policy, 7 : s € S — a’ € A. Such policies
are effective, but take many iterations to learn often requir-
ing thousands of trials to learn behaviors, and exponentially
more to learn complex behaviors. We introduce strategies
to simplify learning by breaking down complex behaviors
into several smaller policies rather than one monolithic pol-
icy. We wish to imbue these artificially intelligent agents
with strategies so that they can learn and react quickly. Once
learned and placed into strategies, the strategy can choose a
policy to implement. The strategy monitors its performance
and evaluates itself in comparison to other policies. If per-
forming poorly, the strategy then switches to a better policy.
This requires that the strategy can heuristically determine
the value of a policy over time. The strategy will also com-
pare the actions of the other intelligent agent to known poli-
cies within the set of strategies. Thus the Al can form a be-
lief network about which policy it believes the opposing Al
is using. By monitoring the policies that the opposing agents
use the Al can then hypothesize about the opponent’s strat-
egy. The Al can then select the optimal policy or counter-
strategy. This allows for improved performance as the game

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

324

progresses. The foundation work for these strategies, under-
lying policies, and the inference engine are detailed in their
respective sections. We will use the games of Roshambo and
RPS-LS (Rock, Paper, Scissors, Lizard, Spock) to imple-
ment these policies and strategies and to compare the perfor-
mance of the Al both with and without strategy inference.

Related Works

Bowling and Veloso (2001, 2004, 2009) lay a foundation
for stochastic games with multiple agents but stop short of
true multi-agent strategic considerations. Kim, Cho, and Lee
(1995) offer seminal insight into vectorization of features
for policy extraction (used in this research). Fisher (2008)
explores the application of game theory to RPS extensively.
Cheng (2004) also offers insight into policy formation and
reasoning. We build on these and explore multi-agent strat-
egy, not just policies. Finally, Bersma and Spronck (2008)
explore strategy in two-player turn-based games. We wish
to extend this into multi-agent and non-TBS games.

Methodology

There are several steps required. First, strategy must be rep-
resented and modeled. Second, strategy can be recognized
by another agent or team of agents. Third, strategy can be
compared with another strategy and adjusted in real-time.
A strategy is comprised of policies that have defined states
and actions (s, a). A policy, 7, is a mapping from s — a,
or that chooses a’, the next action, from A optimally for
all s € S (1, generically). A valuation function evaluates
the results of taking actions from a given state, and thus de-
termines the optimal action. This function (2) generally de-
termines a value by capturing the reward of an action - in
Markovian or Non-Markovian fashion. While the valuation
function, V*, is left generalized here, it is defined specifi-
cally during implementation. This function is critical to the
success of the policy and essential for it to have decidability.
Additionally, w.r.t time, the reward can be diminished
by a certain factor that grows w.r.t time (i.e., the cumu-
lative value is weighted in proportion to time). In a fully-
explored deterministic environment choosing @’ is distinct
and simple. Each state s has an optimal action @ mapping to
the highest value reward. In non-deterministic environments
these evaluations must use underlying probabilities or ex-
perimental values (3). When time constraints or complexity



create bounds then a heuristic must be used. These heuristics
may range from scores or values to expected values and re-
wards. In this environment o’ is determined by choosing the
maximum value of the available choices (4). Here F(a, s) is
the expected value based on experience thus far.

7 :argmax V?(s),Vs € S — d (1)
where : V*(s;) = max Ve(st) )

T argg;axP(sM)V“(st),Vs €S —a 3
7 :argmax E(s,a),Vs € S — @’ 4)

a€A

These values can be determined through machine learn-
ing, experience, or domain knowledge. The agent may start
by favoring exploration (i.e., favoring stochastic selection)
then transition to exploitation (i.e., taking the best actions
learned). Once these most-favorable choices (w.r.t. reward
or utility) have been learned, they can be saved and re-used,
forming a policy that the agent can start from without re-
learning. Once learned it can be added to the set of policies
II to form a collection of policies. The agent or set of agents
can then share this collection of policies as prior experience
for each of them. Selecting from among these policies is the
domain of strategy.

A strategy, o, selects the optimal (or desired) policy, T,
or set of policies, II, to accomplish a goal, g, or meta-set of
goals, G (5). All o are in X, the set of all strategies. As seen
generically in (5), this selection is putting in force the best
policy. The method for such selection, however, is not so
easily contrived. There is a similar notion of expectation that
will be used. This expectation function will examine the ac-
tions a € A taken by the current policy 7 in force and those
of each other known policy 7 € II. The argmaz of these
values is then taken, and this may indicate that either the
current policy 7 is the best policy to have in place or there
is a needed shift in policy. Further, a threshold € is consid-
ered before a policy change occurs in order to provide some
momentum to the current policy and avoid unnecessary vac-
illations in policy change (6). If the ¢ between the current
7 and 7’ is less than €, the current policy, 7, stays in place;
otherwise, a change is initiated. This mechanism and rele-
vant valuations are considered within the experiments.

o :argmax V7 (s;),Vr €0 = 7’
™

&)

(6)

o :argmax E™(s,a) —e,Yr € 0 — 7’
s

Strategy Representation

There are many forms to represent o. In Roshambo the strat-
egy can be viewed as a set of policies, each with weighted
views of the previous actions of the focus agent, the actions
of the other observable agents, and the predicted future ac-
tions of all agents. Each player chooses rock (a,), paper
(ap), or scissors (as). The other player chooses similarly.
Eq. 7 shows that o, selects the best policy (Eq. 8) from o

325

by choosing the policy that produces the maximum value (by
Eq. 9). This policy leads to the optimal choice of the next ac-
tion (Eq. 10). If the current policy is not producing optimal
results, the strategy can shift policies via Eq. 7. The policy
is made up of all relevant considerations of moves and time.
(Eq. 9). Here LB and LA represent the number of steps to
look ahead and look back, respectively, a the action, with r
the reward and F the expected reward, and w, the weights
for each.

(7

Om :max V7™ (s;),Vm € 0 — m,’
s

7 fx(LB,wrp,, LA, wra,, Wy, wp, ws, Er, B, Es) (8)

LB
VT = max KE wLBkTat_k> +
k=0

(V“ (mgxx(wura))) +

LA
(Z wLA,E(atmﬂ ©)
=0

(10)

The first elements are the individual likelihoods, L.,
where x is the particular move rock, paper, or scissors. These
likelihoods are the weighted and discounted values of choos-
ing x by looking backwards LB moves and predicting for-
ward LA moves (Eq. 11, z € {R, P, S, L, K'}). In these for-
mulae the individual likelihoods, L, are cumulative values
of rewards received from the past moves and future moves
with weighting (per 7). Thus the policy customizes these
formulae to suit the strategy o.

/ /
™ = a

LB |
L, = [(Z kOCLBwLBITat_k> +
k=1
LA
1
(Z kaLAwLAmE(at+k)>] (In

k=1
The proportionate probability of choosing each move is
derived by considering each with respect to the total (Eq.
12).
Ly
(Ly + Lp + L)

Then o' is determined by the maximum value from the
inverse weighted proportions (Eq. 13).

P, = (12)

a’ = max((1

P, )ws) (13)

s

— Py )wy, (1 = Py))wp, (1 -

Thus, the aggregate probabilities, based on the past and
future selections of that same move and tempered by a learn-
ing rate, «, form the probabilities for each move. Anytime



reward is considered for future moves under uncertainty
(i.e., in the absence of a model or an approximate formed
through experience) it can be replaced with an expectation of
reward, as shown in Reinforcement Learning (RL). The re-
sultant move calculation (Eq. 13) could produce an ordered
vector of moves with their probabilities. This ordered vector
would rank all moves, above some threshold 6, to resolve a’.
This 6 provides the ability to have a default override in the
cases where there is no clear cut ‘winner’ for the best move.
This enhances the strength of the policy as it allows for prob-
abilistic drive when the choices are clear, but an underlying
set of choices to rule the behavior otherwise.

The strategy can also, for the purpose of a move based
game like Roshambo, be represented in policies that contain
the weights of each move and the « for each. The weights
could be proportioned to favor irregularity (avoid repeti-
tion), favor regularity (repeat favorite moves), or follow pre-
determined patterns. The formulation for the influence of «
can alter Eq. 11 by step k.

In the experiments the Roshambo models were developed.
As indicated in Eq. 8, the strategy contains policies (a vec-
tor of the various features). In this iteration of the game there
are equal rewards for each move. The two player game was
run with two independent policies and compared. These ex-
periments and their results are found in the next section.

The addition of a higher level strategy is put in place to
help select from among these policies. For example, if the
‘LB3Rock’ policy was performing poorly, the strategy in
place, o1, may select another policy, say ‘LB3Paper’. In this
manner, the strategy is monitoring performance and making
a decision about which policy should be in place. The more
information the strategy has the better this selection will be.
As history is accumulated, and the strategies of the other
player are considered, the selection of the best policy from
the set can happen more quickly and accurately which will
be shown in the experiments.

Experiments

To prove the viability of strategic modeling, the Roshambo
experiments were implemented to establish a baseline of the
gameplay for comparison, implement policies to measure
their impact, and create and test strategies that utilize these
policies. Next, the goal was to test strategy inference, pol-
icy switching, and evaluate this shifting. The games has two
players, 10,000 rounds, using different strategies. Strategies
were tested against each other in sets (e.g., RockPref vs.
ScissorPref).

The results are shown in Table 1. The normal vs. nor-
mal games showed the expected distribution where any one
player wins about 33% of the time. It is also notewor-
thy to consider the not-lose percentage (non-negative out-
come). For each experiment with normal vs. normal the not-
lose percentage was around 67%, as expected from standard
probability distribution. In LB3RockBias vs. LB3PaperBias,
paper-bias won 43.78% with a not-lose percentage of
71.74%. Other match-ups show similar results. These com-
parisons reveal that mismatched strategies show an improve-
ment over random strategies and that the strategy models are

326

functional. One challenge is that with only three choices,
random guessing will succeed about 33% of the time.

Game Bias Player]l Win | Playerl Not Lose
RPS | Nvs.N 33.29% 66.33%
RPS Pvs.R 43.78% 71.74%

RPSLS | Nvs. N 40.13% 60.22%
RPSLS | Pvs.R 62.43% 87.47%

Table 1: Results of RPS and RPSLS with Strategies

To counter this the number of choices was increased from
3 to 5, shifting the game from Roshambo to Rock, Paper,
Scissor, Lizard, Spock (RPSLS) where there are two ways
to win and two ways to lose (and one way to tie). As such,
the results of random guessing should be 40% wins, 40%
losses, and 20% ties based on standard probability. The re-
sults, shown in Table 1, show that the experiments supported
the probability hypothesis with the wins for the normal play
being 40.13% with a not-lose of 60.22%. Updated strategies
were used, such as RockBias vs. PaperBias, with policies
LB3RockBias vs. LB3PaperBias, respectively. This showed
a significant improvement in win percentages (from 43.78%
with three choices to 62.43% with five) and in not-lose per-
centages (from 71.74% to 87.47%). This shows that hav-
ing more choices allows for strategy to be more fully imple-
mented and results in significant differences in strategy vs.
non-strategy. This is further evidence of the veracity of the
strategy model presented herein. It is also leads to a follow-
up research question of understanding the minimal point at
which strategy is applicable. The evidence suggests that the
influence of strategy use is visible only beyond a point of
complexity wherein those agents following a strategy rou-
tinely outperform agents following a base policy, like ran-
dom guessing. In this experiment, the number of choices was
indicative of such a threshold. This claim will be verified via
additional research.

The larger claim of strategy inference needed to be tested
next. To this end, an inferior strategy was chosen for the tar-
get player and a superior strategy given to the other player.
This set up the target player to lose initially. The target
player should then cycle through its policies within its strat-
egy to select the best performing policy. This is the first re-
sult that was desired to be shown, that the player could find
the optimal policy from within its current strategy. Next, the
goal was expanded to allow for a meta-strategy that could
choose from among the available strategies which will per-
form best.

To infer the most likely strategy that the opponent is us-
ing the agent examines each action taken by that opponent.
By creating a mapping of possible moves predicted by each
strategy and the actual move taken by the opponent a be-
lief network is created. The nodes in this network accumu-
late votes as the game progresses. In this context, a vote is a
match between the predicted move for a given strategy and
the actual move taken by the opponent. As play continues
the most likely strategy emerges. This tally can then be used
to select a proper counter-strategy for the most likely oppo-
nent strategy in place. Table 2 shows the various trials of the



Opponent Strategy | Initial Player Strategy | Recognition Steps 1 | 2 3 Average
RockBias ScissorBias 18 22 | 12 17.3
ScissorBias PaperBias 9 8 9 8.3
PaperBias RockBias 15 6 19 13.3
Average 14 12 | 133 | 1297
Table 2: Strategy Inference Results
Opponent | Initial Player Without Inference With Inference
Strategy Strategy Opponent | Player | Ties || Opponent | Player Ties
RockBias | ScissorBias 4844 3415 | 1741 2584 6109 1307
RockBias | ScissorBias 4808 3466 | 1726 2595 6002 1403
RockBias | ScissorBias 4815 3444 | 1741 2525 6121 1354
Average 4822.3 | 3441.7 | 1736 2568 6077.3 | 1354.7

Table 3: Counter Strategy Results

experiment with the prediction accuracy.

Table 2 also shows the initial strategies for the opponent
and the player. Initial strategies were chosen in a biased
fashion to create a disadvantage for the Strategy Inference
engine. The third, fourth, and fifth column show the total
number of rounds that passed before the Strategy Inference
engine correctly recognized the strategy the opponent was
using. Three trials were done with each of the selected dis-
advantaged strategies (shown in each column) and then av-
eraged. The overall average is 12.97 rounds. In less than 13
rounds, on average, the agent was able to correctly select the
opponents strategy. This confirmed that the Strategy Infer-
ence engine was able to correctly select the strategy in play
from the complete list of available strategies (n = 21). This
is not the same as determining a strategy in general without
any foreknowledge, admittedly, but it is foundational to the
concept of Strategy Inference.

To see how the ability to determine the opponent’s strat-
egy through inference would impact gameplay further ex-
perimentation was implemented. This added a strategy se-
lection element into the code. Now the agent can infer the
most likely strategy of its opponent and change its policy to
counter such a strategy. To elaborate, what is observed is a
policy. The inference of the strategy, then, is based on know-
ing the list of policies within a given strategy. There could
be such a policy that it is included in multiple strategies, so
the Strategy Inference engine would have to observe policy
shifting to determine the opponent strategy. The results of
this experimentation are show in Table 3.

These results show significant improvement. Now the win
rate (percentage) went from 34.4% without inference to
60.7% with inference. The not lose percentage jumps from
51.7% to 74.2%. It is noteworthy that the experiments with
inference break even with the random strategy. Thus infer-
ence can help against random strategies without significant
penalty. With such quick strategy recognition there is very
little variation in the scores.

While it is not surprising that choosing a better policy pro-
duces a better result, recall that the goal was to prove that
it is possible to infer the strategy of the opponent and thus
counter it with real-time analysis during play. This speed of

327

recognition (shown in Table 2) shows that this is possible.
This result proves that, as framed, inference is credible and
counter-strategy selection practical.

Conclusions

We have shown that stochastic games can be described in
terms of policies. Those policies sharing common traits can
be aggregated into strategies. Those strategies can determine
the next action and infer the next actions of other agents in
the game. Thus an artificial intelligence can adapt it own
behavior by selecting a better policy from within its strategy
to overcome the strategy in use by its opponents, all within
the confines of real-time.

References

Bowling, M. and Veloso, M. 2001. Rational and convergent
learning in stochastic games. International Joint Confer-
ence on Artificial Intelligence, volume 17, pages 1021-1026.
Lawrence Erlbaum Associates, LTD.

Bowling, M. and Veloso, M. 2004. Existence of multiagent
equilibria with limited agents. J. Artif. Intell. Res. (JAIR),
22:353-384.

Kim, Chang Wook and Cho, Seongwon and Lee, Choong
Woong, 1995. Fast competitive learning with classified
learning rates for vector quantization. Signal Processing Im-
age Communications, 6:499-505.

Chernova, S. and Veloso, M. 2009. Interactive policy learn-
ing through confidence- based autonomy. Journal of Artifi-
cial Intelligence Research, 34(1)

Fisher, Len, 2008. Rock, paper, Scissors: Game Theory in
Everyday Life. Basic Books, First Edition.

Cheng, Shih-fen et al., 2004. Notes on Equilibria in Sym-
metric Games. Proceedings of 6th International Workshop
on Game Theoretic and Decision Theoretic Agents (GTDT),
71-78.

Bergsma, Maurice and Spronck, Pieter, 2008. Adaptive Spa-
tial Reasoning for Turn-based Strategy Games. Proceedings
of the Fourth Artificial Intelligence and Interactive Digital
Entertainment Conference, 161-166.





