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Abstract

Between the dawn of the Internet through year 2003,
there were just a few dozens exabytes of information
on the Web. Today, that much information is created
weekly. The opportunity to capture the opinions of the
general public about social events, political movements,
company strategies, marketing campaigns, and product
preferences has raised increasing interest both in the sci-
entific community, for the exciting open challenges, and
in the business world, for the remarkable fallouts in so-
cial media marketing and financial forecast. Keeping up
with the ever-growing amount of unstructured informa-
tion on the Web, however, is a formidable task. Unlike
standard statistical approaches, sentic computing relies
on a vector space model of affective common-sense
knowledge to work with natural language at concept-
level. The well-known noisiness of common-sense data
sources, however, is a major factor in jeopardizing the
efficiency of analogical reasoning in the vector space.
In this work, it is explored how least absolute deviations
can aid semantic outlier detection and, hence, enhance
concept-level opinion mining.

Introduction
The ways people express their opinions and sentiments have
radically changed in the past few years thanks to the ad-
vent of social networks, web communities, blogs, wikis, and
other online collaborative media. Actually, the availability of
these new tools allow people to create and share, in a time
and cost efficient way, their own contents, ideas, and opin-
ions virtually with the millions of people connected to the
World Wide Web. This has made available by click a huge
source of information and has provided a powerful commu-
nication medium to share knowledge and to get advantage
from others’ experiences.

As a major consequence, the distillation of knowledge
from this huge amount of unstructured information can be
a key factor for marketers who want to create an image or
identity in the minds of their customers for their product,
brand, or organization. On the other hand, these online so-
cial data remain hardly accessible to computers, as they are
specifically meant for human consumption.
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Online information retrieval is still mainly based on algo-
rithms relying on the textual representation of web pages.
Such algorithms are very good at retrieving texts, splitting
them into parts, checking the spelling, and counting their
words. But when it comes to interpreting sentences and ex-
tracting useful information for users, their capabilities are
still very limited.

Indeed, such a scenario has led to the emerging fields of
opinion mining and sentiment analysis (Pang and Lee 2008;
Liu 2012; Cambria et al. 2013), which deal with informa-
tion retrieval and knowledge discovery from text using data
mining and natural language processing (NLP) techniques
to distill knowledge and opinions from the huge amount of
information on the World Wide Web. Mining opinions and
sentiments from natural language, though, is an extremely
difficult task as it involves a deep understanding of most of
the explicit and implicit, regular and irregular, syntactical
and semantic rules proper of a language.

Sentic computing (Cambria and Hussain 2015) tackles
these crucial issues by exploiting affective common-sense
reasoning, i.e., the intrinsically-human capacity to interpret
the cognitive and affective information associated with nat-
ural language and, hence, to infer new knowledge and make
decisions, in connection with one’s social and emotional val-
ues, censors, and ideals. Thus, common-sense computing
techniques are applied to bridge the semantic gap between
word-level natural language data and the concept-level opin-
ions conveyed by these.

To achieve this goal, the sentic computing framework
takes advantage of a set of linguistic patterns (Poria et
al. 2014) and AffectNet1, a semantic network in which
common-sense concepts (e.g., ‘read book’, ‘payment’, ‘play
music’) are linked to a hierarchy of affective domain labels
(e.g., ‘joy’, ‘amazement’, ‘fear’, ‘admiration’). In particular,
the vector space representation of such a semantic network,
termed AffectiveSpace2 (Cambria et al. 2015a), enables af-
fective analogical reasoning on natural language concepts.
In practice, concepts conveying similar semantic and affec-
tive information, e.g., ‘enjoy conversation’ and ‘chat with
friend’, tend to fall near each other in the multi-dimensional
space that characterizes AffectiveSpace (Fig. 1).

1http://sentic.net/affectnet.zip
2http://sentic.net/affectivespace.zip
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Figure 1: AffectiveSpace

One major issue in performing reasoning in AffectiveS-
pace is the noisy nature of the common-sense data the vector
space is built upon. Wrong semantic and affective features
associated with natural language concepts heavily affect the
configuration of the vector space and the clustering perfor-
mance. To this end, the present research work aims to ex-
plore how least absolute deviations (LAD) can aid semantic
outlier detection and, hence, enhance analogical reasoning
in AffectiveSpace.

The rest of the paper is organized as follows: next sec-
tion presents related work in the field of concept-level senti-
ment analysis; the following two sections describe the multi-
dimensional vector space model of affective common-sense
knowledge and the adopted emotion model, respectively;
next follows a section showing how and why semantic out-
lier detection is performed in the vector space model; finally,
the paper is concluded by an evaluation section and a final
section offering closing remarks.

Background
Concept-level sentiment analysis is a NLP task that has re-
cently raised growing interest both within the scientific com-
munity, leading to many exciting open challenges, as well as
in the business world, due to the remarkable benefits to be
had from financial market prediction. The potential applica-
tions of concept-level sentiment analysis, in fact, are count-
less and span interdisciplinary areas such as political fore-
casting, brand positioning, and human-robot interaction.

For example, Li et al. (Li et al. 2014) implemented a
generic stock price prediction framework and plugged in
six different models with different analyzing approaches.
They used Harvard psychological dictionary and Loughran-
McDonald financial sentiment dictionary to construct a sen-
timent space. Textual news articles were then quantitatively
measured and projected onto such a sentiment space. The
models’ prediction accuracy was evaluated on five years his-
torical Hong Kong Stock Exchange prices and news articles
and their performance was compared empirically at different
market classification levels.

Rill et al. (Rill et al. 2014) proposed a system designed
to detect emerging political topics in Twitter sooner than

other standard information channels. For the analysis, au-
thors collected about 4 million tweets before and during the
parliamentary election 2013 in Germany, from April until
September 2013. It was found that new topics appearing in
Twitter can be detected right after their occurrence. More-
over, authors compared their results to Google Trends, ob-
serving that the topics emerged earlier in Twitter than in
Google Trends.

Jung and Segev (Jung and Segev 2014) analyzed how
communities change over time in the citation network graph
without additional external information and based on node
and link prediction and community detection. The identified
communities were classified using key term labeling. Exper-
iments showed that the proposed methods can identify the
changes in citation communities multiple years in the future
with performance differing according to the analyzed time
span.

Montejo-Raez et al. (Montejo-Raez et al. 2014) intro-
duced an approach for sentiment analysis in social media en-
vironments. Similar to explicit semantic analysis, microblog
posts were indexed by a predefined collection of documents.
In the proposed approach, performed by means of latent se-
mantic analysis, these documents were built up from com-
mon emotional expressions in social streams.

Bell et al. (Bell et al. 2014) proposed a novel approach to
social data analysis, exploring the use of microblogging to
manage interaction between humans and robots, and eval-
uating an architecture that extends the use of social net-
works to connect humans and devices. The approach used
NLP techniques to extract features of interest from textual
data retrieved from a microblogging platform in real-time
and, hence, to generate appropriate executable code for the
robot. The simple rule-based solution exploited some of the
‘natural’ constraints imposed by microblogging platforms to
manage the potential complexity of the interactions and to
create bi-directional communication.

The Vector Space Model
The best way to solve a problem is to already know a solu-
tion for it. But, if we have to face a problem we have never
met before, we need to use our intuition. Intuition can be
explained as the process of making analogies between the
current problem and the ones solved in the past to find a
suitable solution. Marvin Minsky attributes this property to
the so called ‘difference-engines’ (Minsky 1986).

This particular kind of agents operates by recognizing dif-
ferences between the current state and the desired state, and
acting to reduce each difference by invoking K-lines that
turn on suitable solution methods. This kind of thinking is
maybe the essence of our supreme intelligence since in ev-
eryday life no two situations are ever the same and have
to perform this action continuously. The human mind con-
structs intelligible meanings by continuously compressing
over vital relations (Fauconnier and Turner 2003). The com-
pression principles aim to transform diffuse and distended
conceptual structures to more focused versions so as to be-
come more congenial for human understanding.

To this end, principal component analysis (PCA) has been
applied on the matrix representation of AffectNet. In par-
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ticular, truncated singular value decomposition (TSVD) has
been preferred to other dimensionality reduction techniques
for its simplicity, relatively low computational cost, and
compactness. TSVD, in fact, is particularly suitable for mea-
suring the cross-correlations between affective common-
sense concepts as it uses an orthogonal transformation to
convert the set of possibly correlated common-sense features
associated with each concept into a set of values of uncor-
related variables (the principal components of the SVD). By
using Lanczos’ method (Lanczos 1950), moreover, the gen-
eralization process is relatively fast (a few seconds), despite
the size and the sparseness of AffectNet. Applying TSVD
on AffectNet causes it to describe other features that could
apply to known affective concepts by analogy: if a concept
in the matrix has no value specified for a feature owned by
many similar concepts, then by analogy the concept is likely
to have that feature as well.

In other words, concepts and features that point in similar
directions and, therefore, have high dot products, are good
candidates for analogies. After performing TSVD on Affect-
Net, hereby termed A for the sake of conciseness, a low-
rank approximation of it is obtained, that is, a new matrix
Ã = Up Σp V T

p . This approximation is based on minimizing
the Frobenius norm of the difference between A and Ã under
the constraint rank(Ã) = p. For the Eckart–Young theorem
(Eckart and Young 1936), it represents the best approxima-
tion of A in the least-square sense, in fact:

min
Ã|rank(Ã)=p

|A− Ã| = min
Ã|rank(Ã)=p

|Σ−UT
p ÃVp|

= min
Ã|rank(Ã)=p

|Σ−Sp|

assuming that Ã has the form Ã =USV ∗, where S is diag-
onal.

From the rank constraint, i.e., S has p non-zero diagonal
entries, the minimum of the above statement is obtained as
follows:

min
Ã|rank(Ã)=p

|Σ−Sp|= min
si

√
n

∑
i=1

(σi− si)2 =

= min
si

√√√√ p

∑
i=1

(σi− si)2 +
n

∑
i=p+1

σ2
i =

√
n

∑
i=p+1

σ2
i

Therefore, Ã of rank p is the best approximation of A in
the Frobenius norm sense when σi = si (i = 1, ..., p) and
the corresponding singular vectors are the same as those of
A. If all but the first p principal components are discarded,
common-sense concepts and emotions are represented by
vectors of p coordinates.

These coordinates can be seen as describing concepts in
terms of ‘eigenmoods’ that form the axes of AffectiveSpace,
i.e., the basis e0,...,ep−1 of the vector space. For example,
the most significant eigenmood, e0, represents concepts with
positive affective valence.

That is, the larger a concept’s component in the e0 direc-
tion is, the more affectively positive it is likely to be. Con-
cepts with negative e0 components, then, are likely to have

negative affective valence. Thus, by exploiting the informa-
tion sharing property of TSVD, concepts with the same af-
fective valence are likely to have similar features – that is,
concepts conveying the same emotion tend to fall near each
other in AffectiveSpace. Concept similarity does not depend
on their absolute positions in the vector space, but rather on
the angle they make with the origin. For example concepts
such as ‘beautiful day’, ‘birthday party’, and ‘make someone
happy’ are found very close in direction in the vector space,
while concepts like ‘feel guilty’, ‘be laid off’, and ‘shed tear’
are found in a completely different direction (nearly oppo-
site with respect to the centre of the space).

The key to perform common-sense reasoning is to find
a good trade-off for representing knowledge. Since in life
two situations are never exactly the same, no representation
should be too concrete, or it will not apply to new situa-
tions, but, at the same time, no representation should be too
abstract, or it will suppress too many details. Within Af-
fectiveSpace, this knowledge representation trade-off can be
seen in the choice of the vector space dimensionality. The
number p of singular values selected to build AffectiveS-
pace is a measure of the trade-off between precision and ef-
ficiency in the representation of the affective common-sense
knowledge base.

The bigger is p, the more precisely AffectiveSpace rep-
resents AffectNet’s knowledge, but generating the vector
space is slower, and so is computing dot products between
concepts. The smaller is p, on the other hand, the more ef-
ficiently AffectiveSpace represents affective common-sense
knowledge both in terms of vector space generation and of
dot product computation. However, too few dimensions risk
not to correctly represent AffectNet as concepts defined with
too few features tend to be too close to each other in the vec-
tor space and, hence, not easily distinguishable and cluster-
able.

The Emotion Model
The Hourglass of Emotions (Cambria, Livingstone, and
Hussain 2012) is an affective categorization model, inspired
by Plutchik’s studies on human emotions (Plutchik 2001),
which organizes primary affective states around four inde-
pendent but concomitant dimensions, whose different levels
of activation make up the total emotional state of the mind.
Such a reinterpretation is inspired by Minsky’s theory of the
mind, according to which brain activity consists of different
independent resources and that emotional states result from
turning some set of these resources on and turning another
set of them off (Minsky 2006).

Each affective dimension of the Hourglass model is char-
acterized by six levels of activation (measuring the strength
of an emotion), termed ‘sentic levels’, which represent the
intensity thresholds of the expressed or perceived emotion.
These levels are also labeled as a set of 24 basic emotions,
six for each of the affective dimensions, in a way that al-
lows the model to specify the affective information associ-
ated with text both in a dimensional and in a discrete form.

The transition between different emotional states is mod-
eled, within the same affective dimension, using the func-
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Figure 2: Pleasantness emotional flow

tion G(x) = 1− 1
σ
√

2π
e−x2

/
2σ2

, for its symmetric inverted
bell curve shape that quickly rises up towards the unit value
(Fig. 2). Beyond emotion detection, the Hourglass model
is also used for polarity detection tasks. Since polarity is
strongly connected to attitudes and feelings, it is defined in
terms of the four affective dimensions, according to the for-
mula:

p =
N

∑
i=1

Plsn(ci)+ |Attn(ci)|− |Snst(ci)|+Apti(ci)

3N

where ci is an input concept, N the total number of concepts,
and 3 the normalization factor (as the Hourglass dimensions
are defined as float ∈ [-1,+1]). In the formula, Attention is
taken as absolute value since both its positive and negative
intensity values correspond to positive polarity values (e.g.,
‘surprise’ is negative in the sense of lack of Attention, but
positive from a polarity point of view). Similarly, Sensitiv-
ity is taken as negative absolute value since both its positive
and negative intensity values correspond to negative polar-
ity values (e.g., ‘anger’ is positive in the sense of level of
activation of Sensitivity, but negative in terms of polarity).

Outlier-Free Reasoning
Affective analogical reasoning consists in processing the
cognitive and affective information associated with natural
language concepts, in order to compare the similarities be-
tween new and understood concepts and, hence, use such
similarities to gain understanding of the new concept. It is
a form of inductive reasoning because it strives to provide
understanding of what is likely to be true, rather than deduc-
tively proving something as fact.

The reasoning process begins by determining the target
concept to be learned or explained. It is then compared to a
general matching concept whose semantics and sentics (that
is, the conceptual and affective information associated with
it) are already well-understood. The two concepts must be
similar enough to make a valid, substantial comparison.

Affective analogical reasoning is based on the brain’s
ability to form semantic patterns by association. The brain
may be able to understand new concepts more easily if they
are perceived as being part of a semantic pattern. If a new

concept is compared to something the brain already knows,
it may be more likely that the brain will store the new in-
formation more readily. Clearly, such a semantic association
heavily depends on semantic features shared by the repre-
sented concepts. Concept similarity, in fact, does not depend
on their absolute positions in the vector space, but rather on
the angle they make with the origin.

For this reason, the presence of semantic outliers, that is,
concepts that share a few semantic features with a group of
neighbor concepts without in fact being affectively-related,
can heavily affect the configuration of AffectiveSpace and,
hence, affective analogical reasoning. In order to tackle such
a crucial issue, least absolute deviations (LAD) regression is
applied.

Least Absolute Deviations
The robustness of LAD to low-leverage outliers, and its
susceptibility to high-leverage outliers has been extensively
studied in literature (Dodge 1987; 1997; 2002). This paper
adopts a method for non-parametic detection of such influ-
ential observations by the use of a technique derived from
LAD regression (Faria and Melfi 2006). Let S ⊂ Rp+1 be a
finite discrete set of points, represented by p+ 1 variables.
Denote the elements of S as (xi1, . . . ,xip,yi), where the last
variable is explained from the preceding ones by a linear re-
gression model:

yi = β0 +
p

∑
j=1

β jxi j + εi for i = 1, . . . ,n

where p is the number of explanatory variables, εi are er-
ror terms, or deviations, and n is the number of observa-
tions. The LAD regression model is determined by min-
imizing the sum of the absolute deviations, i.e., the vec-
tor (β0,β1, . . . ,βp) ∈ Rp+1 is determined by minimizing on
β0,β1, . . . ,βp the function

F(β0,β1, . . . ,βp) =
n

∑
i=1

∣∣∣∣∣yi−β0−
p

∑
j=1

β jxi j

∣∣∣∣∣
When a linear LAD regression model is fitted, the hyper-

plane always passes through at least p+1 points (Arthanari
and Dodge 1993), although the solution may be non-unique.
For our purposes, it is assumed that the hyperplane which
fits the linear LAD regression model is unique, as well as
the observation with maximal absolute deviation.

Semantic Outlier Detection
Applying LAD regression to AffectiveSpace when cluster-
ing it according to each different affective dimension, al-
lows concepts that are not affectively-related to the sentic
levels of the Hourglass model to be excluded from the af-
fective analogical reasoning process. In particular, Affec-
tiveSpace is clustered four times, in order for each common-
sense concept to be expressed by a four-dimensional vec-
tor, which synthesizes the affective information conveyed
by it in terms of Pleasantness, Attention, Sensitivity, and
Aptitude. For the Pleasantness dimension, for example, the
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analogical reasoning process aims to detect concepts con-
veying ‘ecstasy’, ‘joy’, ‘serenity’, ‘pensiveness’, ‘sadness’,
and ‘grief’, respectively. Because of how AffectiveSpace is
designed, such an operation often includes common-sense
concepts that, despite carrying similar semantics, are not
affectively-related, that is, do not convey any of those emo-
tions or derivates. Examples include concepts like ‘news-
paper’, which is found for its semantic-relatedness to ‘give
good news’, but which does not convey any emotion, or even
‘make fun of someone’, which is detected in its capacity as
semantic relative of ‘make someone happy’, but which in-
stead carries emotions that belong to a different affective di-
mension.

Experimental results
In order to evaluate the proposed semantic outlier detection
technique, a comparison between an outlier-contaminated
and an outlier-free 100-dimensional AffectiveSpace has
been performed both over a benchmark for affective
common-sense knowledge (BACK) (Cambria and Hussain
2015), for directly testing the affective analogical reasoning
capabilities of the two frameworks, and over a dataset of nat-
ural language opinions, for comparing how the two different
configurations of AffectiveSpace (standard versus outlier-
free) perform within the more practical task of concept-level
opinion mining.

Mood-Tag Evaluation
We compared standard AffectiveSpace and outlier-free Af-
fectiveSpace on BACK, a benchmark for affective common-
sense knowledge built by applying concept frequency - in-
verse opinion frequency (CF-IOF) (Cambria and Hussain
2015) on a 5,000-blogpost database extracted from Live-
Journal3, a virtual community of users who keep a blog,
journal, or diary. An interesting feature of this website is that
bloggers are allowed to label their posts with both a category
and a mood tag, by choosing from predefined categories and
mood themes or by creating new ones. Since the indication
of mood tags is optional, posts are likely to reflect the true
mood of the authors. CF-IOF weighting was exploited to
filter out common concepts in the LiveJournal corpus and
detect relevant mood-dependent semantics for each of the
Hourglass sentic levels.

The result was a benchmark of 2,000 affective concepts
that were screened by 21 English-speaking students who
were asked to evaluate the level b associated to each con-
cept b∈Θ = {−1,−2/3,−1/3,0,1/3,2/3,1}= {θ/3 | θ ∈
Z,−1 ≤ θ/3 ≤ 1} for each of the four affective dimen-
sions. Results obtained were averaged. BACK’s concepts
were compared with the classification results obtained by
applying the standard AffectiveSpace process and outlier-
free AffectiveSpace, showing a consistent boost in classifi-
cation performance (Table 1).

Sentic Computing Engine
The sentic computing engine consists of three main compo-
nents: a pre-processing module, which performs a first skim

3http://livejournal.com

Hourglass
Interval

Sentic
Level

Standard
AffSpace

Outlier-Free
AffSpace

[G(1),G(2/3)) ecstasy 77.3% 84.5%
[G(2/3),
G(1/3))

joy 83.9% 90.1%

[G(1/3),G(0)) serenity 68.8% 76.3%
(G(0), G(–1/3)] pensive-

ness
74.5% 79.0%

(G(–1/3),
G(–2/3)]

sadness 81.2% 89.6%

(G(–2/3),
G(–1)]

grief 79.5% 87.4%

Table 1: Comparative evaluation of standard and outlier-free
AffectiveSpace over the classification of Pleasantness levels.

of the opinion; a semantic parser, whose aim is to extract
concepts from the opinionated text; the AffectiveSpace mod-
ule, for inferring the semantics and sentics associated with
the given concepts. The engine does not aim to deeply un-
derstand natural language text, but rather to simply infer the
denotative and connotative information associated with rele-
vant concepts. In order to infer the polarity of a sentence, in
fact, the sentic computing engine only needs to extract opin-
ion target aspects and the sentiments associated with each of
these.

The pre-processing module exploits linguistic dictionaries
to interpret all the affective valence indicators usually con-
tained in opinionated text, e.g., special punctuation, com-
plete upper-case words, cross-linguistic onomatopoeias, ex-
clamation words, degree adverbs, and emoticons.

The semantic parser is exploited for identifying concepts
without requiring time-consuming phrase structure analysis.
The parser uses knowledge about the lexical items found in
text to choose the best possible construction for each span
of text. Specifically, it looks each lexical item up in Affect-
Net, obtaining information about the basic category mem-
bership of that word. It then efficiently compares these po-
tential memberships with the categories specified for each
construction in the corpus, finding the best matches so that,
for example, a concept like ‘buy christmas present’ can be
extracted from sentences such as “today I bought a lot of
very nice Christmas gifts” (Cambria et al. 2015b).

The concepts retrieved by the semantic parser are pro-
jected into AffectiveSpace and, according to their position
in the vector space, they are assigned to an affective class
specified by the Hourglass model. In order to test the per-
formance of the proposed semantic outlier detection tech-
nique, such an operation is performed both with standard
AffectiveSpace and with outlier-free AffectiveSpace. These
are embedded in the sentic computing engine and evaluated
against a dataset obtained from PatientOpinion4, a manually
tagged dataset of 2,000 patient opinions that associates to
each post a category and a positive or negative polarity.

The dataset is hereby used to test the combined detec-
tion of opinion targets and the polarity associated with these.
Results show that outlier-free AffectiveSpace generally out-

4http://patientopinion.org.uk
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Standard
AffectiveSpace

Outlier-Free
AffectiveSpace

clinical service 75.2% 80.8%
communication 74.5% 85.1%

food 82.0% 83.7%
parking 74.0% 74.0%

staff 81.1% 83.2%
timeliness 73.4% 84.6%

Table 2: F-measure values relative to PatientOpinion evalu-
ation.

performs standard AffectiveSpace, especially for categories
where polarity is more difficult to detect in which affect
is usually conveyed more implicitly, e.g., ‘communication’
and ‘timeliness’ (Table 2).

Conclusion
In a world in which millions of people express their opinions
about commercial products and services everywhere on the
Web, the distillation of knowledge from this huge amount
of unstructured information is a key factor for tasks such as
social media marketing, product positioning, and financial
market prediction.

Common-sense reasoning is a good solution to the prob-
lem of concept-level sentiment analysis but the well-known
noisiness of common-sense data sources is a major factor
in jeopardizing the efficiency of analogical reasoning in a
multi-dimensional vector space of concepts. In this work,
we showed how least absolute deviations can aid semantic
outlier detection and, hence, consistently enhance analogical
reasoning for tasks such as emotion recognition and aspect-
based opinion mining.
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