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Abstract

We describe an information theoretic-based metric for
sentence similarity. The method uses the information
content (IC) of dependency triples using corpus statis-
tics generated by processing the Open American Na-
tional Corpus (OANC) with the Stanford Parser. We
define the similarity of two sentences as a function of
(1) the similarity of their constituent dependency triples,
and (2) the position of the triples in their respective de-
pendency trees. We compare results of the algorithm to
human judgments of similarity of 1725 sentence pairs.

Motivation
In “The Structural Study of Myth,” Claude Lévi-Strauss pro-
poses a method for analyzing myth that aims to elicit the
existential dilemma that a myth addresses. In the process
of presenting his method, Lévi-Strauss introduced a formula
that has since come to be known as the canonical formula
of myth; this formula has guided and informed subsequent
scholarship in anthropology, linguistics, and computer sci-
ence, and it is this same formula that is the object of study
in our project. Since Lévi-Strauss ends his paper with a
discussion of the technology (not available in the 1950s)
that would be required to fully implement his method (Lévi-
Strauss 1955, p. 443, paragraph 8.0), we propose to return
to Lévi-Strauss’ structural analysis of myth, bringing to bear
the contemporary computing power that his method prefig-
ures.

Lévi-Strauss’s method for analyzing myth begins by iden-
tifying the gross constituent units, which he equates with
the predicate relations, from which the myth is composed.
The core hypothesis of his argument is that “the true con-
stituent units of a myth are not the isolated relations but
bundles of such relations” [emphasis in the original](Lévi-
Strauss 1955, p. 431). The next step in the analysis is to de-
termine for each predicate relation which bundle with which
it is associated. However, this process is circular since the
bundles are not known until the component relations have
been properly assigned to the bundles. The criteria for de-
termining when the bundles have been properly identified
are “the principles which serve as a basis for any kind of
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structural analysis: economy of explanation; unity of solu-
tion; and ability to reconstruct the whole from a fragment,
as well as further stages from previous ones” (Lévi-Strauss
1955, p. 431). Our project investigates the feasibility of al-
gorithmically determining the bundles of predicate relations
associated with a given myth without resorting to expert in-
tuition.

The canonical formula, which Lévi-Strauss writes as
fx(a) : fy(b) ≈ fx(b) : fa−1(y), represents the abstract
relationship among bundles. The formula specifies that (a)
a narrative presents two pair of contrasts, one between func-
tions and one between objects, and (b) the functions and ob-
jects combine to form four terms, the fourth of which ex-
presses an object turned function over a function turned ob-
ject. The canonical formula does not specify the arrange-
ment of the events that make up the story. Instead, the terms
of the formula define a partition of the story’s elements un-
related to their position in the story.

Lévi-Strauss hints at the use of contemporary computers
as an aid in discovering the bundles associated with a myth
when he writes:

A variant of average length needs several hundred cards
to be properly analyzed. To discover a suitable pattern
of rows and columns for those cards, special devices
are needed, consisting of vertical boards about two me-
ters long and one and one-half meters high, where cards
can be pigeon-holed and moved at will; . . . . [A]s soon
as the frame of reference becomes multi-dimensional
the board-system has to be replaced by perforated cards
which in turn require I.B.M. equipment, etc. (Lévi-
Strauss 1955, p. 443)
Our project aims to implement Lévi-Strauss’s method

using machines he envisioned, but did not have in the
1950s (Lang and Mersch 2012). In this article, we present
an algorithm to measure the similarity of two given sen-
tences. The technique described in this paper extends pre-
vious work by Lin (Lin 1998) applying an information-
theoretic definition of similarity to various domains. Lin’s
information-theoretic definition of similarity outperforms
other information-theoretic similarity metrics that leverage
domain specifics (Resnik 1995) (Wu and Palmer 1994). Fol-
lowing development and verification of this metric, we will
use it in a clustering algorithm where the objects being clus-
tered are a myth’s gross constituent units. Given that Lévi-
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Strauss’s method amounts to a clustering application, our
proposal is a suitable computational model of his approach.

Our proposed metric shares characteristics of word co-
occurrence methods and descriptive feature-based methods
(Li et al. 2006), in addition to using structural information
provided by the Stanford Parser (Klein and Manning 2003).
We compare this metric against human judgments of the
equivalence of 1725 pairs of sentences (Quirk, Brockett, and
Dolan 2004).

Background and Related Work
To arrange gross constituent units into bundles, there must
be a measure for the similarity of any two given sentences.
Existing methods for measuring similarity of long docu-
ments are unsuitable at the sentence level. Methods that uti-
lize co-occurring words disregard the impact of word order
on meaning (Meadow, Kraft, and Boyce 1999); for exam-
ple, the two sentences, “The cat killed the mouse.” and “The
mouse killed the cat.” are regarded as identical, since they
use the same words.

Vector-based methods employ high-dimensional, sparse
representations that are computationally inefficient (Salton
1989). Corpus-based methods such as latent semantic anal-
ysis (LSA) (Landauer, Foltz, and Laham 1998) and hyper-
space analogues to language (HAL) (Burgess, Livesay, and
Lund 1998) are more effective for longer texts than for sen-
tences (Li et al. 2006). Descriptive feature-vector methods
employ pre-defined thematic features to represent a sentence
as a vector of feature values. Choosing a suitable set of fea-
tures and automatically obtaining values for features pose
obstacles for these methods (Islam and Inkpen 2008).

Our method uses Lin’s information-theoretic measure of
similarity. This measure is derived from assumptions about
similarity rather than from a domain-specific formula and is
applicable to any domain with a probabilistic model. From
these assumptions Lin proved the following Similarity The-
orem:

[T]he similarity between A and B is measured by the
ratio between the amount of information needed to
state the commonality of A and B and the information
needed to fully describe what A and B are:

sim(A,B) =
log Pr(common(A,B))

log Pr(description(A,B))

[. . . ] If we know the commonality of the two objects,
their similarity tells us how much more information is
needed to determine what these two objects are (Lin
1998).

Lin applies the definition to four different domains; one of
these is similarity between words according to the distri-
bution of dependency triples extracted from a text corpus.
Lin achieves better results than distance-based definitions
of similarity; his results correlate slightly better with hu-
man judgment than sentence similarity measures proposed
in (Resnik 1995) and in (Wu and Palmer 1994).

Approach
The Stanford Parser (de Marneffe, MacCartney, and Man-
ning 2006) is applied to the Open American National Corpus
(Ide and Suderman 2004) producing a database of counts of
occurrences of typed dependency triples of the form [role,
governor, dependent], appearing in the corpus. A proposi-
tion’s information content is defined as the negative loga-
rithm of its probability. We use this definition to compute
the information content of the triples in the corpus. Given a
dependency triple, we define two predicates, (1) a governor-
position predicate substitutes a variable for the governor in
the triple, and (2) a dependent-position predicate substitutes
a variable for the dependent in the triple.

For example,
t1: [dobj, build, desk]

is one of the dependency triples occurring in the sentence:
s1: The carpenter has built the desk.

The governor-position predicate corresponding to t1 is:
p1: [dobj, G, desk]

which binds to all occurrences of “desk” as a direct object;
the dependent-position predicate is:
p2: [dobj, build, D]

which binds to all occurrences of “build” as a transitive
verb. Each predicate has an information content based on
its governor-position predicate, ICG, and another based on
the dependent-position predicate, ICD. ICG of t1 is com-
puted from the number of occurrences of instantiations of
its governor-position predicate. Let A be the number of oc-
currences of [r, g, d] and let B be the number of occurrences
of instantiations of [r, G, d]. The governor-position informa-
tion content of [r, g, d] is defined by:

ICG ([r, g,d]) = − ln

(
A

B

)
ICD is defined similarly, using the dependent-position

predicate rather than the governor-position predicate. Next,
we define similarity of two dependency triples using Lin’s
definition. The definition is explained by an example com-
puting the similarity between the following:
t1: [dobj, build, desk]
t2: [dobj, buy, wood]

where t2 is a triple from the sentence:
s2: The carpenter bought some wood.

Figure 1 shows s1 and s2 with their respective parse trees
and dependency triples. The predicates p1 and p2 (above)
are formed from t1; from t2, we form the predicates:
p3: [dobj, G, wood]
p4: [dobj, buy, D]
For each of these of these predicates, we form the set of all

instantiations, M(pn), called the model of pn. The numbers
following the triples are hypothetical values for ICG(tn):

M(p1) : {[dobj, build, desk]→ 1.7, [dobj, paint, desk]
→3.8, [dobj, buy, desk]→8.7}
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Figure 1: Dependency trees and dependency triples for s1 and s2

M(p2): {[dobj, build, desk]→ 1.7, [dobj, build, chair]
→2.7, [dobj, build, house]→ 5.6}
M(p3): {[dobj, chop, wood] →3.9, [dobj, buy, wood]
→7.2, [dobj, paint, wood]→1.2}
M(p4): {[dobj, buy, desk] →8.7, [dobj, buy, wood]
→7.2, [dobj, buy, chair]→7.2}

For the two governor-position predicates, p1 and p3, we
compute the quotient of (1) the sum of the ICG’s of triples
in M(p1) and M(p3) that have the same word in the governor
position and (2) the sum of the ICG’s of all the triples in the
disjoint union of M(p1) and M(p3). Call this quotient Sg .

Sg =
3.8 + 8.7 + 7.2 + 1.2

1.7 + 3.8 + 8.7 + 3.9 + 7.2 + 1.2
We form the quotient Sd similarly, using the dependent-
position information content. Finally, we define

sim (t1, t2) = α · Sg + (1− α) · Sd

where α is a real value between zero and one.
We extend this definition of similarity between triples to

define similarity between sentences. Given two sentences,
the nodes of their respective dependency trees are words and
the tree edges are dependency relations. For example, the
triple [dobj, build, desk] indicates that build and desk are
two nodes in the dependency tree and that there is a directed
edge from build to desk labeled dobj.

Given two dependency trees and two nodes, one from
each of the given trees, we form a collection of pairs as fol-
lows:
• The triple with the highest information content from the

collection of triples that have one of the given nodes in
the governor position is identified. This triple may come
from either tree.

• A search is done for the most similar triple from the other
dependency tree.

• The two triples just identified are matched and removed
from consideration. The process repeats until all of
the branches exiting from one of the nodes have been
matched. Matching triples enables the recursive compari-
son of nodes from different dependency trees. We define
the similarity of two nodes as the weighted average of:

• the similarity of the triples matched as described above;
• the result of recursively computing similarity of matched

dependents (nodes one level deeper in the dependency
tree); and

• unmatched branches, defined as having a similarity of
zero (The two nodes may have unequal numbers of chil-
dren). The similarity of two sentences is the similarity of
their root nodes.

Evaluation
We evaluated the algorithm in two ways. For the first eval-
uation, we applied the algorithm to 15 pairs of sentences
written for the purpose of testing the approach. We asked
40 fluent English speakers to rank the similarity of each pair
on a scale of 0 to 5, where 0 indicates “no overlap in mean-
ing” and 5 indicates “complete overlap in meaning.” The
tree similarity algorithm was applied to the sentence pairs.
Table 1 shows the results (survey averages are scaled from 0
to 1 to match the scale of the tree similarity algorithm).

The two similarity measures have a correlation coeffi-
cient of 0.355; however, inter-annotator agreement was low
(Fleiss’s kappa = 0.313). Pairs 7, 10, 14, and 15 had the low-
est inter-annotator agreement. Without these pairs, the 11
pairs that remain (1, 2, 3, 4, 5, 6, 8, 9, 11, 12, and 13) have
kappa = 0.399 and have a correlation coefficient of 0.383
with the tree similarity algorithm. Pair 4, the active/passive
switch, is incorrectly scored 0.262 by the algorithm, whereas
the annotators were in strong agreement of a rating close to
5. Removing pair 4 from the analysis (which lowers kappa)
gives a correlation coefficient of 0.518 between annotator
averages and the algorithm results.

The second evaluation was conducted using a subset of
the Microsoft Research Paraphrase Corpus (Quirk, Brockett,
and Dolan 2004). This entire corpus is 5801 pairs of sen-
tences. For each pair, human judges made a binary decision
whether the two sentences were paraphrases of each other.
The corpus is divided into a training set (4076 pairs) and
a testing set (1725 pairs). We applied our algorithm to the
pairs in the testing set, generating a similarity score for each
pair. In order to apply our algorithm to the task of paraphrase
classification, we need to identify a value above which pairs
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Survey Tree Similarity
s1 s2 Averages Metric
The cat killed the mouse. The mouse killed the cat. 0.100 0.593
The man walked to the store. The person went to the store. 0.725 0.521
The student killed time. The student killed the roach. 0.070 0.500
The janitor cleaned the desk. The desk was cleaned by the janitor. 0.970 0.262
The locksmith went to the movies. The window was stuck shut. 0.015 0.085
The dog went missing for three days. The squirrel avoided the trap. 0.015 0.133
The student ran out of notebook paper. The printer ran out of paper. 0.240 0.638
The door is open. The door is closed. 0.100 0.334
Traffic downtown is heavy. The downtown area is crowded. 0.480 0.077
The secretary stopped for coffee on the way
to the office.

The office worker went out for dinner after
work.

0.135 0.104

Biologists discovered a new species of ant. Physicists verified the existence of black
holes.

0.090 0.059

The artist drew a picture of the landscape. The artist sketched a picture of the landscape. 0.875 0.678
The bear searched for food at the picnic
grounds.

The bear scavenged the park for food. 0.705 0.464

A college degree allows one to have a reward-
ing career.

A bachelor’s degree is necessary to get a high
paying job.

0.425 0.294

The train arrives at half past three. The visitor will be in the station this after-
noon.

0.225 0.180

Table 1: Sentence pairs with human subject survey averages and tree similarity measures

are judged to be paraphrases. We found this value by maxi-
mizing the Matthews correlation coefficient between the hu-
man judgments and our results: by these means, we achieved
a Matthews correlation coefficient of 0.193 between annota-
tor judgments and algorithmic judgment.

Conclusions and Future Work
Previously Lang (Lang 2010) proposed implementing Lévi-
Strauss’s procedure for finding the structure of a myth (Lévi-
Strauss 1955). The project’s current objective is the devel-
opment of a sentence similarity metric for use in grouping
gross constituent units (predicate relations) into the bundles
corresponding to the terms of the canonical formula. Our
sentence similarity metric is grounded in information theory.
The representation avoids high-dimensional, sparse vectors;
this allows the use of the trained database without having
to condense it. In future work, we will use the tree similar-
ity metric in a clustering algorithm for grouping sentences
into categories corresponding to the constituent terms of his
canonical formula.
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