

Purdue University Calumet, CITG, 2200 169th Street, Hammond, IN, 46323-2094

{mahdi.moghaddam, ricardo.calix}@purduecal.edu

Abstract

The current state of the art in intrusion detection systems
mainly relies on heuristic rules called signatures to detect
intrusions to a network environment. The downside of
signature based approaches is that they can only detect
previously known attacks. Since no signature exists for new
attacks, other approaches need to be considered. Here,
machine learning algorithms may be beneficial.
Additionally, at the network level, intrusion detection system
performance is very important. Therefore, fast and efficient
machine learning implementations are needed. In this study,
a parallel hardware based implementation of the KNN and
RCE classifiers will be analyzed to get a better
understanding of the advantages and disadvantages of
hardware based machine learning for network intrusion
detection.

Introduction

The worldwide market for embedded systems will have
sustained growth at a rate of 7% over the next 5 years and
it is expected that the market will reach $158.6 billion by
2015 (BCC research, 2012). This new set of devices will
add to the earlier explosion of data caused by standard
devices such as PCs, tables, and smart phones. It is
expected that the so called internet of things will
eventually generate most of the data in the digital universe.
This growth in digital data, as a side effect, increases the
threat to information systems and the need to defend them.
Hourly down time costs can vary significantly for a square
foot of data center space and can range from $8,500 to
$210,000 (Savitz, 2012). Therefore, preventing downtime
and dealing with cyber-attacks is a big concern for
companies.
There are several techniques that can be used to prevent
cyber-attacks. In particular, intrusion detection systems

Copyright © 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can be helpful in preventing attacks or raising alerts when
networks are under attack. The issue with current network
intrusion detection systems is their inability to detect
unknown attacks. IDS systems require a knowledge base of
known attacks called signatures that must be matched
against incoming network traffic to detect attacks.
However, if the attack is not known, there is very little that
the system can do. Therefore, research in the field has
proposed that machine learning approaches can help to
address these problems. In particular, machine learning can
be used to develop models to try to detect unknown
attacks. Most implementations of IDS systems focus on
approaches at the software level. IDSs at the software
level, however, may suffer from low performance speeds.
Using standard CPU architectures and standard RAM
memory may slow down processing of an IDS system. In
the context of network speeds, a software based machine
learning NIDS system may not be adequate. To address
this issue, this study proposes the use of a hardware based
machine learning cognitive processor for network intrusion
detection. A KNN algorithm and an RCE algorithm are
used to perform classification and measure performance of
the IDS system.

Literature Review

An Intrusion detection system is a hardware or software

system that, by monitoring any system or network, can

detect malicious cyber activities. There are different kinds

of IDS systems such as host based IDSs and network based

IDSs (Scarfone, 2007). With respect to the detection

methods used, two main types are used which are statistical

anomaly-based IDS systems and signature-based IDS

systems. A signature based IDS monitors network traffic

and compares that traffic to a database of known attacks.

This method is similar to the method most anti-virus

Network Intrusion Detection Using a Hardware-Based Restricted
Coulomb Energy Algorithm on a Cognitive Processor

Mahdi H. Moghaddam and Ricardo A. Calix

246

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference

systems use. However, signature based IDS systems are

not able to address novel attacks since there is no record in

the database of them. This will result in a time gap between

the first appearance of the attack and the time when the

system can finally detect that attack (Barman 2012). One

of the most popular signature-based IDS system is Snort.

Snort is a packet sniffer based on the c-based libpcap

library. It monitors packet traffic and performs pattern

matching against its knowledgebase. It can generate alarms

in real time that are sent to the system administrator

(Roesch, 1999).

Anomaly-based detection methods, on the other hand, try

to detect abnormal traffic which has differences in

characteristics to normal traffic. This method needs to

define normal traffic first, and then identifies variations

from the normal model. Hence, it can detect traffic that did

not generate from a user’s normal activities (Axelsson,

2000). In other words, anomaly detection tries to measure

the acceptable or usual behavior of a user and then shows

potential exceptions (Kumar, 1995). The downside of

anomaly detection is that not all abnormal traffic is

necessarily an attack. This approach can therefore result in

many false alarms. Normal traffic detected as abnormal

traffic is known as false positives and abnormal traffic that

is detected as normal traffic is referred to as false

negatives. A third category for IDS systems involves

pattern matching using supervised learning. In this case, 2

or more classes can be identified using trained

classification models. This study focuses on supervised

learning for network intrusion detection.

Software-based machine learning

In 1999, Lee et al. introduced a data mining framework in

order to build an intrusion detection system. Their idea was

to extract lots of features from the network data and then

apply machine learning methods in order to learn the

behavior of abnormal and normal traffic. They used the

DARPA dataset for their experiments (Tavallaee et al.

2009). The DARPA dataset includes samples of abnormal

and normal behavior in the network. Sabhnani and Serpen

(2003) proposed an approach that learns multiple classifier

models for each class. Results of their work showed that

some algorithms provide better results for a given attack.

Hence a multi-classifier model is more suitable in order to

deal with different attack categories. Mukkamala et al.

(2002) suggest that by using neural networks and SVM it is

possible to create an IDS. Like most of the ML techniques,

they first extracted patterns of user’s experiences within

the system and then created a classifier by using those

patterns. That classifier can be further used in order to

detect anomalies. The SVM was trained using an RBF

kernel. The accuracy of this method was 99.5%. Their

neural network model achieved similar results with an

accuracy of 99.25%.

Hardware-based machine learning

Intrusion detection systems are highly dependent on their

hardware architecture. Therefore, some researchers have

focused on ways to improve IDS performance by analyzing

various aspects of the hardware implementation. Most

researchers use field programmable gate arrays (FPGA) as

a preferred hardware platform. Sidhu and Prasanna in 2001

provided an efficient method for intrusion detection using

FPGAs and regular expressions. They showed that

performing matches using regular expressions can be more

efficiently done on FPGA implementations than on

standard PC implementations. They ran their experiment

using both the Intel Pentium III processor and a Virtex

FPGA. Their study found that using regular expression

matching will result in situations where not enough

memory is available on the PC. In this case, an FPGA can

be more suitable. Baker and Prasanna in 2004, proposed a

methodology for building an efficient IDS using an FPGA

as the hardware platform and optimizing the design of the

system. They applied optimization processes in order to

have efficient parallel multi-byte comparisons and partial

matches for high performance calculations using FPGA.

They showed that this methodology results in faster

computing times. As a down side, their approach also

increased the amount of false-positive alerts issued by the

system.

Snort is a popular IDS and many researchers try to improve

its performance using machine learning algorithms or by

improving the supporting architecture to speed up

processing. According to Antonatos et al. (2004), almost

70% of Snort’s execution time is for string matching.

Therefore, there have been several studies that focused on

speeding up string matching. Aldwairi et al. (2005), for

instance, tried to achieve better performance by increasing

the throughput of the system. They suggested that using

hardware accelerators offerd up to 14Gbps in performance.

They studied Snort rules and argued that 87% of the rules

involve content matching. This suggests that there is a need

for hardware acceleration of content matching. They

proposed a hardware-based string matching technique

implementing finite state machines.

Das et al. (2008) proposed an FPGA-based architecture for

anomaly detection. At first, a feature extractor module

(FEM) was developed. By using an FPGA, significant

performance was achieved compared to software solutions

like Snort. It was shown in that work that around 22 Gbps

throughput can be reached. Their proposed IDS also used

Principal Component Analysis (PCA) to reduce data

dimensionality. The results of their analysis produced good

247

accuracy scores on the KDD Cup dataset. The FPGA used

in their work was the Xilinx Vertex Family.

In 2013 Yoon et al. suggested a multicore-based IDS to

improve performance. This approach used multiple cores

in parallel to improve processing speeds. They introduced

the SecureCode framework to detect malicious behavior

using statistical analysis. Although their study addressed

parallelism and statistical analysis, they still used

processors with standard architectures. In a sense, their

approach may still suffer from the bottlenecks faced by

software based implementations. Instead, a different type

of processor may be needed to perform the statistical

analysis. In particular, a processor designed for parallelism

and with architecture optimized to run machine learning

algorithms. This study proposes such an implementation

and will report the results of the analysis.

Methodology

The methodology proposed in this study consisted of

collecting and pre-processing network data, designing and

building a hardware-based machine learning IDS

prototype, and performing the analysis. To collect the data,

a small packet sniffer was used based on Sniffex (Grabell,

2008). The data was pre-processed and normalized.

Finally, using the normalized train and test sets, the IDS

prototype was tested and an analysis of the results was

performed.

IDS Architecture

A packet sniffer was used to collect the data. This packet

sniffer ran on a Raspberry PI B+ with an embedded Linux

distribution. The sniffer handles the data collection to

create the data sets. To perform the classification, an IDS

platform was developed. The platform was built around the

Figure 1 IDS architecture using the CM1K

CM1K-PGA69 machine learning co-processor produced

by Cognimem Technologies. The CM1K is a low powered

co-processor specifically designed for machine learning. It

can store up to 1024 training samples or neurons. It

includes 2 different classification algorithms, and is based

on vector space type distance calculations. In essence, it

compares a test sample to learned training samples and

calculates the distance between the test sample and the

model’s learned neurons. The CM1K co-processor was

connected to an Arduino Due board which provides the

power and communication capabilities for the CM1K. The

data is stored on a micro-SD card and is sent by the

Arduino Due board to the CM1K processor. Figure 1

shows a diagram of the architecture and how the data flows

between the devices.

A picture of the prototype embedded system device can be

seen in Figure 2. The Arduino Due board is connected to

the CM1K via serial I^2C communication protocol.

Figure 2 Arduino Due connected to the CM1K

Data Collection

Two data sets were used to perform the analysis. A small

dataset was collected and compared against the well-

known NSL-KDD intrusion detection corpus (Tavallaee et

al. 2009). The NSL-KDD corpus is derived from the KDD

cup dataset. The NSL-KDD corpus consists of 41 features

extracted from network traffic captures.

The smaller data set consisted of a total of 2048 normal

samples and 2048 abnormal samples. The data was

collected using a modified version of the Sniffex packet

sniffer which was installed on a Raspberry PI board. All

the packet header information gathered by this tool was

saved in a CSV file. A total of 10 features were used for

this study. The features are: src_ip, dst_ip, tos, len, id, off,

prt, src_p and dst_p. The source IP (src_ip) represents the

host that sends packets to the packet sniffer. The sniffer

that was used in this project stores this IP address as a

digit. The destination IP (dst_ip) address in most cases is

the host which the sniffer resides on. The type of service

(tos) is a 6-bit differentiated service code. The length (len)

248

feature stores the length of the packet. The id feature (id)

represents the unique identification of a packet. The off

feature stores the fragmentation offset which is used for

assembling packets. The ttl feature is the time-to-live

information stored in each packet. This 8-bit field is used

to limit the packet life span to a certain number of routers

or hops. The prt field stores the protocol being used such as

icmp, tcp, udp, etc. Finally, source (src_p) and destination

(dst_p) ports were also used as features.

In order to collect the required network traffic samples, a

small isolated LAN was set up. The LAN consisted of a

network switch and 3 PCs plus a raspberry pi. Normal

packets like ping trace route and other TCP streams were

generated in this network. To collect attack traffic, some

network attacks were performed. These included: ARP

poisoning, ICMP Redirect attack, SYN Flooding attack,

TCP RST attack over SSH, and telnet and Video streaming

session hijacking. Table 1 shows an example of the

collected data set.

Table 1: Dataset collected by sniffer program

src_ip dst_ip tos len id off ttl prt src_p dst_p

1828716554 3705422800 0 16384 45235 64 64 17 44176 53

1828716554 3705422800 0 16384 45491 64 64 17 44176 53

16777226 1828716554 192 23552 55309 0 64 1 0 0

16777226 1828716554 192 23552 55565 0 64 1 0 0

According to the CM1K datasheet, each neuron can only

handle 1 vector with up to 256 features. Additionally, each

feature in the vector can only be represented with 1 byte of

memory. As a result, feature values can only range from 0

to 255. Therefore, the data needs to be normalized to fit

within this range. Another constraint of the chip is that it

only accepts integer values (no float values) which means

that the values most also be rounded.

Classification approach

The CM1K co-processor that was used in this study

supports the K-Nearest Neighbor (KNN) classifier and the

Restricted Coulomb Energy (RCE) classifier. The KNN

algorithm is a famous technique used in machine learning.

It does not require optimization and is easy to implement in

both software and hardware. The KNN algorithm stores all

training samples in its knowledgebase. It then compares a

new test sample to all learned samples or neurons in its

knowledgebase. It uses a vector space model approach and

calculates a distance metric between the test sample and all

learned neurons. In contrast to the KNN algorithm, the

RCE algorithm (Scofield et. al, 1987; Reilly et al.,1982)

does not need to store all training samples. Instead, this

method selects only samples that best help to represent the

model. The advantage of this approach is that it is not

limited by the number of neurons available on the chip. For

the case of the CM1K, only 1024 neurons are available per

chip. As a result, the KNN algorithm can only hold 1024

training samples on 1 chip. To add more training samples,

more chips need to be added under KNN. The RCE

method, on the other hand, could in theory build a model

with less than 1024 neurons even if the training set is much

larger than 1024 samples.

To perform classification, each RCE neuron j calculates an

L1 Manhattan distance denoted as dj between an input

vector x and the neuron’s learned vector uj. This distance

can be denoted as follows:

∑
=

−=−=
n

i

jiijj xxd
1

1
µµ (1)

where n represents the number of features per vector. For

each RCE neuron, the calculated distance dj is compared to

the neuron’s learned threshold. Let us denote this threshold

as zj. The calculated distance dj is compared to the

threshold zj. The neuron is said to fire if dj is less than zj.

Given D to be the set of distance values from the firing

neurons, the previous rule can be stated as:

}|{ jjj zddD <= (2)

The predicted class is then defined as the category “y”

associated with the minimum distance neuron from the set

D. The predicted category hypothesis can be defined as

follows:

Dyxh j minarg)(= (3)

This predicted category represents the predicted class for

the given test sample.

Analysis and Results

The data sets were classified using both the KNN and RCE

methods available on the CM1K co-processor. The

analysis was performed using the 2 data sets which are the

NSL-KDD corpus and the 10-feature data set collected for

this study. For each data set, a series of 10 runs was

performed to determine the accuracy rates for both

classifiers. Table 2 shows the average accuracy score and

variance for each method using the 10-feature data set.

Table 3 shows the resulting accuracy score per individual

run on the 10-feature data set. Each run in Table 3 and

Table 5 was performed using 1024 training samples and

1024 test samples. These samples were chosen randomly

for each run from the original 10-feature dataset (Table 3)

or the NSL-KDD corpus (Table 5). As can be seen from

Table 2, the average accuracy score for the RCE algorithm

249

was 73.23% while the accuracy score for the KNN

algorithm was 70.98%.

Table 2: Statistical analysis on the 10-feature corpus

 RCE KNN

Average 73.23% 70.98%

Variance 0.00940922 0.04730602

Standard Deviation 0.09700113 0.21749947

The RCE classifier appears to perform better than the KNN

algorithm using the 10-feature dataset. It is also important

to note that the variance for the RCE algorithm was lower

than the variance for the KNN algorithm. Table 3 also

shows the processing speeds per run and algorithm. From

the results it can be seen that the KNN implementation

appears to be slightly faster. The average testing time for

the KNN implementation was 110342.5 milliseconds. The

average testing time for the RCE implementation was

110443.9 milliseconds. This shows that the required time

to test the samples is almost the same for both methods.

Dividing the total testing time by the number of test

samples, we can estimate the average processing time per 1

test sample which is around 108 milliseconds.

Table 3: RCE and KNN runs on 10-feature corpus

Run RCE RCE_N RCE_TIME KNN KNN_N KNN_TIME

1 76.76% 3 110249 71.68% 1024 110163

2 82.03% 3 110112 80.66% 1024 110261

3 83.59% 3 110207 85.35% 1024 110453

4 63.78% 5 110003 30.37% 1024 110446

5 85.44% 4 110075 87.21% 1024 110463

6 77.54% 3 110136 87.40% 1024 110240

7 61.82% 3 111890 87.79% 1024 110335

8 58.89% 3 111331 77.25% 1024 110322

9 66.31% 3 110177 32.91% 1024 110486

10 76.17% 3 110259 69.14% 1024 110256

Table 3 also shows the number of neurons that fired to

perform classification under each method. As can be seen,

RCE on average required no more than 3 fired neurons to

perform the classification. The time values in Table 3 are

expressed in milliseconds.

Finally, to get a better understanding of the methodologies,

the experiment was repeated using the NSL-KDD intrusion

detection corpus (Tavallaee et al. 2009). The results are

presented in Table 4 and Table 5.

Table 4: Statistical Analysis on NSL-KDD corpus

 RCE KNN

Average 70.44% 83.07%

Variance 0.015135246 0.007278273

Standard Deviation 0.123025387 0.085312794

As can be seen in Table 4, on average the KNN method

performed better than the RCE method. This result is

different from the results obtained using the smaller 10-

feature data set from Table 2 and Table 3. The variance of

the RCE methods appears to be larger than the variance of

the KNN method. As a result, it appears that the KNN

method obtained more consistent results. Given that the

NSL-KDD runs were randomly extracted from non-

overlapping sections of a much larger corpus, it is possible

that these results are more representative of the true state of

the data. However, it can be argued that both methods

performed well. Finally, the speed performance across both

data sets appears to be consistent. This shows that using

more features (within the constraints of the cognitive

processor) did not affect performance speeds.

Table 5: RCE and KNN runs on NSL-KDD corpus

Sample # RCE RCE_N RCE_TIME KNN KNN_N KNN_TIME

1 79.39% 2 123728 87.01% 1024 123195

2 58.40% 3 123522 59.67% 1024 123500

3 79.59% 2 123853 87.40% 1024 123146

4 50.88% 7 123188 84.86% 1024 123430

5 57.91% 2 123662 86.72% 1024 123505

6 80.57% 2 123824 84.47% 1024 123338

7 79.88% 5 123362 88.77% 1024 123691

8 80.66% 3 123611 81.05% 1024 123448

9 58.30% 2 123678 83.40% 1024 123426

10 78.81% 2 123974 87.30% 1024 123286

Conclusion

As a result of this study, it seems that the use of a

hardware-based machine learning cognitive processor for

network intrusion detection holds promise. Using the 10-

feature corpus, the average accuracy score for the RCE

method was 73.23% and 70.98% for the KNN method. The

variance for RCE was 0.0094 and 0.0473 for KNN. For the

10-feature corpus, the RCE implementation performs

slightly better than the KNN implementation and the

results seem to be more consistent. In contrast, using the

NSL-KDD corpus, KNN performed better than RCE. It is

difficult to determine why the results were opposite. It is

possible that they are a result of the intricacies of 2

different datasets. However, the NSL-KDD corpus is larger

and uses more features (41), and as a result the samples

drawn from it were more diverse. Additionally, it can be

noted that with more features, the KNN method performed

better. Although the RCE method performed worse than

KNN using the NSL-KDD corpus, it is important to note

that for a low powered, low cost IDS system, being able to

use only 1 chip to build complex classification models is a

great advantage. The KNN algorithm may require more

neurons and hence more chips to perform the same job.

Future work will focus on collecting additional features for

the 10-feature data set and on collecting more samples.

250

Additionally, future work will focus on comparing the

hardware-based KNN and RCE implementations of the

CM1K to software-based implementations of the

algorithms using standard PC processors. This analysis will

be performed for both classification accuracy and speed

performance.

References

BCC Research. 2012. Embedded systems: Technologies and
market. Retrieve from http://www.bccresearch.com/market-
research/information-technology/embedded-systems-
technologies-markets-ift016d.html

Savitz. 2012. Figuring DDos Attack risks into IT Security budget.
Retrieve from
http://www.forbes.com/sites/ciocentral/2012/05/08/figuring-ddos-
attack-risks-into-it-security-budgets/

Scarfone, K., & Mell, P. 2007. Guide to intrusion detection and
prevention systems (idps). NIST special publication, 800 (2007),
94.

Barman, D. K., & Khataniar, G. 2012. Design of Intrusion
Detection System Based On Artificial Neural Network and
Application of Rough Set. International Journal of Computer
Science & Communication Networks, 2(4), 548-552.

Roesch, M. 1999. Snort: Lightweight Intrusion Detection for
Networks. In LISA (Vol. 99, pp. 229-238).

Axelsson, S. 2000. Intrusion detection systems: A survey and
taxonomy (Vol. 99). Technical report.

Kumar, S. 1995. Classification and detection of computer
intrusions (Doctoral dissertation, Purdue University).

Lee, W., Stolfo, S. J., & Mok, K. W. 1999. A data mining
framework for building intrusion detection models. In Security
and Privacy, 1999. Proceedings of the 1999 IEEE Symposium on
(pp. 120-132).

Sabhnani, M., & Serpen, G. 2003. Application of Machine
Learning Algorithms to KDD Intrusion Detection Dataset within
Misuse Detection Context. In MLMTA (pp. 209-215).

Mukkamala, S., Janoski, G., & Sung, A. 2002. Intrusion detection
using neural networks and support vector machines. In Neural
Networks, 2002. IJCNN'02. Proceedings of the 2002 International
Joint Conference on (Vol. 2, pp. 1702-1707).

Sidhu, R., & Prasanna, V. K. 2001, March. Fast regular
expression matching using FPGAs. In Field-Programmable
Custom Computing Machines, 2001, FCCM'01. The 9th Annual
IEEE Symposium on (pp. 227-238).

Baker, Z. K., & Prasanna, V. K. 2004. A methodology for
synthesis of efficient intrusion detection systems on FPGAs. In
Field-Programmable Custom Computing Machines, 2004. FCCM
2004, 12th Annual IEEE Symposium on (pp. 135-144).

Antonatos, S., Anagnostakis, K. G., & Markatos, E. P. 2004.
Generating realistic workloads for network intrusion detection
systems. ACM SIGSOFT Software Engineering Notes, 29(1),
207-215.

Aldwairi, M., Conte, T., & Franzon, P. 2005. Configurable string
matching hardware for speeding up intrusion detection. ACM
SIGARCH Computer Architecture News, 33(1), 99-107.

Das, A., Nguyen, D., Zambreno, J., Memik, G., & Choudhary, A.
2008. An FPGA-based network intrusion detection architecture.

Information Forensics and Security, IEEE Transactions on, 3(1),
118-132.

Yoon, M. K., Mohan, S., Choi, J., Kim, J. E., & Sha, L. 2013.
SecureCore: A multicore-based intrusion detection architecture
for real-time embedded systems. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2013 IEEE
19th (pp. 21-32).

Grabell. M. 2008. Bomb Sniffing Scam Exposed. Wired.
Retrieved March 14, 2012.

Reilly, D., Cooper, L., Elbaum, C. 1982. A neural model for
category learning. Biol. Cybern vol.45, 1982, pp. 35-41.

Scofield, C., Reilly, D., Elbaum, C., Cooper, L. 1987. Pattern
class degeneracy in an unrestricted storage density memory. in
Neural Information Processing Systems, Denver, CO, 1987, ed.
D. Z. Anderson, American Institute of Physics, New York, NY,
1988, pp. 674-682.

Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A. 2009. A
Detailed Analysis of the KDD CUP 99 Data Set. In proceedings
of the 2009 IEEE Symposium on Computational Intelligence in
Security and Defense Applications (CISDA 2009).

251

