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Abstract

According to a survey conducted by the Communications
Fraud Control Association an estimated $46.3 billion were
lost due to telecommunications fraud in 2013. This suggests
that the potential for intentional exploitation of unsuspecting
users is an ongoing issue, and finding anomalies in
telecommunications data can aide in the security of users,
their phones, their personal information, and the companies
that provide them services. Most anomaly detection
approaches applied to this type of data use some type of
statistical representation; however, we think that a more
natural representation is to consider telecom traffic as a
graph. In this paper, we specifically focus on using graph-
based anomaly detection to find and report anomalies in
telecom data. Up until now, little work seems to be focused
on detecting and reporting anomalies in telecommunications
data represented as a graph. Moreover, even less work
seems to focus on detecting anomalies in phone call history
with this same representation. Our goal in this application
paper is to use real-world cell phone traffic to detect
anomalies in user patterns based on phone call and text
message history.

Introduction

According to the International Telecommunication Union
(ITU), in 2014 mobile subscriptions in underdeveloped
nations are estimated to be quickly growing and mobile
subscriptions in developed nations are estimated to start
reaching levels of saturation [ITU 2014]. This increase in
the use of mobile devices can have serious implications
ranging anywhere from protecting the security of user
information to protecting mobile phone service providers
from fraudulent usage of services such as cloning SIM
cards, etc. With this abundance of mobile
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telecommunications data, it is possible and increasingly
valuable to find and report anomalies in the data to prevent
personal threats to users, financial threats to service
providers, or other types of unexpected threats. One area of
research that can aid in this type of potential threat is
anomaly detection. In this paper we aim to show that,
specifically in the case of mobile telecom data, a graph-
based anomaly detection approach can provide some
valuable insight into the calling patterns.

Examination of call records shows the intuitive nature of
representing this data in terms of a graph. For example,
Onnela et al., while not specifically focusing on the
problem of anomaly detection, have success representing
their large-scale phone call data as a call graph [Onnela et
al. 2007]. Similarly, Eberle and Holder showed that
anomalies in movements and social relationships can be
detected using data from mobile devices represented as a
graph [Eberle and Holder 2008]. This representation
follows from the fact that we can consider phone calls as a
type of transaction between individuals which indicates a
relationship between them. Take for example, a phone call
from person A to person B who, in turn, calls person C.
We now have an indirect relationship between person A
and person C. Thus, upon representing each person as a
node in a graph and the phone calls between them as edges,
it is straightforward to visualize the relationships between
each person.

We believe that representing telecom data as a graph
will provide an intuitive and efficient method for detecting
anomalies. To evaluate our hypothesis, we will use the
Graph-Based Anomaly Detection (GBAD) tool - provided
by Eberle and Holder and discussed in their 2007 paper - in
the hopes of finding anomalies in the data [Eberle and
Holder 2007]. We include phone call and text message data
as our primary anomaly detection features.



In the next section, we discuss what work has already
been done; particularly work that has been done using
anomaly detection on mobile telecommunication networks;
and then we focus on relevant work that gives more insight
into our reason for representing our data as a graph. In the
following section we explore the structure of the data and
how we combined different sets of data for use in our
experiments. We also provide some information relating to
how much data we use, and explain our reasons for
selecting specific sections for experimentation. Then in the
section that follows we discuss what experiments were run
on the data set, and we present the results obtained from
running our experiments. We then conclude the paper with
some suggestions for future work that might be done in
order to improve upon the results presented here.

Related Work

This paper makes use of two primary types of related
work: (1) anomaly detection for mobile telecommunication
networks, and (2) representing phone call data as a graph.
The sources relating to mobile telecommunication network
anomaly detection have a more direct relation to our work,
since we consider the detection of anomalies in this type of
network. The sources relating to representing phone call
data as a graph mostly contribute to supporting our
decision to use a graph-based approach for representing the
data and a graph-based tool for running our experiments on
the data.

Anomaly Detection in Mobile Telecom Networks

Biischkes, Kesdogan, and Reich present an algorithm using
a statistical approach, Bayes Decision Rule, which they use
to detect anomalies in user behavior on cellular radio
networks [Biichkes, Kesdogan, and Reich 1998]. Using a
security focus, they apply their approach by tracking user
locations through network cells and determining the
probability of a user's transition from one cell into the next
based on the user's prior behavior. However, as pointed out
in their research, high rates of change in behavior
associated with commuting adversely affects the
effectiveness of their approach.

Sun et al. present two detection schemes, Lempel-Ziv
and fixed-order Markov model, that they use to create user
mobility profiles through cellular networks and compare
the results of each approach [Sun et al. 2006]. Moreover,
they dynamically update the mobility profile using the
exponentially weighted moving average technique. Both of
these anomaly intrusion detection techniques, similar to
Biischkes, Kesdogan, and Reich, track user movements
through network cells as their intrusion detection feature.
In their research, Sun et al., show that their Lempel-Ziv-
based method, which derives from a data compression

411

scheme, outperforms their fixed-order Markov model-
based method in both high detection rate and low false
alarm rate, especially for low-speed users.

In the paper by Damopoulos et al. they explain how they
evaluated four different machine learning algorithms —
Bayesian network, radial basis function, K-nearest
neighbors, and random Forest — for their effectiveness in
the detection of anomalies in mobile devices when
considering phone call history, SMS history, and web
browsing history both separately and in conjunction
[Damapoulos et al. 2011]. To evaluate their results, they
use 10-fold cross-validation and 66% split methods. While
their results are promising, they noted on several occasions
that certain algorithms performed poorly, when compared
to the others, due to lack of enough data values.

Representing Phone Call Data as a Graph

The research of Onnela et al. examines the structure of a
very large data set and the “tie” strengths for interactions
between individuals [Onnela et al. 2008]. They show that,
contrary to one's intuition, in the removal of strong ties
first, the network does not disintegrate, but it does shrink;
whereas, upon removing weak ties first, the network
quickly dissolves. They also consider the effect of tie
strength on information diffusion throughout the network.
On this front they find that neither strong nor weak ties
have any effect on the spread of information in the
network.
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Figure 1. The condensed database schema containing only the
tables we use in our research.



Figure 2. A visual representation of a subgraph (consisting of data for 2 users).

Data Set

Our data set comes from actual, anonymized cellular phone
data provided by Nokia through the 2012 Mobile Data
Challenge (MDC). We provide a condensed diagram of the
database schema containing only the tables from which
data was extracted in Figure 1. (For interested readers,
information on requesting a full diagram of the database
schema can be found at the Idiap Data Distribution website
— https://www.idiap.ch/dataset/mdc/download). Note that
not all the possible data is used. Instead, we focus on a
subset of it including telephone calls and text messages,
which are used in the experiments, and the user's
demographic data for providing insight while interpreting
the results of our experiments. Both topics will be
discussed in more depth in the next section.

Some general statistics about the data are in order: first,
we take data from 113 unique users, each with an average
of about 38 calls and text messages to other users among
those 113 already in the data set. While each of the users
were involved in several interactions with people not
contained in the data set, only those interactions between
users were considered. Our research primarily incorporates
data extracted from both the “calllog” and the “devices”
tables which are depicted in Figure 1. The “calllog” table
contains a list of phone calls and text messages between
users and their contacts, and the “devices” table contains a
list of phone models corresponding to each user. Also, if a
user had multiple phone models, only one was used.
Indirectly, we use the rest of the tables from Figure 1 for
the purposes of joining data as necessary. The exception to
this rule, however, is the “demographics” table which, as
already mentioned, is used for accessing demographic data
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about certain users, particularly in the case that an anomaly
was detected regarding data from their calls or messages.

We now provide a brief description of the attributes used
in our experiments. First, the direction attribute from the
“calllog” table has possible values of “Incoming”,
“Outgoing”, or “Missed Call”. For our purposes, we used
the first two types of directions since we want to only
consider calls that connect. However, in the next section
we describe how and why we partially account for missed
calls. The description attribute is used to determine
whether the transaction was a call or a text message. The
duration attribute was used after being bucketized; that is,
we separated the integral duration values into 4 “buckets”
namely, “none”, “short”, “medium”, “long”, that were used
to give more context to the duration values as well as
provide a more consistent and useful normative pattern for
the purposes of using GBAD. Our buckets were calculated
as interquartile ranges of the integer duration values of
valid calls. The model attribute was used to provide extra
information about the user in our graph. Finally, the
number and phone number attributes were used for
determining who the other party in the call or text message
was; however, since phone numbers were anonymized, we
chose to represent the user's phone number by the country
and city codes from the phone number.

Experimental Setup and Results

Our experimental setup consists of extracting the required
data from the database, combining it to contain all the
required information for each of the users, creating a
multiuser graph from the data for all users, and running it
through one of the anomaly detection algorithms in
GBAD. In the following sections, we expand more on the
main steps involved in preparing and running our



experiments and then we conclude the section by providing
our results and how we interpreted them. Also, following is
a brief description of GBAD, the tool used to run our
experiments.

The Graph

Figure 2 we provide a visual representation (consisting of
data from only 2 users) of the graph topology used for one
example of a subgraph. The complete graph for all users
had a total of 966 vertices and 5602 edges. From this
diagram, some simple observations can be made, but some
clarifications are also necessary. First, we would like to
point out that for interactions between two users we only
have one “call” or “text” node and we use the number of
edges out of that node to the “user” node to represent the
number of calls or text messages from one user to the
other. On that note, we should mention that the number of
edges into a transaction (a call or text) node need not be
equal to the number of edges out of the transaction node.
This is likely a result of the fact that we did not include an
edge for missed calls, but we did include the attempted call
whether it was missed or not. Or, for example, in the case
of text messages, one user might have sent many text
messages to another but the other did not necessarily
answer each text message. Another observation that can be
made is that the country code (41 in this example) is shared
amongst all users in the same country, yet city codes (78
and 79 in this example) are not shared. We chose to share
country codes so as to potentially discover patterns
associated with individual countries. However, city codes
are only unique within a country, such that the same city
code could be used by multiple countries.

The Graph-Based Anomaly Detection Tool

There are three general categories of anomalies in a graph:
insertions, modifications and deletions. Insertions would
constitute the presence of an unexpected vertex or edge.
Modifications would consist of an unexpected label on a
vertex or edge. Deletions would constitute the unexpected
absence of a vertex or edge. The graph-based anomaly
detection tool that we decided to use, GBAD, discovers
each of these types of anomalies. Using a greedy beam
search and a minimum description length (MDL) heuristic,
GBAD first discovers the best substructure, or normative
pattern, in an input graph. The minimum description length
(MDL) approach is wused to determine the best
substructure(s) (i.e., normative pattern) as the one that
minimizes the following:

M(S,G) = DL(GS) + DL(S)

where G is the entire graph, S is the substructure, DL(GIS)
is the description length of G after compressing it using S,
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and DL(S) is the description length of the substructure.
Using a beam search (a limited length queue of the best
few patterns that have been found so far), the algorithm
grows patterns one edge at a time, continually discovering
what substructures best compress the description length of
the input graph. The strategy implemented is that after
extending each substructure by one edge, it evaluates each
extended substructure based upon its compression value
(the higher the better). A list is maintained of the best
substructures, and this process is continually repeated until
either there are no more substructures to consider or a user-
specified limit is reached.

In summary, the GBAD approach is based on the
exploitation of structure in data represented as a graph.
GBAD discovers anomalous instances of structural
patterns in data that represent entities, relationships and
actions. GBAD uncovers the relational nature of the
problem, rather than solely the traditional statistical
deviation of individual data attributes. Attribute deviations
are evaluated in the context of the relationships between
structurally similar entities. In addition, most anomaly
detection methods use a supervised approach, requiring
labeled data in advance (e.g., illicit versus legitimate) in
order to train their system. GBAD is an unsupervised
approach, which does not require any baseline information
about relevant or known anomalies. To summarize, GBAD
looks for those activities that appear to match normal /
legitimate / expected transactions, but in fact are
structurally different. For more information regarding the
GBAD algorithms, the readers should refer to [Eberle and
Holder 2007].

Finally, GBAD has two potential evaluation metrics for
discovering the normative patterns: MDL and size. MDL,
or Minimum Description Length, is based upon the work
of [Rissanen 1989] and the idea of compression. The size
metric makes a trade-off between the size and frequency of
a substructure.
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Figure 3. Anomalies detected using the size evaluation metric.
(a) The anomalous insertion of a country node, "358". (b) The
anomalous insertion of a city node, "50".
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Figure 4. Anomalies detected using the MDL evaluation metric
with minimum normative pattern size of 1. (a)Anomalous
insertion of a country code, “358”. (b) Anomalous insertion of a
city code, “50”, (c) Anomalous insertion of a device node, “RM-
160"

The Results

Now that we have discussed the setup of our experiments
and provided some background information on the GBAD
tool, we will present the anomalies detected with our
approach.

Running the probabilistic algorithm, used for detecting
anomalous insertions, with the size evaluation metric,
successfully detected two anomalies each of which are
depicted in Figure 3; and using the MDL evaluation metric
GBAD was able to detect the three anomalies depicted in
Figure 4. The anomalies in each of the figures are depicted
using a black vertex with white text to represent the
anomalous insertion of a vertex and a dashed line to
represent the anomalous insertion of an edge.

Further inspection of the data seems to confirm that the
anomalies in Figure 3 (a) and 3 (b), are, in fact, anomalies
due to the fact that of the 113 users, only one user has the
country code 358, and similarly, the same user is the only
one to have the city code 50 in their phone number.

When using the MDL evaluation metric, since the
normative patterns were smaller, we chose to try two
different normative patterns: first, the default normative
pattern (single “user” vertex) and, second, the next-best
normative pattern which had a minimum size of 2 vertices
and an edge (the “user” and “RM-159” vertices).

The anomalies from Figure 4 (a) and 4 (b) are actually
the same as the anomalies from Figure 3 (a) and 3 (b) even
with a quite different normative pattern, due to using the
different evaluation metric, and as such, we won't re-
discuss them. The anomaly in Figure 4 (c), however, shows
that an anomalous phone model node was inserted with
label “RM-160". The data, again, supports this result since
for the 113 users, only one user had a device with that
model.
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Finally, we tested, with the MDL evaluation metric, to
see what, if any, anomalies would be detected with a
normative pattern having a minimum size of two vertices.
The result, depicted in Figure 5, was the anomalous
insertion of a city node “77” which, in fact, is supported by
the data since, from the 45 users with a device model of
“RM-159”, again, a single user was in city “77”.

One final note is that while GBAD uses three distinct
algorithms for detecting the three different types of
anomalies in graphs, the only one that yielded results was
the one for detecting anomalous insertions (the
probabilistic one mentioned above). We think that a
different graph topology than the one used here could
potentially lead to the discovery of other types of
anomalies.

device \in city

\

Figure 5. An anomaly detected using the MDL evaluation
metric with a minimum normative pattern size of 2.

Conclusions and Future Work

In this paper, we have claimed that it can prove beneficial
to put an emphasis towards using graphs for detecting
anomalies in mobile telecommunications networks. We
show, with real-world data, that a graph representation for
the data allows for the detection of 5 (but 3 unique)
anomalous substructures in a mobile call graph, two of
which were detected using distinct evaluation metrics each
with different normative patterns. In future work, we will
attempt to apply other anomaly detection algorithms on the
MDC data set, to provide a more complete picture of the
effectiveness of the graph-based anomaly detection
approach. Another focus of future work could be to find
more graph topologies to potentially speed up the detection
process, which would be essential if this approach were to
be used in real-time. We also intend to further investigate
the issues associated with “concept drift”. Concept drift is
the idea that patterns can “drift” over time causing the
normative pattern for a graph at one time to potentially be



different than its normative pattern at a different time. As
we attempt to apply this approach to “big data”, or
streaming data, we will need to evaluate the optimization
of techniques that will allow for a graph-based anomaly
detection approach to be used in real-time.
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