
An Ontology-Based Domain Representation for Plan-Based
Controllers in a Reconfigurable Manufacturing System

Stefano Borgo, Amedeo Cesta, Andrea Orlandini
CNR – National Research Council of Italy

Institute for Cognitive Science and Technology
{name.surname}@istc.cnr.it

Alessandro Umbrico

Roma TRE University
Department of Engineering

alessandro.umbrico@uniroma3.it

Abstract

The paper describes a knowledge-based control loop as the
key feature of a generic control architecture for nodes in a
Reconfigurable Transportation Systems (RTSs). In particular,
two main aspects are presented: (i) the design of an ontology-
based representation of information related to both internal
configurations/capabilities of a node and the active connec-
tions with its neighbors in the plant; (ii) the definition of a
relationship between the ontology and the abstract model ex-
ploited by a temporal planning and execution module to im-
plement control strategies of a single node. The main contri-
bution is in proposing a connection between ontology-based
representation and planning and execution model. The goal is
to enable dynamic inference of control models so as to adapt
control strategies to mutating shop-floor scenarios.

Introduction

A key enabling factor for highly automated production sys-
tems to compete in evolving production environments is re-
lated to their capability to quickly adapt (or even antici-
pate) changes in the production requirements (Wiendahl et
al. 2007). Traditional plant control systems based on cen-
tralized/hierarchical control structures exhibit good perfor-
mance in terms of productivity over a restricted and specific
product range. However, these systems often require major
overhauls of the control code in case any sort of system
adaptation and reconfiguration needs to be implemented.
These systems are not very efficient to face the current re-
quirements of dynamic manufacturing systems (i.e., flexibil-
ity, expansibility, agility and re-configurability). For this rea-
son, an increasing attention is being dedicated to Reconfig-
urable Manufacturing Systems (RMSs) (Koren et al. 1999),
that are equipped with a set of enablers for reconfiguration
that can be related either to the single system component
(e.g., the mechatronic device) or to the entire production cell
and system layout. The role of each enabler is to implement
the correct system reconfiguration in response to changes
of the production demand. Not surprisingly, AI based ap-
proaches have been considered among local enablers never-
theless the design of offline control models remains a crucial
element in these approaches. Hence, structural modifications
in the shop floor configuration usually entail a re-design

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the control strategies that can be hardly manageable on
line. Indeed the fast adaptation capabilities strongly require
the equipment to be physically modular and its software to
be knowledge-based so as to support high reconfigurability
both from the mechanical standpoint and at reasoning level.

This paper focuses on a production environment com-
posed by a community of generic control modules that en-
capsulate the physical mechatronic equipment, and intro-
duces a knowledge-based control loop for the nodes of such
a reconfigurable plant. More specifically it concentrates on
two aspects: (i) the design of an ontology-based represen-
tation of the information related to both internal configura-
tions/capabilities of a node and the active connections with
its plant neighbors; (ii) the definition of a relationship be-
tween the ontology and the abstract model exploited by the
temporal planning and execution module to implement in-
telligent control strategies of a single node. The use of on-
tologies to represent knowledge in control architecture is
being increasingly popular in Robotics (e.g., (Hartanto and
Hertzberg 2008; Tenorth and Beetz 2009)) and Manufactur-
ing (e.g., (Balakirsky 2015; Solano, Rosado, and Romero
2013)) systems to enable autonomous agents to reason about
the environment in which they act.

The main contribution is a particular connection between
the ontological representation and the planning and execu-
tion model. The goal is to enable dynamic inference of con-
trol models so as to adapt control strategies to mutating
shop-floor scenarios. The paper shows this connection in op-
eration during two phases when the node controller know-
how is adapted: (1) the set up phase in which the ontology
provides the controller with the key information about the
initial physical configuration of the specific node, i.e., the in-
ternal equipment and the associated functional capabilities,
and (2) the reconfiguration phase in which the ontology is
exploited to capture dynamic changes occurring either in the
internal configurations, e.g., due to a failure of a component,
or in the connections with other nodes in the RTS, e.g., given
some due maintenance activities. The generic control archi-
tecture then takes advantage of such knowledge dynamically
inferring and adapting the planning and execution model
and, thus, (re)establishing a suitable control configuration
both at startup time and after disruptions.

354

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference

A Reference Domain

A pilot plant from an on-going research project called
GECKO is used to elicit a case study over which we test
the proposed Knowledge-Based Control Loop (in what fol-
lows KBCL). The plant is a Reconfigurable Manufactur-
ing System for recycling Printed Circuit Boards (PCB). The
pilot plant is composed by different automatic and man-
ual machines devoted to perform loading/unloading, testing,
repearing and shredding of PCBs and a conveyor system
that connects them implemented through a Reconfigurable
Transportation System (RTS). The RTS is composed of a set
of reconfigurable mechatronic components, called Transport
Modules (called TM in what follows). The goal of the sys-
tem is to analyze defective PCBs, automatically diagnose
their faults and, depending on the gravity of the malfunc-
tions, attempt an automatic repair of the PCBs or send them
to shredding. Since here the TM exemplifies our agent, now
we briefly introduce the device. Each TM combines three
Transportation Units (TUs). The units may be either unidi-
rectional or bidirectional; specifically the bidirectional units
enable the lateral movement (i.e., cross-transfers) between
two TMs. Thus, each TM can support two main (straight)
transfer services and one to many cross-transfer services.
Different configurations can be deployed varying the num-
ber of cross-transfers components and enabling multiple I/O
ports. TMs can be connected back to back to form a set of
different conveyor layouts. The manufacturing process re-
quires PCBs to be loaded on a fixturing system (pallet) in
order to be transported and processed by the machines. The
transportation system can move one or more pallets (i.e., a
number of pallets can simultaneously traverse the system)
and each pallet can be either empty or loaded with a PCB to
be processed. At each point in time a pallet is associated to
a given destination and the RTS allows for a number of pos-
sible routing solutions. The destination of a pallet carrying
a PCB changes over time as the production process is car-
ried out (e.g., the test station, the shredding station, the load-
ing/unloading cell). The new destination is available only at
execution time. Transport modules control system (Borgo et
al. 2014) have to cooperate in order to define the paths the
pallets have to follow to reach their destinations. These paths
are to be computed at runtime, according to the actual sta-
tus and the overall conditions of the shop floor, i.e., no static
routes are used to move pallets. Moreover, each TM must be
able to dynamically handle exogenous events by adapting its
actions to the possible changing internal status and to that of
its neighbors.

Knowledge-based Control Loop

In the software architecture used in the pilot plant, any com-
ponent is wrapped with a software component that can be
schematized with a layered control architecture (introduced
in (Borgo et al. 2014)) and defined as the composition of
three interacting layers. A Coordination Layer has been de-
signed in order to constitute the architectural element re-
sponsible to make the single module able to interact with
other modules as well as to participate in the distributed rout-
ing process for part routing dynamic policies management).

A Production Layer is responsible for real-time continuous
control by adapting the node’s activities to the production
needs. Given the requests provided by the Coordinantion
Layer, an off-the-shelf temporal planning and execution sys-
tem is deployed to synthesize and execute intelligent control
strategies. Finally, a Control Layer is the composition of a
Control Software, based on a distributed approach supported
by an IEC61499 standard reference model, and a Mecha-
tronic Module (in the specific case, either a Machine or a
Transport Module).

The goal of this work is to enable dynamic inference of
control models so as to adapt the intelligent control strate-
gies while facing mutating shop-floor scenarios. In this re-
gard, two main aspects have been investigated: (i) the design
of an ontology-based representation of information that, be-
side the global shop floor information, can manage both the
internal configurations/capabilities of a node and the active
connections with its neighbors in the plant; (ii) the defini-
tion of a relationship between the ontology and the abstract
model exploited by a temporal planning and execution mod-
ule to implement intelligent control strategies of a single
node. A conceptual schema of the integration of knowledge
and control in the above generic architecture is depicted in
Fig. 1. Specifically, it is the composition of three steps: (step
1) an ontology-based abstraction to represent the mecha-
tronic device and to define an associated Knowledge Base
(KB), (step 2) a semantic mapping applied to the KB to dy-
namically generate the control model of the system, (step 3)
an off-the-shelf planning and execution system activated us-
ing such a model to synthesize a suitable set of actions (i.e.,
a timeline-based plan) that supports the production flow.
Therefore, the Knowledge-based Control Loop is the process

1. Ontology-based Abstraction

3. Planning & Execution 2. Semantic Mapping

�������	�

��
�

�������

�����

Figure 1: The Knowledge-based Control Loop

which allows the control architecture to dynamically repre-
sent the system’s capabilities and automatically build the re-
lated timeline-based model description. It is then a continu-
ous monitoring of the configuration of the plant dominating
the usual closed-loop control implemented by the planning
and execution system and keeping the KB up to date with
respect to the real state of the system. Consequently, it also
allows for the control model to be dynamically updated. In
fact, whenever a reconfiguration of the mechatronic node is
detected, the KB is updated and a new iteration of the loop
starts over. Then, for each cycle, the planning and execution
system can rely on a control model adherent to the actual
operational conditions of the module.

355

Ontology abstraction

The agents must utilize a language rich enough to share in-
formation about the evolving environment. Two aspects are
particularly important in this perspective. The first amounts
to ensure the understanding of the types of information rele-
vant for their (actual and expected) functioning in the sys-
tem. This was achieved by applying ontological analysis
to discover the Modules’ information needs and setting a
coherent classification of data into information types. The
second aspect is the adoption of an articulated information
structure according to which received information can be
understood (depending on the agent’s type) and new infor-
mation distributed. In this regard, the use of an ontologi-
cal approach ensures a reliable mechanism to dynamically
generate a high-level description of the Module. Thus, an
Ontology-based Layer controls also this language for build-
ing the KB and all the structural, performance and produc-
tion information concerning the mechatronic device. From
the control perspective, the Production Layer exploits the
KB’s information to dynamically infer the Module actual
status and to build a model capturing what is required to
safely/effectively control the Module. Therefore, every time
the KB is updated, the control model is updated as well.

The GECKO Contexts

Since the KB collects information on several topics, like
machine capacities, product classification and transportation
time, the information classification system must be well ar-
ticulated. To maintain maximal flexibility and adaptability,
we relied on a general and domain-independent approach
based on a set of contexts that we derived from the ontolog-
ical analysis of the content of the information.

Contexts are devised according to ontological principles
and are exploited to model the factory along two perspec-
tives: classification of entity and data following the ontology,
and possible roles of information types within a context. The
ontological analysis of the shop floor’s agents and processes,
based on works like DOLCE (Borgo and Masolo 2009) and
(Guarino and Welty 2009), led to identify relevant informa-
tion flows and types of information potentially needed. The
analysis, carried out from the viewpoint of a Module, led to
separate three types of context: global, local and internal.
Global context. This context is about information the Mod-
ule cannot control nor modify. In fact, since the Modules
act in an integrated and coordinated shop floor, a common
language allows to exchange organizational and production
information. In this regard, we assume that a communication
channel and shared protocol(s) to exchange data already ex-
ist at the shop floor. On top of this, the agents in the system
must agree on a vocabulary (terms and relations) suitable
for representing knowledge and for reasoning at the agent
and shop floor levels. This language ensures they correctly
understand how to recognize an identifier, what it means to
receive a request or to perform an operation, etc. This con-
text is then composed by three sub-contexts.
SUB-CONTEXT 1: FACTORY LANGUAGE. This context col-
lects the language that all the Modules of the factory must
use for public communications: vocabulary, rules and se-

mantic constraints to describe functionalities; temporal and
topological information for coordination; requests of actions
and committed actions like shared plans, agenda etc. For
example, the context provides the list of the capabilities in
the shop floor, e.g., moving (an item), joining (two or more
items), testing (input-output parameters), as well as their
classification, e.g., carrying is a specialization of moving
and welding of joining.
SUB-CONTEXT 2: FACTORY SHOP FLOOR. This context
collects information on the elements (agents and products,
including their identifiers) presently at the shop floor and the
information exchanged for the production like requests for
action and information on agents’ availability. E.g., it lists
pairs of an item and the requested action, e.g., (item #123,
resistor impedance test), and pairs of a machine and its capa-
bility, e.g., (impedance test, machine #098). Note that the re-
lationship between, e.g., resistor impedance test, impedance
test and test is part of the factory language sub-context.
SUB-CONTEXT 3: FACTORY REGULATION AND PERFOR-
MANCE. This context collects information related to general
constraints, e.g., due to physical or technological require-
ments, production policies and safety regulations, as well
as to the performance of cells or of the factory as a whole
(productivity, consumption, throughput). Here we find data
on average electricity usage and operational constraints like
”impedance testing must be anticipated by voltage testing”.
Local information context. This context is tuned to the
agent type. Focusing on our Modules, each one is directly
connected to other Modules or machines, these form its
neighborhood. The information about active connections
(local topology), coordination activities and commitments
within the neighborhood form this context. In particular, this
context keeps an updated list of the pairing (porti, agentj),
for each port of the Module, and the agreed plan for each
pair, e.g.: “receive item #123 via port1 at time t5”, “deliver
item #123 via portB at time t8”, possibly including time con-
straints and tolerance.
Module internal context. This context is dedicated to the
information that an agent recovers about itself or generates
by, e.g., self-diagnosis: identifier and status, components,
actual capabilities (what it can possibly do) and, for each
capacity, performance time and related information (e.g., it
can continuously perform action a for at most 5 min; it can
perform the action on pieces of size x, etc.), the possible
change-overs, time needed to actuate a change, possible lim-
itations in the changes, maintenance schedule, information
on quality, partial/total malfunctioning of components, etc.
For example when booting a Module will build a list that
includes: identifier #123, ports port1,...,portm, engines (for
cross-transfer, conveyor etc.), sensors and their tasks like (si,
enginej left stopper) and (sk, position cross-transferl) etc. In
this way it can generate a list of capacities, e.g., (port1, de-
livering) while the lack of (port1, receiving), due by the fact
that the related engine does not reverse the movement di-
rection, indicates a partial malfunctioning on that port. By
reasoning on these data and by updating them over time, the
Module will be able to establish and make public at the shop
floor which capacities it makes currently available.

356

The Ontology of Functions

An agent is itself a flexible and changing element of the
environment; to correctly and reliably manage the chang-
ing functional capacities of the agents in the shop floor, we
introduce an ontology of functions which, inspired by the
foundational ontology DOLCE, gives an independent system
for function classification. Here we primarily work with the
functional taxonomy since this suffices to validate the sys-
tem when the goal is restricted to match desired states with
function plans and scheduling.

There is a large literature on function and function clas-
sification in engineering design and our ontology builds on
three engineering approaches that have received much at-
tention in the last ten to fifteen years, namely: the FO-
CUS/TX (Kitamura et al. 2011), the Functional Basis (FB)
(Pahl et al. 2007), and further developed at NIST (Hirtz
et al. 2001), and the Function Representation (FR) (Chan-
drasekaran and Josephson 2000). Following the vision of the
GECKO project, we decided to build an ontology of func-
tions based on the notion of “function as effect”. That is,
we analyze functions focusing on the effects they have on
the operands (the entities they act upon) and independently
of the actual implementation of the function. This level of
generality allows us to distinguish “weld”, “melt”, “glue”
etc. as ways to perform the (ontologically grounded) “join”
function as suggested, e.g., in (Kitamura et al. 2011). Thus,
our function classification has two components: the ontolog-
ical component that contains functions like “join”, “move”
and “communicate”, see Figure 2; and the implementation
component (not discussed in this paper) which, for each on-
tological function, assigns a set of possible ways to execute
it. Clearly, the ontology of functions should remain stable
over time while the implementation component, which de-
pends on the available technology, can be updated in real
time (e.g. after the introduction of a new machine).

FUNCTION
(as effect)

ACTIONTEST

SENSE

change of
operand(s)

change on
qualities

change on
relations

information
collection

information
sharing

COMMUNICATION

SEND

RECEIVE

CONVERT

BRANCH

JOIN

CHANGE
OVER

RECLASSIFY

CHANNEL

CHANGE
MAGNITUDE

STORE

COLLECT

RELEASE

STABILIZE

INCREASE

DECREASE

Figure 2: The ontological taxonomy of functions in GECKO and
its rationale (bottom).

Figure 2 lists the ontological functions we are using in
GECKO, among these “reclassify” stands for the function
“to change the classification of an operand” as when chang-
ing the status of a PCB from malfunctioning to repaired after
performing a test; “change-over” for the function “to change
its own parameters” which occurs, e.g., when a Module acts

on itself to activate/deactivate some component; “channel”
for “to move an operand”, that is, to change its location;
“stabilize” for the function “to maintain relational param-
eters” like when tuning electronic components to regulate
the input-output relationship; “sense” stands for the function
“to test an operand”, i.e., to acquire information without al-
tering the status or qualities of the operand; finally, “send”
stands for “to output information” like a signal that a PCB
is going to be transferred to another Module or that a failure
occurred.

The Semantic Mapping
From the control perspective, the objective is to exploit P&S
technology in order to control complex systems acting in
real world environments. In particular for planning and exe-
cution we rely on the timeline-based approach (Fratini, Pec-
ora, and Cesta 2008) that allows to deal with the temporal
aspects of the control problem (see also (Py, Rajan, and Mc-
Gann 2010)). This technique aims at controlling the tempo-
ral evolution of the system in order to obtain desired be-
haviors. In Figure 1, the Semantic Mapping step aims at
bridging the KB with timeline-based P&S model by ex-
ploiting semantics of KB data in order to extract relevant
information and connection for the control model and au-
tomatically carrying out the modeling approach described
above. Broadly speaking the bridging process consists of
two phases: (i) a first phase allows to build the components
of the control module by reading information from different
contexts of the KB; (ii) a second phase defines the operat-
ing and temporal constraints (i.e. synchronization rules in
the control model) by combining data from different con-
texts of the KB. In general, the modeling approach follows
a structured domain decomposition modeling approach as
discussed for example in (Fratini, Pecora, and Cesta 2008).
That decomposition is to identify a set of “relevant” features
(system’s components) that independently evolve over time.
Then, a generic component is described by a set of values
representing activities/states the system can perform/assume
over time together with duration and transition constraints.
Here, considering the contexts presented in the previous sec-
tion, three classes of components have been identified: (i)
Functional, (ii) Primitive and (iii) External components.

The Internal Context which describes the internal compo-
sition of the agent is suited to generate the Primitive Compo-
nents of the timeline-based specification. Indeed, Primitive
Components provide a logical view of the elements com-
posing the system to be controlled. Considering a Trans-
port Module agent, the Internal Context contains informa-
tion about the cross transfer engines, main and cross con-
veyor engines and other elements composing the module.
The bridging process can build the related Primitive Compo-
nents of the timeline-based domain by exploiting this infor-
mation. For instance, it builds a Primitive Component which
models the main conveyor engine of the module. The values
of this component represent the possible states of the con-
veyor: forward() if the conveyor is moving towards the front
direction (F), backward() if the conveyor is moving towards
the back direction (B) or still() if the conveyor is not moving.
The Local Context contains the information needed to build

357

the External Components of the module. External Compo-
nents represent elements whose behaviour is not within the
control of the agent but affects the execution of its function-
alities. Namely, these components model some functional
dependencies with the environment that make the agent able
to perform its activities or not, e.g. the neighbor nodes of a
transportation module. The values of these components rep-
resent the possible states of the neighbour agents: Online(),
the node is working properly; Maintenance(), the node is
performing a maintenance task and cannot support the pro-
duction flow; Malfuctioning() if the node has an internal fail-
ure limiting its capabilities.

The Functional Components provide a logical view of the
system as a whole by modeling the high-level functionalities
of an agent. They define the system in terms of what it can
do in the environment independently of its internal details.
The information required to build these components can be
extracted by reasoning about information in the Global Con-
text and the Ontology of Function of the KB. It is worth say-
ing that it is also necessary to take into account data from
the Local Context (e.g., a transport module endowed with
three cross-transfer units is able to transport pallets towards
any directions). However if the module T is connected with
other two neighbor modules only, e.g., a module Tx on port
F and a module Ty on port B, then the module T can trans-
port pallets only towards the related directions (i.e., direc-
tions F and B). Namely, the actual capacity of the module to
perform its functionalities is subject to the status of its ports
and its neighbor agents.

��

������

�������

���

��	���

1.

������

������

���
�

�

rdf:type
rdf:type

���
�
N.

rdf:type

����������
� � �

gecko:description

����������
� �

gecko:description

gecko:ID

gecko:functionalities

...

Figure 3: A partial view of KB’s information

To exemplify the bridging process discussed above, the
definition of the functional components for the timeline-
based model is briefly discussed and a portion of the KB rep-
resenting information related to the functional capabilities of
the transport module is depicted in Figure 3 (The notation is
based on the RDF syntax). Figure 3 shows that the node is an
agent of the type “TMAgent” (i.e. a Transportation Module
agent) with ID “T1”. The module is able to perform differ-
ent “implementations” of the Channel functionality (w.r.t.
taxonomy in Figure 2). For example, “T1” can perform a
Channel functionality labelled “Channel F B” which corre-
sponds to the capability of receiving a pallet from port “F”
and transferring it towards the port “B”. This example shows
how to “interpret” KB’s information exploiting its schema as
the defined KB’s schema (ontology and contexts) is the key

feature here for providing data with semantics. Then, rea-
soning processes can exploit such semantics in order to in-
terpret data and discover node capabilities. In Alg. 1, a sim-
ple procedure for building the functional components for the
timeline-based model is summarized.

The procedure buildFunctionalComponents() accesses
the KB in order to define the Functional Components of
the timeline-based domain. First, the procedure extracts the
available functionalities in the KB w.r.t. the Global Context
(row 3). For each functionality (rows 5-13) the procedure
finds the functionalities actually implemented by the agent
(row 7). Namely for each functionality in the ontology (e.g.
Channel) the procedure extracts the available implementa-
tions (e.g. “Channel F B”) by reasoning on the Local Con-
text of the agent. If the module implements the functional-
ity (rows 8-12) then the procedure creates a new Functional
Component (row 10) by adding a distinct value (rows 11-
12) for each available implementation of the related func-
tionality, e.g. “Channel F B”. Similarly, primitive and exter-
nal components are defined by means of procedures omitted
here due to space limitations.

Algorithm 1 Functional Component Builder Algorithm
1: function BUILDFUNCTIONALCOMPONENTS(KB)
2: // extract available functionalities
3: fs ← getFunctionalities(KB)
4: for all f ∈ fs do
5: // get agent’s implementations of the functional-

ity
6: impls ← getImplementations(KB, f)
7: if ¬Empty(impls) then
8: // create a component for the functionality
9: sv ← createFunctionalComponent(f)

10: // add a value for each implementation
11: for all impl ∈ impls do
12: addV alue(sv, impl)

13: add(svs, sv)

14: return svs

After components definition, it is necessary to further con-
strain their behaviors in order to coordinate components to-
gether by means of synchronization rules. These rules model
causal and temporal constraints for the agent while perform-
ing complex task. Synchronization specification follows a
hierarchical approach. Usually these rules map the high-
level functionalities of the agent into a sequence of primi-
tive activities enforcing a set of operational constraints that
guarantee the safety of the overall system Namely synchro-
nizations allow to specify how the functionalities, modeled
by Components, are internally executed by the system. The
dynamic generation of rules requires to combine informa-
tion in different contexts of the KB.

The Mapping in Action

Operationally, the bridging process presented above is ex-
ploited to adapt the control model of a generic node in the
pilot plant during two phases: (1) the set up phase, to pro-
vide the controller with the key information about the ini-

358

tial physical configuration of the specific node, i.e., the in-
ternal equipment and the associated functional capabilities,
and (2) the reconfiguration phase, dynamically adapting the
control model while operating after a reconfiguration either
in the internal configuration or in the connections with other
nodes in the RTS. In general, when the functional capabil-

���

�
��
��
��

��
	

����������

���������

��

��!

��������
�

�������� ���
�

�

���

�

��!

���

�
��
��
��

�
	

� 	

�!

	!

��

	�

�
���

SEMANTIC
MAPPING

�
���

FUNCTIONAL

���"�

��#�$"�%�"�"�

�"#�"�

��#$��

Neighbor-F

$"�%�

Neighbor-B
EXTERNAL

FUNCTIONAL FUNCTIONAL

��#�

���""�#�
��
�
TM Channel

ONAL

PRIMITIVE PRIMITIVE

��&���
��

Cross Engine 1

�%##

 Main
Conveyor

Cross Engine 2

gine 1 1

ross Engine 2

e 1
Cross Engine 3

���'&���

C E i

��&"

��(�"�

��&"

Transportation Unit 1

��&"

Transportation
Unit 2 Unit 2

Transportation
Unit 3

�)

��(�"�

�)

Neighbor-L1

���""�#�
�	
elll �

���""�#�	 �

���""�#���

Figure 4: Conceptual schema of a specific TM (on the right) and
associated control model (on the left). Components with dotted
borders are removed in the model after a failure of TU3 unit.

ities of a node are modified during an operative period, a
reconfiguration phase is required. The modifications of the
node structure are detected and the control node has to up-
date the KB and the information in the different contexts
accordingly. Then, the generic control node takes advantage
of the KB Control Loop to dynamically adapt the timeline-
based model and to (re)establish a suitable control config-
uration. Let us consider a transport module depicted in left
part of Fig. 4. An initial control model is generated as a re-
sult of the KB control loop after the setup phase (see the
whole right part of Fig. 4). During operation, an internal
HW failure occurs for the element “TU3” and the module
becomes not able to perform Channel functionalities involv-
ing “TU3”. Thus, the initial P&S model becomes obsolete
and it is updated by removing the values related to function-
alities no more available (e.g., “Channel F B” and “Chan-
nel B F”) from the Channel functional component as well
as the components related to the failing TU (see dotted com-
ponents in Fig. 4).

Conclusions

This paper presented an integration step described as a
“Knowledge-based Control Loop” that allows an agent ar-
chitecture supervising mechatronic nodes of a RMS to rep-
resent the relevant knowledge about the plant and to map
such knowledge in a domain description for a time-based
planning and execution module. Before closing it is worth
underscoring how, differently from the previous works, a
knowledge-based control loop is envisaged aiming to imple-
ment a dynamic knowledge processing mechanism capable
of allowing the automatic generation of adaptive behaviors
when facing changes occurring in the actual system.

Acknowledgments. CNR authors are supported by
MIUR/CNR under the GECKO Project (FdF-SP1-T2.1).

References
Balakirsky, S. 2015. Ontology based action planning
and verification for agile manufacturing. Robotics and
Computer-Integrated Manufacturing 33(0):21 – 28. Special
Issue on Knowledge Driven Robotics and Manufacturing.
Borgo, S., and Masolo, C. 2009. Foundational choices in
DOLCE. In Staab, S., and Studer, R., eds., Handbook on On-
tologies, International Handbooks on Information Systems.
Borgo, S.; Cesta, A.; Orlandini, A.; Rasconi, R.; Suri-
ano, M.; and Umbrico, A. 2014. Towards a cooperative
knowledge-based control architecture for a reconfigurable
manufacturing plant. In 19th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA).
Chandrasekaran, B., and Josephson, J. 2000. Function
in Device Representation. Engineering with Computers
16(3/4):162–177.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Plan-
ning and Scheduling as Timelines in a Component-Based
Perspective. Archives of Control Sciences 18(2):231–271.
Guarino, N., and Welty, C. 2009. An overview on Onto-
clean. In Handbook on Ontologies.
Hartanto, R., and Hertzberg, J. 2008. Fusing dl reasoning
with htn planning. In Dengel, A.; Berns, K.; Breuel, T.; Bo-
marius, F.; and Roth-Berghofer, T., eds., KI 2008: Advances
in Artificial Intelligence, volume 5243 of LNCS. Springer
Berlin Heidelberg. 62–69.
Hirtz, J.; Stone, R. B.; McAdams, D. A.; Szykman, S.; and
Wood, K. L. 2001. A functional basis for engineering de-
sign: Reconciling and evolving previous efforts. Res. in En.
Des. 13(2):65–82.
Kitamura, Y.; Segawa, S.; Sasajima, M.; and Mizoguchi, R.
2011. An Ontology of Classification Criteria for Functional
Taxonomies. In IDETC/CIE. ASME.
Koren, Y.; Heisel, U.; Jovane, F.; Moriwaki, T.; Pritschow,
G.; Ulsoy, G.; and Brussel, H. V. 1999. Reconfigurable man-
ufacturing systems. CIRP Annals - Manufacturing Technol-
ogy 48(2).
Pahl, G.; Beitz, W.; Feldhusen, J.; and Grote, K. 2007. En-
gineering Design. A Systematic Approach. Springer.
Py, F.; Rajan, K.; and McGann, C. 2010. A systematic agent
framework for situated autonomous systems. In Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS).
Solano, L.; Rosado, P.; and Romero, F. 2013. Knowledge
representation for product and processes development plan-
ning in collaborative environments. International Journal of
Computer Integrated Manufacturing 27(8):787–801.
Tenorth, M., and Beetz, M. 2009. Knowrob - knowledge
processing for autonomous personal robots. In Intelligent
Robots and Systems IROS 2009. IEEE/RSJ, 4261–4266.
Wiendahl, H.-P.; ElMaraghy, H. A.; Nyhuis, P.; Zäh, M. F.;
Wiendahl, H.-H.; Duffie, N.; and Brieke, M. 2007. Change-
able manufacturing-classification, design and operation.
CIRP Annals-Manufacturing Technology 56(2):783–809.

359

