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Abstract

We consider a schema for graph-theoretic clustering
of data using a node-based resilience measure called
vertex attack tolerance (VAT). Resilience measures in-
dicate worst case (critical) attack sets of edges or
nodes in a network whose removal disconnects the
graph into separate connected components: the result-
ing components form the basis for candidate clusters,
and the critical sets of edges or nodes form the inter-
cluster boundaries. Given a graph representation G
of data, the vertex attack tolerance of G is 7(G) =

mingcy |V—S—Cm|fgl(V—S)|+1’ where Crnaz(V — S)
is the largest component remaining in the graph upon
the removal of critical node set S. We propose three
principal variations of VAT-based clustering method-
ologies: hierarchical (hier-VAT-Clust), non-hierarchical
(VAT-Clust) variations, and variation partial-VAT-Clust.
The hierarchical implementation yielded the best results
on both synthetic and real datasets. Partial-VAT-Clust
is useful in data involving noise, as it attempts to re-
move the noise while clustering the actual data. We also
explored possible graph representations options, such
as geometric and k-nearest neighbors, and discuss it in
context of clustering efficiency and accuracy.

Introduction and Related Work

Graph theoretic techniques for clustering are important not
only when the data is given in network form, but also due
to the established effectiveness of various graph partition-
ing techniques upon assigning a graph representation to the
input data (Xu and Wunsch 2009; 2005). In graph theo-
retic contexts, the clustering problem is often represented
within an optimization framework involving finding a k-
partitioning of the vertices of the graph such that the cuts
between groups are sparse and there exist additional con-
straints governing the relative sizes of each group (Shi and
Malik 2000; Alpert, Kahng, and Yao 1999). Most com-
monly, the bi-partitioning problem is considered recursively
as a basis for hierarchical clustering: Find the sparsest cut
disconnecting the graph (into two groups), and continue
finding the sparsest cut within a component until k£ com-
ponents result. This variation of the sparsest cut problem
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is often taken interchangeably with problem of finding the
conductance of a graph. Combinatorial conductance or edge

based conductance is defined as
. Cut(S,V—S
(G) :mlnSCV,VOl(S)SVOI(V)/Q{%”S‘)l}

{ |Cut(S,V—S)| }

ds]S]
where |Cut(S,V — S)| is the size of the cut separating S
from V — S, Vol(S) is the sum of the degrees of vertices in
S, and Jg is the average degree of vertices in S. Although
conductance, multi-way cuts, and sparsest cuts are each hard
to approximate to any constant factor (Chawla et al. 2006),
relationships between eigenvectors and eigenvalues of the
matrix representation of graphs and conductance of graphs
has formed the basis of well known spectral approaches to
graph partitioning (Shi and Malik 2000; Alpert, Kahng, and
Yao 1999).

Another popular graph theoretic partitioning algorithm,
presented in the context of community detection in social
and biological networks, is the Girvan-Newman algorithm
(Girvan and Newman 2002). It is based on a greedy removal
of the highest betweenness edges until £ connected compo-
nents (clusters) results. The removed edges may be viewed
as heuristic approximations of candidate sparse cuts between
the resulting components, particularly in extremel scenarios
involving edges with very high betweenness centrality. The
Girvan-Newman algorithm appears to give meaningful re-
sults for certain social and biological networks, and has an
advantage of simplicity of computation (if betweenness val-
ues are updated accurately and efficiently at each iteration).
On the other hand, we are unaware of any previous work
in which the Girvan-Newman algorithm has been applied to
general datasets that were not originally already in network
form.

It may be observed that common approaches to graph the-
oretic clustering, such as those mentioned above, solve a
resilience problem on the graph while simultaneously out-
putting the connected components resulting from the re-
moval of a critical edge set as the set of clusters. Specif-
ically, the types of resilience problems considered thus far
in the context of clustering are edge-based resilience prob-
lems, such as sparsest cut and conductance, which involve
finding a critical edge set whose attack causes the greatest
“disconnection” in the network. The duality between cluster-
ing and resilience is indicated by noting that critical sets of

= MiNgcv,vol(S)<Vol(V)/2



edges or nodes are those that lie on cluster boundaries, such
that the components induced by their removal form a partial
(in the case of node removals) or complete (in the case of
edge removals) clustering of the nodes. Our central claim in
this work is that node based resilience measures in general
and vertex attack tolerance (VAT) (Ercal and Matta 2013;
Matta, Borwey, and Ercal 2014) in particular may also be
used effectively to cluster data and additionally address
more generalized semi-clustering problems as well. The
vertex attack tolerance of an undirected, connected graph
G = (V,E) is denoted 7(G) and defined as 7(G) =
mingcy{ ‘stchi'(st)‘H, where Ciyq,(V — S) is the
largest connected component in V' — S. We focus on VAT in
this work although some of our ideas and methods may also
be applied to other node-based resilience measures such as
vertex expansion(Louis, Raghavendra, and Vempala 2013;
Feige, Hajiaghayi, and Lee 2005), integrity(Barefoot, En-
tringer, and Swart 1987), and toughness(Chvatal 2006). The
VAT based clustering discussed in this paper is completely
different from VAT - Visual Assessment Tendency cluster-
ing tool discussed in (Bezdek and Hathaway 2002). By VAT
in this paper, we imply Vertex Attack Tolerance.

We have a number of motivations for considering ver-
tex attack tolerance for generalized clustering problems.
One primary motivation is that the following bounds relat-
ing VAT to both conductance and spectral gap have been
proven for the case of regular degree graphs(Ercal 2014;
Matta, Borwey, and Ercal 2014), indicating similar expected
results between VAT-based clustering and spectral cluster-
ing for almost-regular graphs: For any d-regular connected
graph G = (V, E) with A\, the second largest eigenvalue of
G’s normalized adjacency matrix,

La(6) < r(@) < P2(G)

p] ey

Moreover,
7(G)?
; d4) 2

However, homogeneous degree distributions are certainly
not guaranteed, and in highly degree variant graphs there is a
large discrepancy between vertex attack tolerance and con-
ductance. Yet, VAT appears to partition the subgraph of G
induced by the removal of the critical nodes S very well,
with G — S comprising several components for many net-
work types such as scale-free models (Matta, Borwey, and
Ercal 2014). Certainly, a fundamental difference between
node and edge based resilience is that removal of a node
of degree d can immediately result in up to d new compo-
nents, whereas removal of an edge can disconnect at most
one new component. Thus, we initially hypothesized that,
whereas sparsest cuts and Girvan-Newman require input in-
formation on the desired number of clusters k, we might be
able to directly use a single VAT computation to cluster the
data accurately. Although our experimental results thus far
have not confirmed this hypothesis, as we demonstrate, we
shall later discuss a weighted generalization of VAT that may
hold potential in this regard. Interestingly, the recursive, hi-
erarchical implementation of VAT has been most fruitful in

Sl—/\QSQdT(G)
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yielding high quality clustering results when applied to the
experimental datasets.

Another fundamental difference between edge and node
based resilience is the assignment of the set of critical nodes.
When a complete clustering result is applicable, we assign
these critical nodes to clusters using a greedy heuristic that
prefers clusters with more neighbors. More fundamentally,
however, we asked the question: Are there situations in
which some nodes do not uniquely map to a set of clusters
but rather exist naturally between clusters, either belonging
to multiple clusters or to none at all? The semi-clustering
approaches for Google Pregel(Malewicz et al. 2010) are mo-
tivated by considering that the former is a natural situation.
As for the situation in which a node may not be in any clus-
ter, such a node is simply noise. Thus, we have also tested
the variation of our VAT-based clustering with no critical
node reassignment for synthetic, noisy datasets. We discov-
ered that this variation of VAT not only clusters such syn-
thetic datasets well, but also cleans up some of the noise in
the process, and rarely removes a non-noise node.

In the following sections, we detail our methods, results,
conclusion, and future work.

Preliminaries for VAT-based Clustering
The following notations are useful:
5]

7s(G) = [V _8— Craa(V—9)| + 1

so that clearly 7(G) = mingcv 7s(G) and correspondingly
S(1(G)) = argmingcvts(Q)

Consider the connected components {C;} that result from
the removal of the nodes S(7(G)), denoted by the semi-
partition (Ligeza and Szpyrka 2007) of G with respect to
T as

SP(G) = {C;|C; is a connected component

of the subgraph of G induced by V' — S(7(G))}

Prior to proceeding to critical node assignment strategies
that result in a complete partitioning of V', we wish to fur-
ther note that even the most naive assignment strategy that
groups each critical node with every component to which
it is adjacent, already results in a semi-clustering(Malewicz
et al. 2010). Whereas a semi-partitioning may violate the
cover property of a partition while satisfying the disjoint-
ness property, a semi-clustering may violate the disjointness
property of a partition while requiring that each element is
covered by some group. For an incomplete clustering prob-
lem in which not all nodes should be assigned to a cluster,
the straightforward use of VAT is to output each component
of SP(G) as a separate cluster. However, for the complete
clustering problem, we must define a critical node assign-
ment strategy, a mapping [ : S(7(G)) — SP(G) of the
critical nodes to components such that each extended com-
ponent C; U { f~1(C;)} is a candidate cluster.

To extend a semi-partition to a complete clustering, we
should restrict ourselves only to assignment strategies (and
corresponding partitions) respecting adjacency relationships



in the original graph. Prior to stating how we do this, for any
v € Vand C C V let §(v,C) denote the number of nodes
in C' to which v is adjacent. For convenience, also let §(v) =
d(v, V) simply denote the degree of node v. We present the
following locally optimal critical node assignment schema:

Definition 0.1 (Maximal Neighboring Component)
Critical Node Assignment Strategy: The fundamental
idea behind this Maximal Neighboring Component (MNC)
critical node assignment schema is to assign each critical
node v € S(7(G)) to the component C'in the semi-partition
SP.(G) to which it has the most adjacencies, that is the one
maximizing maxcegp(c) 6(v, C), allowing ties. There are
different ways to implement this strategy based on whether
the critical nodes are considered to take turns in sequence.
The naive MNC strategy simply assigns each critical node
v to the component in the original semi-partition SP.(G)
maximizing v’s adjacencies, allowing ties. The greedy
sequential MNC strategy, on the other hand, involves
upkeeping a max-priority queue of critical nodes v keyed by
the maximum value of their component neighbors §(v,C')
(over all components), then allowing the maximum such
v to be assigned first, subsequently updating the neighbor
relations based on the new extended components, then
assigning the next maximum critical node, and so forth.

Methods and Results

We implemented three variations of VAT-based clustering:
partial-clustering with VAT, clustering with VAT, and hierar-
chical clustering with VAT. We refer to these as partial-VAT-
Clust, VAT-Clust, and hier-VAT-Clust respectively. Like any
graph-theoretic clustering algorithm, all variations require
that the data first be transformed into a graph. We have
implemented two graph types for the transformation: geo-
metric graph and k-nearest neighbors (kKNN) graph. Both
are parametrized graph types, with radius threshold r re-
quired for the geometric graph and number of nearest neigh-
bors chosen, k, required for the kNN graph. VAT requires
that the input graph be connected, so the minimum val-
ues of r and k that may be considered are those achiev-
ing connectivity, below which the graph would be discon-
nected. We refer to this as the minimum connectivity regime
(min-conn). While our implementation allows the choice
of any above-connectivity 7 or k, the preliminary experi-
ments suggest that the min-conn r and k often yield bet-
ter results. The VAT implementation involves betweenness
centrality computations which take O(V E) time, thus for
efficiency, the min-conn regime is also preferred to above
connectivity regimes. In a similar vein, whereas one graph
type is not preferrable to the other for all types of inputs
(Maier, Luxburg, and Hein 2009), the min-conn kNN graphs
tend to have significantly fewer edges than their min-conn
geometric counterparts, thus making kNN more efficienct.
Our kNN implementation does not enforces k-regularity but
rather ensures that each node is connected to its k£ near-
est neighbors, which need not be a symmetric relationship.
Computation of the VAT measure itself is NP-hard to com-
pute, hence we implement an approximation. We initialize
a candidate attack set Sy based on nodes with high be-
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VAT Approximation
begin
5 = betweeness Approx(G):
5 = hillelimb(G, 8);
where
proc betweenessApproxG) =
n = size(G)/2;
Thest = 1.0;
Sheat = Seur 1= 0;
do if n =0 then exit fi;
BC[ := BrandesBetweenessCentrality(G);
Vinaz = max(BC);
Sevr = Seur U Vinaz:
if T(Sd:'.u‘:l < Theat
then Spesr i= Seurs
fi;
G =G — Voo
n=n-—1
od.
proc hillelimb(G,V, 8) =
n =0
do if n = size(G) then exit fi;
if 7(@, flip(5, V) < 7(G, 5)
then S :=flip(S, V.); n:=
else n:=n+1;
fi;
od.
proc flip(S5, V) =
ifVeSthen S:=5-V;
glse S := 5+ 1V, fi.

Thest = T(‘Se.' '.|:1‘:I :

end

Figure 1: Local Search Method to Approximate VAT

tweenness centrality, and use hill-climbing to attempt con-
vergence to the actual critical set S(7(G)) that minimizes

V5= lei‘(v_ SIESE Pseudo-code for our VAT computa-

tion is given in Figure . The asymptotic time complexity
of the algorithm is O(|V|(|V|*log |V| + |V||E|) + H|E|),
where H is the number of hill-climbing steps. Empirically,
we have observed that H = O(|V]).

Now we describe partial-VAT-Clust, VAT-Clust, and hier-
VAT-Clust. Partial clustering with VAT involves transform-
ing the input data points P into either a min-conn graph G,
with both geometric and kNN options, computing the vertex
attack tolerance 7(G), and then outputting each component
C; € SP(G) resulting from the removal of the critical nodes
S(7(G)) as the clusters. VAT-Clust is similar to partial-VAT-
Clust in its graph transfomation and VAT computation, ex-
cept that VAT-Clust additionally involves a critical node as-
signment strategy for S(7(G)) to extend SP(G) to a com-
plete partition. We implemented the naive MNC strategy, as
previously described, for VAT-Clust.

The hierarchical VAT-based clustering takes an input pa-
rameter of the minimum number of desired clusters K and
fixes the graph type to be KNN. Hier-VAT-Clust initially runs
VAT-Clust on the original graph Gy, checks if the result-
ing number of clusters (components extended by the critical




Figure 2: Hier-VAT-Clust visualization for Iris Dataset

nodes) is at least K. If so, we are done. If not, new min-conn
kNN graphs {G¢} are computed for each of the current
clusters C. VAT values 7(G¢) are then computed for every
new G¢. And, in the next recursive iteration of hier-VAT-
Clust, VAT-Clust is used to further partition the cluster-graph
G min that has the lowest VAT value over all existing cluster-
graphs, namely G’ = argmint(G¢). This process of using
VAT-Clust to subdivide the cluster-graph and achieving the
lowest VAT value over all existing cluster-graphs is recur-
sively repeated until the total number of clusters has reached
at least K.

From our preliminary results on running the above al-
gorithms, we observed that hier-VAT-Clust often needed to
subdivide into more than 3 clusters. A single iteration of
VAT-Clust usually did not suffice on the datasets. Therefore,
all the following clustering results are based on running hier-
VAT-Clust.

We used both synthetic and real datasets in our experi-
ments. The real datasets were obtained from the UCI Ma-
chine Learning repository (Frank and Asuncion 2011) while
the synthetic datasets were a subset of the synthetic datasets
generated by Arbelaitz et al. (Arbelaitz et al. 2013) in their
extensive clustering comparative experiments. These pub-
licly available synthetic datasets were created to cover all
the possible combinations of five factors: number of clus-
ters (K), dimensionality, cluster overlap, cluster density
and noise level. The subset we used contained no over-
lap i.e. strict. Table 1 summarizes our comparative results
for the four real datasets: iris, breast-Wisconsin, ecoli, and
wine. We compare hier-VAT-Clust to both k-means and the
Girvan-Newman algorithm implemented on the min-conn
kNN graph representation. Table 2 summarizes our results
for synthetic datasets of K Gaussian mixtures with no over-
lap and no noise. Dim indicates the dimensionality, eq-
dense indicates datasets with equal size clusters (100 nodes
each), and uneq-dense indicates datasets in which one clus-
ter is four times (400 nodes) as large as any of the other
clusters (100 nodes each). Tables 3 and 4 summarize our
bi-partitioning results for synthetic datasets with 10 percent
noise and no overlap. All accuracy results are given as per-
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Table 1: Accuracy Comparisons

Dataset hier-VAT-Clust | k-means | G-N
iris 96 89.33 96.67
breast-WI 81.20 85.41 76.80
ecoli 76.49 58.43 60.71
wine 72.47 61.42 71.35

Table 2: Hier-VAT-Clust accuracy for synthetic datasets with
no noise and no overlap

Dim | K || eq-dense | uneq-dense
2 2 99.5 100
2 4 99.25 57.57
2 8 99.5 100
4 2 99.5 100
4 4 99.5 99.86
4 8 99.86 99.82
8 2 99.5 100
8 4 99.5 99.86
8 8 99.63 100

cent accuracy and computed based on all possible assign-
ments of the computed clusters to the actual ground-truth
labels.

Conclusion

We have presented a methodology for using a node based
resilience measure, vertex attack tolerance, to perform a
complete or partial clustering of data. Our results indicate
that the hierarchical implementation hier-VAT-Clust per-
forms very well for complete clustering of synthetic datasets
without overlap and relatively well for the real datasets iris,
ecoli, breast-WI, and wine as well. The 96 percent accuracy
with which hier-VAT-Clust clusters the iris dataset indicates
that VAT-based clustering is not limited by linear separabil-
ity. In the cases of both iris and wine datasets, the differ-

Table 3: Partial-VAT-Clust accuracy for noisy synthetic
datasets with K = 2, equal density, and no overlap

Dim | Graph type | Accuracy | non-noise removal
2 Geometric 100 0 out of 2
2 kNN 83 2 out of 5
4 Geometric 100 0 out of 4
4 kNN 99.5 1 out of 3
8 Geometric 100 0 out of 4
8 kNN 100 0 out of 2
2 Geometric 100 0 out of 7
2 kNN 100 0 out of 2
4 Geometric 100 0 out of 2
4 kNN 100 O out of 1
8 Geometric 100 0 out of 2
8 kNN 100 0O out of 1




Table 4: Partial-VAT-Clust accuracy for noisy synthetic
datasets with K = 2, unequal density, and no overlap

Dim | Graph type | Accuracy | non-noise removal
2 Geometric 100 0 out of 7
2 kNN 100 0 out of 2
4 Geometric 100 0 out of 6
4 kNN 994 3 out of 6
8 Geometric 100 0 out of 6
8 kNN 100 0 out of 5

ence between the accuracy of hier-VAT-Clust and Girvan-
Newman algorithms is less than one and a half percent. Re-
call that Girvan-Newman may be viewed as an edge-based
resilience clustering algorithm akin to techniques based on
conductance or spectral gap, and constant approximation
bounds exist between VAT and conductance for regular de-
gree graphs. Therefore, it is reasonable to expect classes
of examples in which Girvan-Newman and hier-VAT-Clust
would behave similarly, though none of the generated graphs
were exactly regular. In the case of the ecoli dataset, hier-
VAT-Clust does significantly better than both k-means and
Girvan-Newman. And, although k-means is the clear winner
for the breast-WI dataset, hier-VAT-Clust also clearly beats
Girvan-Newman in this case.

Regarding complete clustering results for hier-VAT-Clust
on the synthetic dataset results, aside from the Dim = 2,
K = 4, unequal density dataset which yielded only 57.57
accuracy, all other cases are almost perfectly clustered. The
second synthetic datasets for Dim = 2 and K = 4 with un-
equal density yields over 99 percent accuracy, so the bad
clustering achieved for the first dataset is not due to the
setting of those parameters. The partial clustering results
for partial-VAT-Clust are entirely perfect for bi-partitioning
with the geometric graph representation and nearly perfect
for bi-partitioning with the kNN graph representation in all
cases except for the two dimensional equal density dataset
which achieved an accuracy of 83 percent. Moreover, only in
three cases were any non-noise removed because they com-
prised part of the critical node set.

Ongoing and Future Work

While we have demonstrated encouraging results for the
four real datasets considered as well as synthetic datasets
without overlap, we did not obtain such positive results
while running hier-VAT-Clust on other real datasets and
synthetic datasets involving overlap. Understanding the be-
havior of VAT-based clustering depending on properties of
the dataset considered is the primary crux of ongoing and
future work. As mentioned previously, there is a sensitiv-
ity to the graph representation as well that we continue to
explore despite the increased computational overhead in-
volved in denser graph representations. Notably, any com-
putational overhead involved in VAT computations is fur-
ther augmented in hierarchical VAT-based clustering due to
the need to compute VAT on every cluster-graph. However,
because VAT involves a hard optimization problem, the ac-
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curacy of VAT itself must be considered in any modification
to the VAT computation. We continue to research possible
improvements to our VAT algorithm and are concurrently
testing a simulated annealing based approach. Additionally,
of course, the critical node assignment strategy affects the
overall performance of VAT-based clustering independently
of the VAT computation. And, implementing the greedy se-
quential MNC critical node assignment strategy as well as
hill-climbing optimizations based on internal validation in-
dices are also being considered.

A particularly interesting question we wish to explore in
future is: What is the minimum VAT corresponding to a

given ground-truth clustering P? Formally, given a partic-
ular partitioning P of the vertex set V into clusters C € P,

what is the minimum set of critical nodes S whose re-
moval may induce partitioning P (by some additional crit-
ical node assignment strategy)? Note that this requires the
critical node set to lie adjacent to cluster boundaries, so that

the minimization of S involves a vertex cover problem on
the K -partite graph induced by the inter-cluster boundary
edges. This also involves an NP-hard problem, but would
yield insight into how well the VAT measure itself relates to
an actual clustering quality. Moreover, since the actual VAT
computation is approximate, we don’t know a priori whether
& s
or not 7(5) = \V—S‘—le”l(V—S)Hl
computed VAT value in some cases. This would suggest that
the VAT algorithm can be improved for better clustering per-
formance. It would be informative to know how relatively

small or large 7(S) generally turns out to be, and for which
classes of datasets. In general, this direction of research fun-
damentally yields information on how the VAT measure it-
self relates to clustering, independent of its implementation.

will be lower than our

A more immediate line of research is variations to our
hierarchical VAT-based clustering implementations. For ex-
ample, although we plan to implement the partial version of
hierarchical VAT clustering for noisy data, we may prefer to
use a geometric graph representation due to the 100 percent
accuracy for this representation for the bi-partitioning of
noisy data. However, geometric graph representation tends
to be denser, a problem that significantly augments the over-
head of hierarchical implementations. Thus, we must con-
sider graph representation and VAT implementation simul-
taneously with the extension of hierarchical VAT-Clust into
partial clustering.

Regarding hierarchical VAT-Clust, we wish to understand
why the hierarchical version of VAT-based clustering was
needed for K > 3 instead of a single iteration of VAT-
Clust, which we originally hypothesized may suffice. We
plan to analyze the dendograms corresponding to the hier-
archical implementation to better understand the recursion
depth needed as a function of the datasets. However, what
is clear is that VAT acts rather frugally in terms of size of
the attack set S, preferring smaller S. This is probably due
to the graph representation. There could exist graph repre-
sentations of the same dataset that results in a large num-
ber of components even from the removal of very small S.
Hence, the study of graph representations is again funda-



mental. Nonetheless, we will consider directly altering the
frugality of the VAT measure itself by generalization of VAT

to (a, B)-VAT, 7,3(G) = mingcy |V—S—C(:,‘,i|;?€—5)|+1
as described in (Ercal 2014). Specifically, any of the (1, 3)
parametrizations of VAT for g > 1 will allow larger critical
sets .S if doing so results in a more severe partitioning (or
more desired cluster). Thus implementing and testing (1, 8)-
VAT-Clust is another direction of future work.

Finally, we have implemented all aspects of this work into
a Graphical User Interface (GUI), including the graph gen-
eration as well as both VAT-based clustering and other clus-
tering algorithms considered. We plan to continue the GUI
development such that a user can run the graph generation
and choice of clustering algorithm for various parametric
settings. The GUI also outputs the graphs in GML format
to facilitate viewing with graph visualization tools such as
Gephi. Changes in VAT-based clustering implementations
involve simultaneous changes to the GUI, and, additional
functionality is continuously incorporated to our GUI along
with plans to move it to an open-source platform.
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