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Abstract

An important aspect of community analysis is not only
determining the communities within the network, but
also sub-communities and hierarchies. We present an
approach for finding hierarchies in social networks that
uses work from random matrix theory to estimate the
number of clusters. The method analyzes the spectral
fingerprint of the network to determine the level of hier-
archy in the network. Using this information to inform
the choice of clusters, the network is broken into suc-
cessively smaller communities that are attached to their
parents via Jaccard similarity. The efficacy of the ap-
proach is examined on two well known real world social
networks as well as a political social network derived
from campaign finance data.

Introduction

Many real world networks are characterized by dense sub-
networks that are commonly referred to as communities and
are generally composed of groups of nodes that have ele-
ments in common with each other. Examples of networks
that have community structure can be drawn from social
(Fortunato 2009), biological (Power et al. 2011), gene ex-
pression (Zhang and Horvath 2005), and many other types of
networks. Since the communities can represent fundamen-
tal properties of the network, their discovery is important
for understanding the nature of the networks (Newman and
Girvan 2004),(Flake et al. 2002). The primary focus of this
paper is on social networks.

To best represent the communities, a classification of the
nodes into clusters should satisfy two important realities of
many social networks: overlap and hierarchy. For the first,
nodes within the network may belong to multiple communi-
ties. Much like in human social groups, an individual may
belong to more than one community or have multiple affilia-
tions (Zhang, Wang, and Zhang 2007). Hierarchy is another
important aspect of some social networks wherein smaller
communities together make up larger ones. Military, busi-
ness, and political hierarchies are all examples where indi-
vidual smaller groups combine into a larger group.
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There is already a wealth of research on finding commu-
nities within networks. Some initial work focused on crisp
splits of the network into non-overlapping, non-hierarchical
communities (Newman and Girvan 2004), (Newman 2006).
As part of this, a method for evaluating the quality of a parti-
tioning of the data into clusters was developed called modu-
larity. The idea behind modularity is to determine how well
a community split describes the likelihood of the commu-
nity as it relates to a null model, where each node keeps the
same degree but is connected at random to other nodes. This

is defined by
Q=) (ei—aj)
i€C
where C is the set of communities, e; is the fraction of edges
between the nodes in community ¢, and a; is the fraction of
edges that connect to nodes in community ¢, regardless of
source.

A variety of other approaches have been developed for
finding communities in networks (Pons and Latapy 2004),
(Blondel et al. 2008). A very popular method is spectral
clustering (Pothen, Simon, and Liou 1990), (Ng, Jordan, and
Weiss 2001). These have proved popular for their ease of im-
plementation and their ability to handle non-convex clusters.

While some of the above mentioned methods can yield
hierarchies, they do not find overlapping communities. To
find these fuzzy communities, a variety of approaches have
been presented. Palla uses a clique percolation method to
find adjacent cliques with overlapping nodes (Palla et al.
2005). Other methods use fuzzy modularity and simulated
annealing or other techniques to find relevant partitions (Liu
2010), (Bandyopadhyay 2005), (Xie, Szymanski, and Liu
2011). Fuzzy c-means is another possibility for determining
fuzzy clusters and has been used to find hierarchies of clus-
ters (Torra 2005), (Devillez, Billaudel, and Lecolier 2002).
The approach presented here differs in its use of spectral
clustering and spectral characterization to create a top-down
algorithm for finding hierarchical fuzzy clusters.

In addition to the above mentioned methods, there has
also been work in social networks that change over time and
methods for tracking and predicting communities (Hopcroft
et al. 2004), (Spiliopoulou et al. 2006), (Aynaud and Guil-
laume 2010). One such method attempts to predict the emer-
gence of future communities using link prediction (Jung and
Segev 2014).
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Figure 1: Random Network
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Figure 2: Random Network with Communities

Related Work

A common issue with determining the number of clusters is
figuring out an appropriate number of clusters to begin the
process, or an appropriate and fitting place to stop joining
networks in the case of agglomerative methods. To find the
number of clusters, another possibility involves analyzing
the eigenvalues of the adjacency matrix.

Spectral Characterization

To find the optimal number of clusters in the network, the
top down spectral approach defined later uses properties of
the eigen-spectrum of the adjacency matrix. Prior work has
shown that the eigen-spectrum of a network can reveal cer-
tain properties of the community structure of that network.
The Perron-Frobenius theorem for non-negative matrices in-
dicates that the largest magnitude eigenvalue is real and pos-
itive (MacCluer 2000). Figure 1 shows the eigenvalues of
a randomly created directed network with no community
structure. As predicted by previous studies, the largest eigen-
value is well outside the primary cloud formed by the other
eigenvalues. No other large eigenvalues were expected due
to the uniformly distributed connections. Undirected net-
works have similar form, but have only real valued eigen-
values. The network in the first example has 1000 nodes and
an average combined in/out degree on those nodes of 40.

Based on other work, in general, a network with k£ com-
munities will have k large eigenvalues (Chauhan, Girvan,
and Ott 2009), (Sarkar and Dong 2011), (Sarkar, Hender-
son, and Robinson 2013). As an example, Figure 2 shows a
network created with 6 communities and the 6 large eigen-
values from its spectrum. There are now 6 points outside the
cloud, corresponding to the communities.

In the case of networks with hierarchical communities, the
spectrum of the network shows multiple groups of eigenval-
ues when the communities are of similar size. Figure 3 has
a top level hierarchy of 4 nodes with each having 4 sub-
communities, creating 16 total clusters. As can be seen in
the graph, 16 eigenvalues are located outside of the main
cloud and are split into two separate clusters. The gap be-
tween eigenvalues, or eigen-gap, indicates a separation be-
tween levels within the hierarchy. This principle is what is
used when attempting to determine the number of communi-
ties in each hierarchical level relevant for spectral clustering.
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Figure 3: Random Hierarchical Network
Fuzzy Modularity

Since the base equation for modularity requires crisp com-

munities, a fuzzy modularity () was developed to assess the
splits created by fuzzy spectral clustering (Zhang, Wang, and
Zhang 2007). Its form and principle are similar to that of
the original modularity. Given an adjacency matrix A where

A;; # 0 indicates an edge between ¢ and j, Q is defined by

E(VoVe) (E(W))Z

k
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In the above equation, Uy, is a fuzzy partition of & clusters,
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where u;. is the fuzzy assignment of node ¢ to cluster c.
For a node 7 to be a part of cluster V., the fuzzy value
assigned for that cluster must exceed a certain threshold:
Ve = {iluie > X, i € V]

By using fuzzy modularity, it is possible to perform sim-
ilar agglomerative clustering techniques as those used for
regular modularity (Havens et al. 2013), or other approaches,
like simulated annealing (Liu 2010).

Approach

The approach proposed here is primarily based on the spec-
tral clustering work of Ng, Jordan, and Weiss (Ng, Jordan,
and Weiss 2001) as well as Zhang, Wang, and Zhang (Zhang,
Wang, and Zhang 2007).

First, the spectral composition of the network must be de-
termined. As described in prior work, this aids in determin-
ing the level of hierarchy in the network and the number of
clusters at each hierarchical level. If the hierarchical struc-
ture is weak, it is possible to fall back on iterative testing
of the partitions using fuzzy modularity as an optimization
metric.

With the number of clusters at the base level determined,
an initial clustering is performed on the square adjacency
matrix A using the following technique.

e Let D be a diagonal matrix where D; ; is the sum of the
i-th row of A. This is equivalent to the weighted degree
of each node.



e Construct the Laplacian matrix L = D~/2AD~1/2,

e Determine the k largest eigenvectors, x1, T2, ..., ) of the
Laplacian L and create the matrix X = (x1, 22, ..., Tk].
X is then normalized such that each row has unit length.

e Using X, perform fuzzy c-means clustering on the data to
obtain U, a n X k matrix where k is the number of clusters
and n is the number of data points in A.

This procedure obtains the top level communities of the
network. To obtain hierarchical structure, the process is re-
peated with a varying k corresponding to the number of clus-
ters in each hierarchical level. Each level is connected to its
previous by calculating the Jaccard similarity measure of the
communities.

_ vinv|
~ Viuy]

T (Vi, V)

The results give similarity measures for the smaller clus-
ters that can be used to assign each cluster to its best match-
ing parent.

Experiment

To test the efficacy of the algorithm, we analyze three real
world networks and present the fuzzy clustering results for
those networks. Two of these networks were chosen for their
popularity in benchmark testing for community detection as
well as the presence of hierarchical communities. The third
is a new network derived from campaign finance data.

For each data set, the set of eigenvalues is examined to
determine the hierarchical structure of the network. Using
this information, the network is partitioned into each of the
different levels of communities using fuzzy spectral cluster-
ing. Each level is attached to its parent via the best Jaccard
similarity measure for that child and parent.

Zachary Karate Network

The first example is the Zachary Karate Club network
(Zachary 1977), a common benchmark used with commu-
nity detection algorithms. It is popular since it is small and
has known clusters. Due to conflict between the club presi-
dent and the instructor, the 34 members split into two sepa-
rate groups. This network has another useful property in that
there are sub-communities within the two primary groups.
The best partition of the network, with respect to modular-
ity, splits the set into four groups (Fortunato 2009). This net-
work and the known clusters and sub-clusters are shown in
later figures. The node shapes represent the true best parti-
tioning of the network by modularity and are there for refer-
ence. For the shapes, the circles and pentagons combine into
one true cluster, and the squares and diamonds combine to
create the other.

The corresponding spectrum for the network is given in
Figure 4. This spectrum shows two hierarchical levels, based
on the large gaps between eigenvalues located outside the
cloud. The two largest eigenvalues correspond to the com-
munities created by the true clusters. Outside of the primary
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Figure 5: Karate network overlapping communities: k = 2
and A = .25

cloud is another cluster of eigenvalues that represent the sub-
communities within the primary clusters. Using this infor-
mation, hierarchical fuzzy spectral clustering is applied to
the network.

Using fuzzy spectral clustering as defined earlier, Figure 5
shows the overlapping clusters with k = 2. Assigning com-
munities with A = 0.25, nodes 3, 14, and 20 are considered
to be overlapping nodes. This appears to make sense as those
nodes are connected to the most connected and central nodes
of the two different clusters. For cluster A, these are nodes
1 and 2, while in B these are 33 and 34.

Now, these results are compared with the sub-clusters.
Figure 6 shows the fuzzy clusters on £ = 4 and A = 0.16. At
this level, 3, 14, and 20 are no longer overlapping nodes due
to the dissimilarity of the clusters. These clusters are now
less defined by their proximity to the central nodes 1, 2, 33,
and 34, and instead more by their local connections. Thus,
the set {1, 5,6, 7,11, 17} becomes its own cluster since most
of these nodes are only connected to each other. The set
Ao = {24,25,26,28,29,32} in now its own community,
separate from A, which are better defined by their proxim-
ity to 33 and 34. Additionally, nodes 9, 10, and 31 become
assigned to both A; and B;.

It should be noted that increasing the value of Ato A = 0.3
results in an assignment with no overlap where the commu-
nities are identical to the original sub-communities.

Dolphin Network

The Dolphin network is another well known example of a
social network (Lusseau and Newman 2004). This network
represents a group of dolphins that had been tracked over a
period of time. Eventually, the dolphins split into separate
groups. From prior work by Lusseau and Newman, one of
the communities was further broken down into smaller com-
munities. In the later figures, the circular nodes represent one
of the true clusters and all of the other shapes together form



Figure 6: Karate network overlapping communities: k£ = 4
and A = .16

Figure 7: Dolphin Spectral Characteristic

the other true cluster. The individual shapes correspond to
the sub-cluster results from (Lusseau and Newman 2004).

Viewing the spectral characteristics of this network in Fig-
ure 7, it is possible to see by that standard that it does not
have as strong of a hierarchical nature when compared to the
karate network. There are two hierarchical levels, but the ex-
act number of sub-communities is difficult to determine as it
begins to merge with the primary cloud.

As the largest eigen-gap between the values occurs after
the second largest eigenvalue, the initial pass clusters us-
ing two partitions. The next phase proves more difficult due
to the remaining eigenvalues. Since there is a fairly smooth
transition from the bulk distribution to the other eigenvalues,
we calculate the best fuzzy modularity for each possible par-
titioning, restricting the search to the approximate number of
communities. This procedure gives a best partition using six
clusters.

Using this information to get the smaller clusters, the re-
sulting six communities are given in Figure 9. These com-
munities align well with the previous results, with the excep-
tion of 42 and 43, which are added to the community As.
Unfortunately, these two have considerably different con-
nections in relation to the rest of the members of B3, weak-
ening its association with those nodes. Since the fuzzy as-
signment across all nodes must equal 1, this gets distributed
across the other nodes, raising the association with Ao be-
yond the A threshold. Likely, it is most strongly tied with
these because A, and Bg share proximity to B,4. Raising A
does place them solely in Bg, but it weakens other associa-
tions and yields lower modularity.

Still, even with that outlier, communities By closely cor-
respond to one of the true communities. Likewise, commu-
nities A match closely with the other true community.

Although there are now more communities than what was
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Figure 8: Dolphin network overlapping communities: k = 2
and A = .20
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Figure 9: Dolphin network overlapping communities: k = 6
and A = .17

determined by Lusseau and Newman, by merging Bs and
B3 into a community, and A; and A, into another commu-
nity, the results are very similar. Attempting to directly com-
pute k£ = 4 communities yields different results as shown in
Figure 10.

Alaska Campaign Finance

This data set is not one heavily analyzed by social network
algorithms and is obtained from the National Institute on
Money in State Politics (NIMSP)'. NIMSP gathers data on
campaign finance from state and federal elections. Previous
work has shown that the primary motivator for donations
from individuals is ideology. However, for non-individuals,
they may attempt more strategic donations (Bonica 2014).
This premise is tested here with hierarchical fuzzy spectral
clustering. This particular set is compiled from donations
that were reported in Alaska during 2012 for general elec-
tions and represents business and other non-individual dona-
tions to candidates, creating a bipartite network where each
node is a candidate or donor and an edge is a donation.

In preparing the data set, nodes were removed if the node

"http://www.followthemoney.org



Figure 10: Dolphin network overlapping communities: & =
4and A = .27
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Figure 11: Alaska Spectral Characteristic

only gave once over the course of the election cycle. Sim-
ilarly, candidates with only one donor were also removed.
Multiple donations from a donor to the same candidate were
also removed. The remaining data covers 214 nodes and
1426 edges. Despite the simplicity of the graph here, the full
scope of information available for creating a fully featured
and heterogeneous network from campaign finance is sub-
stantial and growing rapidly. Figure 11 shows the spectral
characteristic of this network. It is rather similar in nature to
the Zachary karate network in that it indicates two clusters
at the top hierarchy and four clusters at a second hierarchical
level. The large negative eigenvalues on the left of the graph
are due to the graph being bipartite and can be ignored.

After obtaining the hierarchy from the above method,
there are two communities at the top level, each of which
have two child communities. Unsurprisingly, in the par-
ent communities D and R, the candidates mostly split on
party lines, and ideology appears to dominate donations.
The overlap between the two groups is especially interest-
ing, however, as it includes donors who gave evenly between
Democrats and Republicans in Alaska. Moreover, the can-
didates in this overlap were overwhelmingly winners, with
only one candidate losing the election.

To verify these results, the overlapping donors were
checked against their entire historical data record. Based on
this data from NIMSP, the overlap donors have on average
given much more to winning candidates with very little vari-
ation. The rest of the donors have not done as well at donat-
ing solely to winners, though there is far more variation in
the percentage of dollars that went to winning candidates
(Table 1).

Analyzing the sub-communities at the next hierarchy,
there is a clear pattern in the candidates within each com-
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Nodes Ratio to Winners | Std. Dev. of %
In Both D and R 4.94 0.094
Solely in D 1.20 0.232
Solely in R 2.80 0.182

Table 1: Historical Alaska Donations

munity. Analyzing each community separately,

e D; comprises Democratic candidates exclusively, 83%
of which lost the election. The donors have given to
Democrats with only one donation ever to a Republican
candidate and one to an unaffiliated candidate.

e D, has mostly Democratic candidates at 88%, 56% of
which won their election. The donors have given almost
four times as much to Democrats as Republicans.

e R, comprises 10 Democratic and 28 Republican candi-
dates. These candidates were almost exclusively winners,
with only one losing. Similar to D2, the donors gave four
times as much, in this case favoring Republicans.

e R, contains only Republican candidates as well as a
single unaffiliated candidate. Only 55% of these candi-
dates won the election. Over the years the donors in this
group have given over 54 times as much to Republicans
as Democrats.

For the children of D, those who gave exclusively to
Democrats generally gave to losing candidates while those
who gave more evenly donated more to winners. Regard-
ing the children of R, while the donors who gave exclu-
sively to Republicans chose more winners, those who gave
to Democrats as well picked almost nothing but winning
candidates. This shift may be due to the overall political
leanings of Alaska where their legislature has a majority of
Republicans.

Conclusion

As shown by the previous experiments, the given fuzzy hi-
erarchical clustering method performs well on many real
world data sets. One limitation of the test networks used is
that they do not have deep hierarchies. All of the networks
have only two levels that can be seen by the spectral charac-
terization. The efficacy of the algorithm on real world data
sets with even more levels must still be tested. Future work
will look at much larger networks as well as generalizing
the hierarchical definition of clusters for analysis in evolv-
ing networks.

The network of campaign contributions, though limited,
may prove to be a valuable area of research in the future.
Fuzzy hierarchical spectral clustering shows promising re-
sults for finding interesting communities at multiple lev-
els and additional experiments and analysis may yield new
information and insights into the nature of money in pol-
itics. Future use of the data will incorporate some of the
other inherent structure of the political landscape, such as
lobbyist relationships, directly adding party affiliations, or
even adding legislative committee information for candi-
dates. This will allow for further testing with fuzzy hetero-
geneous networks. Additionally, because of the recent court



rulings on campaign finance, it may be more important than
ever to track and discover communities within politics.
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