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Abstract

This paper describes implementation of the system control-
ling a flying drone to stabilize and hold the drone still regard-
less of external influences and inaccuracy of sensors. This
task is achieved by utilizing visual monocular SLAM (Simul-
taneous Localization and Mapping) – tracking recognizable
points in the camera image while maintaining a 3D map of
those points. The output location is afterwards combined us-
ing the Kalman filter with odometry data to predict future lo-
cation using drone’s dynamics model. The resulting location
is used afterwards for reactive control of drone’s flight.

Self-regulation of systems is a long-time studied subject
with may techniques developed especially in the area of con-
trol theory. When we know the current state of the system
then it is possible to use one of existing controllers to reach
(and keep) the desired state of the system. The problem here
is not finding the path between the states, which is a topic
of planning and it is easy in this case, but rather controlling
the real system to reach the desired state as soon as possible
without overshooting and oscillating.

In this paper we address the problem of keeping a flying
drone still even under external disturbances. Our ambition
is using only the sensors available on the drone to estimate
the current state, location in our case, of the drone, which
is the most challenging part of the stabilization problem. In
particular, we are working with AR.Drone belonging to the
category of robotic toys, but still providing a reasonable set
of sensors that makes AR.Drone a useful research tool too.
Similarly to humans, the most informative sensor is a cam-
era, which is also a key source of data for visual localization
used in the proposed system. Due to limited computation
power of the onboard processor, all processing is realized on
a connected computer (mainstream laptop), which brings an-
other challenge in time delay between observation and act-
ing. In summary, we propose a system that does visual local-
ization of a flying drone and uses information about drone’s
location to keep the drone still.

Previous work on mobile robot localization was done in
several fields. Wheeled vehicles often use some kind of rela-
tive localization based on odometry, but that is not very use-
ful for flying drones. Absolute localization of UAVs using
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external sensors was implemented using cameras (Krajnı́k
et al. 2013). Furthermore, down-looking cameras has been
used to stabilize a UAV in (Chudoba et al. 2014), but the
method encountered problems with insufficiently textured
ground surfaces lacking distinguishable landmarks. Another
approach is to utilize external beacons (Krejsa and Vechet
2012). The last two methods are very precise, but require
external support, which limits their usage to prepared envi-
ronments. For outdoor flight, GPS-based localization can
be used. The AR.Drone 2 is compatible with a complete
solution, Flight Recorder device, which integrates a GPS
module. Finally, various SLAM systems using only onboard
sensors were implemented utilizing ranging sensors (Achte-
lik et al. 2009) or camera (Engel, Sturm, and Cremers 2012).
The system described in (Engel, Sturm, and Cremers 2012)
is very similar to ours as it implements visual SLAM and
stabilization for AR.Drone 1. This system was the major
inspiration for our work.

The paper is organized as follows. First, we briefly de-
scribe the robotic platform used, AR.Drone 2 by Parrot, as
its hardware specification influences decisions done in this
project. Then we overview the proposed approach and give
some details about the used techniques for visual localiza-
tion and mapping. After that we describe how an extended
Kalman filter is used to tackle the problem with time lag and
what type of controller we use. The paper is concluded by
a summary of experimental evaluation of the implemented
system. We show how the system behaves in different envi-
ronments.

AR.Drone Platform
AR.Drone 2.0 by Parrot Inc. is a robotic platform origi-
nally intended as a WiFi-controlled flying toy for capturing
videos and playing augmented-reality games. Drone move-
ment is controlled by adjusting speed of four rotors (Fig-
ure 1), which is done by the drone’s firmware according to
higher-level commands (see below). The main advantages
of the platform are its very low price, robustness to crashes,
and the wide variety of onboard sensors.

The AR.Drone is equipped with two cameras, one fac-
ing forward and one downward. The bottom camera is
used by the firmware to estimate the vertical speed. That is
however inaccurate and works only above well-textured sur-
faces. The forward HD camera is used for recording video
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Figure 1: AR.Drone and its coordinate system and angles.
(Krajnı́k et al. 2011)

on attached USB flash storage and/or streaming the video
over a WiFi network. The video stream is unfortunately
aggressively compressed and especially during movement
heavily blurred. The drone is further equipped with a 3-axis
gyroscope, a 3-axis accelerometer, and a magnetometer. Al-
titude is measured using an ultrasound sensor and a pressure
sensor, which is used in higher altitudes out of the ultrasound
sensor’s range.

The drone contains a control board with a 1 GHz ARM
Cortex processor running a minimalistic GNU/Linux sys-
tem. It is technically possible to run own programs directly
onboard, but because of the computing power required to
process the video we use an external computer to control the
drone remotely. The AR.Drone creates a WiFi access point
with a DHCP server, so that the controlling device can eas-
ily connect and communicate using UDP connections. The
flight is generally controlled just by sending pitch and roll
angles and vertical and yaw speed. The commands are sent
at 30 Hz and the drone’s firmware then tries to reach and
maintain given values until the next command arrives. Data
from non-visual sensors, so-called navdata, are sent from
the drone at 15-200 Hz depending on setting and contains es-
pecially roll and pitch angles, azimuth, altitude, and a speed
vector in the drone centered coordinate system (Figure 1).
The network latency of transmission of those commands and
data is approximately 60 ms.

The video from the front camera is (in the default set-
ting) downscaled to 640x360 px, encoded using H.264 with
a maximum bitrate of 4 Mbps and streamed over UDP at
30 FPS. The latency between capturing the image and re-
ceiving it at the drone’s board is about 120 ms.

Overview of the approach
This work utilizes SLAM (Simultaneous Localization and
Mapping) techniques to localize the drone and stabilize it in
a desired position. There are many other approaches to the
localization problem such as using a GPS signal or artifi-
cial markers or transmitters distributed in the environment.

That would however limit the usage of the system to care-
fully prepared environments. Another attempt to evade the
necessity of SLAM implementation would be to use only
relative localization techniques such as optical flow track-
ing or acceleration-based speed estimation. Such techniques
are however unable to eliminate drift and localization error
grows over time, so the techniques are applicable just for a
limited time.

For visual localization, we use a system based on the
PTAM library (Klein and Murray 2007). The system re-
ceives a video frame at 30 Hz together with a pose predic-
tion based on previous state estimation. It outputs the most-
likely pose estimate of the drone relative to the starting po-
sition together with the precision specifier. That position is
processed in an Extended Kalman Filter (EKF) (Welch and
Bishop 1995) together with other measurements received in
navdata such as speed estimate. When the visual tracking
is considered lost, the EKF ignores the visual pose estimate
and predicts the relative pose change from navdata only.

Figure 2: Visualization of the map and the drone’s pose. Red
landmarks are those currently observed.

EKF contains a probabilistic motion-model of the drone’s
flight dynamics and it is an important addition to the visual
localization for several reasons. It combines the visual pose
estimate with other measurements to increase the estimate
precision and maintains it even when the visual system fails
and no absolute pose is measured. Finally, EKF is able to ac-
curately predict drone’s movement for a short time, which is
used to balance the long network latency. The control com-
mands executed on the drone are based on almost 0.2 s old
data. That would result in inaccurate motion and oscillation
around the stabilization position. EKF solves that problem
by providing a 0.2 s prediction of the pose to the control
system.

The usage of a single camera introduces several chal-
lenges for the SLAM system. It is possible to estimate the
bearing of a point in a video frame with the knowledge of the
camera model (focal length, distortion parameters), but the
distance of the point can not be measured. That is a problem
when we want to add an observed landmark to the map. For
that we need more observations of the same landmark from
different positions (Figure 3). That is a problem when the
drone is stabilized, as the distance of positions (and the an-
gle γ in the Figure 3) is small and the estimated distance is
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Figure 3: Localization of a landmark in 2D.

inaccurate. We have therefore decided, that the map will be
prepared before the stabilization (but possibly after takeoff)
as the localization quality strongly depends on the precision
of the map.

The built-in camera is unable to provide directly the scale
of distances in the picture compared to the real world. This
scale is required for the control system to measure the dis-
tance to the desired position on which the approach speed
depends. The scale can be estimated using other measure-
ments of movement in the navdata (Engel, Sturm, and Cre-
mers 2012), but in this work, we estimate the scale during
initialization of the visual localization system, which is re-
quired for inserting the first landmarks into the map.

When the system knows the drone’s and the desired poses,
it uses PID controllers to reach and maintain the pose. One
controller is utilized for each coordinate of the 3D position
and for the azimuth.

Visual Localization and Mapping
To estimate a pose of the drone from the received video
frames, our software uses SLAM system based on Paral-
lel Tracking and Mapping method (Klein and Murray 2007)
and this section provides a short overview of the method.
PTAM was developed to track hand-held camera motion in
unknown environment. The tracking and mapping are split
into two tasks processed in separate threads, which can be
run in parallel on a dual-core computer so that computation-
ally expensive batch optimization techniques can be used for
building the map. The resulting system is very robust and
accurate compared to other state-of-the-art systems – in the
cited paper, it was successfully compared to the widely used
EKF-SLAM.

In order to localize the drone, the system maintains a
map of landmarks observed in the environment (Figure 2).
The map is not updated for every frame, only for certain
keyframes. Keyframe composes of a video frame, a set of
keypoints detected by the FAST corner detector (Trajković
and Hedley 1998), and a pose estimation, which can be later
updated in order to increase the precision of the pose and
therefore even the precision of the associated keypoints lo-
cations. The structure of the map is illustrated in Figure 4.

The map has to be initialized before the localization. This
is done by inserting first two keyframes which define the ori-
gin of the coordinate system and its scale to the real world.
The points observed in those keyframes are then used as the

Figure 4: Graph representation of the internal map.

first landmarks in the map and their positions are calculated
using the five point algorithm (Stewenius, Engels, and Nistér
2006). This procedure requires the user to press a keyboard
button to insert the first keyframe into the map, move the
drone 10 cm to the right and press the button again to in-
sert the second keyframe. The distance must be known by
the system and can be arbitrary, but too small translation
compared to scene depth would result in worse precision
(small angle γ in Figure 3) of the triangulation. The scale
of the map could be estimated using the accelerometer as
well. Unfortunately, the AR Drone 2 does not provide the
acceleration measurements before takeoff.

As mentioned above, landmarks are added to the map only
when a keyframe is inserted. More specifically, a landmark
can be localized only after its second observation, when
the landmark’s location can be measured using triangula-
tion (Figure 3). The two keypoints of observation of a sin-
gle landmark are associated using epipolar search (Faugeras
1993) and zero-mean SSD (Nickels and Hutchinson 2002)
for their pixel patches. Notice that as the computed location
of the landmark is relative to the location of the drone, the
error of the landmark’s location is affected by the error of
the drone’s location. As the precision of the map is critical
for further localization, we will later describe the means of
improving the precision using subsequent observations.

Camera Pose Estimation
Having the map, we can compare it with landmarks observed
in every frame to localize the drone. In this section we will
briefly describe how this is done.

Assume that we have a calibrated pin-hole camera projec-
tion model CamProj:

(
ui
vi

)
= CamProj

xyz
1

 (1)

Where x, y, z are the coordinates of a landmark relative to
the current camera pose and ui, vi are the (pixel) coordinates
of the landmark projection into the image plane of the cam-
era. Let CameraPoseTrans(µ, pi) denote the location of
the landmark pi relatively to the camera pose µ. We can
use the defined projection to express the reprojection error
vector ej of the landmark with coordinate vector pj (relative
to the map origin) which was observed at uj , vj . Reprojec-
tion error is the difference between where the landmark pj
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should be observed according to the map, if the drone’s pose
is µ, and where it was observed using the camera.

ej =

(
uj
vj

)
− CamProj(CameraPoseTrans(µ, pj))

(2)
In the correct pose of the drone, the reprojection errors

should be very small. Therefore we can use ej for finding
the most-likely camera pose µ′:

µ′ = argmin
µ

∑
j∈S

Obj

(
ej
σj
, σT

)
(3)

where S denotes the set of landmark observations,
Obj(·, σT ) is the Tukey biweight objective function (Ham-
pel, Ronchetti, and Rousseeuw 1986), and σT is a robust
estimate of the distribution’s standard deviation.

Mapping
Mapping is a process of adding newly observed landmarks
into the map and updating the pose of known landmarks af-
ter further observations in order to improve the precision of
their location. All mapping operations, which can be com-
putationally expensive, are done in a separate thread.

We have already outlined the process of keyframe addi-
tion, in which the landmarks are added to the map. When
the mapping thread doesn’t work on that, the system use the
spare time to improve the accuracy of the map. The posi-
tion of a landmark is initially computed from its first two
observations. We can improve that by minimizing the repro-
jection error of the landmark’s location for all observations
and landmarks.

Assume that we have N keyframes {1, ..., N}. In each of
them, we observed a landmark set Si, which is a subset of a
set {1, ...,M} of all M landmarks. We will denote the jth
landmark observed in some keyframe i with the subscript
ji. µi is the pose of a keyframe i and pj is the location
of a landmark j. Bundle adjustment is then used to update
the poses of keyframes and the locations of landmarks (in a
similar way as in the equation 3):

{{µ2, ..., µN}, {p′1, ..., p′M}} =

argmin
{{µ},{p}}

N∑
i=1

∑
j∈S

Obj

(
eji
σji

, σT

)
(4)

Note that the pose of the first keyframe is fixed in the ori-
gin of the map, hence µ2.

Extended Kalman Filter
We employ an Extended Kalman Filter (EKF) (Welch and
Bishop 1995) for state-from-measurements estimation. Its
goals are noise filtering, processing multiple measurements
of a single variable, and prediction of the state of the system
in the near future. The extended version of KF is necessary
due to the nonlinear nature of the drone’s flight dynamics.

EKF stores the state as a (multivariate) normal distribu-
tion of X represented by its mean and covariance matrix.

Similarly, measurements are perceived as a normal distribu-
tion of Z with the mean value equal to the received measure-
ment. Its covariance matrix is usually fixed and represents
the precision of sensors. Finally, EKF receives a control vec-
tor, which describes the command sent to the drone. Rela-
tion between two subsequent states and the control vector u
is defined by a process model P (Xk|Xk−1, uk−1), relation
between state and measurement is defined by a measure-
ment model P (Zk|Xk). We will further denote the means
of the state and the measurement at a time k as xk and zk.
Note that the measurement model determines measurements
from states to compare it with received measurements and
not vice versa.

The major task of an EKF utilization is to implement the
process and measurement models. Due to space limit we
will not describe the whole implementation, especially the
motion model, but only the interface of the filter and the
main part of the measurement model. The interface between
the EKF and the control system is composed mostly of the
vectors xk, zk and uk:

• xk = (x, y, z, vx, vy, vz, φ, θ, ψ, dψ) – 3D coordinates
relative to map origin, 3D speed vector in the same sys-
tem, roll, pitch, yaw and yaw rate

• uk = (φ̄, θ̄, ψ̄, v̄z) – desired roll, pitch, yaw and yaw rate
as sent to the drone

• zk = (v′x, v
′
y, v
′
z, φ, θ, ψ, x, y, z) – measured speed in 3D

coordinates relative to the drone (Figure 1), roll, pitch,
yaw and the drone’s coordinates in 3D from the visual
localization system

The measurement model is used to correct the filter’s pre-
diction of the process state xk according to the obtained
measurement. The main part of the model is a function
zk = g(xk), which is used to compute the expected mea-
surement to be compared with the measurement obtained
from the drone.

v′x
v′y
v′z
φ
θ
ψ
x
y
z


= g(xk) =



vx cosψ − vy sinψ
vx sinψ − vy cosψ

vz
φ
θ
ψ
x
y
z


(5)

Together with the function g, the measurement model
contains a covariance matrix, which specifies the precision
of sensors. When the visual localization system fails for a
moment, the variances of it’s output, location (x, y, z), are
increased, so that the filter practically ignores the measure-
ments (x, y, z) and updates the pose of the drone according
to the process model and the other measurements.

Drone Control
The control system receives the most-likely state prediction
xt, computes the control command from xt and sends it to
the drone for execution. The time t is the time of receiving
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sensor measurements used to estimate xt plus the expected
latency after which the command will be executed on the
drone. This way, the drone will react to its current pose and
not to some older one.

The control command is obtained using four independent
PID (proportional-integral-derivative) controllers for each
degree of freedom: x, y, z, yaw. Let e(t) denote the error
of the controlled variable at time t. Then the output out(t)
of the PID controller is calculated according to the following
classical formula:

out(t) = P · e(t) + I ·
∫ t

0

e(t)dt+D · de(t)
dt

(6)

where P , I and D are parameters (weights) of the controller
which have to be tuned. They describe the reaction of the
controller to the error (P), the integrated error (I), and the
speed of change of the error (D). Note that after initial test-
ing of the system, we have set the I parameter to zero in
order to prevent the wind-up effect and overshooting.

From each of the four controllers we obtain a desired
change of controlled variables: xd, yd, zd and yawd. As
the coordinates are relative to the map origin, we have to
rotate xd, yd to the drone-centric coordinate system (Figure
1). Then we construct the control command ut – we use
xd, yd as the two tilt angles of the drone, zd as the ver-
tical speed and yawd as the rotational speed. Therefore
ut = (xd, yd, yawd, zd).

Evaluation
The performance and robustness of the system was experi-
mentally evaluated by examination of the ability of the sys-
tem to stabilize the drone in a given position. A series of
measurements was made in various environments. As we
unfortunately did not have any device capable of record-
ing the true location of the drone (ground truth), we had to
record and measure the results by hand. The measurements
were performed according to this scheme:

1. The visual localization system is initialized.

2. Several keyframes (around five) are inserted manually.

3. The gyroscope is calibrated.

4. We manually fly with the drone to a desired position and
enable the stabilization. The orthogonal projection of the
drone’s location to the floor is marked on the floor. We
used a pendulum to do that.

5. We push the drone approximately 20 cm aside.

6. After 20 s, we mark the drone’s location on the floor again
and measure the distance, which is stated in the following
tables as the Measured error.

Note that we didn’t measure the yaw or the altitude. It
would only make the measurement longer, less precise and
would not bring any new information, as the precision of
the yaw and the altitude will be similar (or better thanks to
the altimeter and the compass) than the precision of the x, y
coordinates.

The measurement was done in several different environ-
ments with distinct number of detected landmarks, both in
interiors and exteriors. The following tables summarize the
results of the experiments:

Name College room
Environment Visually rich environment,

small interior
Keypoints approx. 200

Measured error 7 cm

Notes The visual localization was lost
between the initialization and
takeoff as the drone laid on the
floor was not able to observe
the scene. However, after take-
off the localization was imme-
diately restored. Error fluctu-
ated, but did not show a trend
to grow in time.

Name House frontage
Environment Visually poor environment,

enough light, light wind
Keypoints approx. 100

Measured error 10 cm

Notes The system maintained the lo-
calization. It was however al-
most unable to find any key-
point on the wall of the house.

Name Gymnasium
Environment Big room, artificial light

Keypoints approx. 50
Measured error 3 cm

Notes -

Name Bare wall and radiator
Environment Visually very poor environ-

ment, repeated patterns
Keypoints approx. 15

Measured error -

Notes We managed to initialize the lo-
calization system, but the drone
held in the desired position just
for a few seconds and the mea-
surement had to be aborted.
Some landmarks created on the
surface of the radiator were of-
ten observed in another parts
of the radiator, which disrupted
the localization.

The video demonstrating the system and showing its user
interface can be found at http://vimeo.com/102528129.

376



Conclusion
The goal of the work is to implement a system able to sta-
bilize the drone using localization techniques. The flying
drone has to hold still regardless of external influences, inac-
curacy of sensors, and the latency of control. As we wanted
the stabilization to work accurately for longer periods of
time, we had to avoid the effect of accumulated error typical
for relative localization. Therefore we decided to implement
a visual SLAM system.

As the used AR.Drone has no stereo-vision camera, the
system has to be able to estimate the distances of observed
objects from multiple observations from different locations.
That is complicated by the fact, that the goal of the system
is to hold at one particular location, so we have to prepare a
localization map before activation of the stabilization. The
method also assumes that the environment is mostly static
and contains detectable visual landmarks (e.g. a room con-
taining only plain walls is problematic).

The robustness and precision of our method was evalu-
ated by conducting an experiment consisting of several mea-
surements in various environments. In the experiment we
showed, that our system is able to stabilize the drone sur-
prisingly well despite the poor quality of the video, which is
generated by the chosen low-cost platform.
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