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Abstract 

The current state of the art in intrusion detection systems 
mainly relies on heuristic rules called signatures to detect 
intrusions to a network environment. The downside of 
signature based approaches is that they can only detect 
previously known attacks. Since no signature exists for new 
attacks, other approaches need to be considered. Here, 
machine learning algorithms may be beneficial. 
Additionally, at the network level, intrusion detection system 
performance is very important. Therefore, fast and efficient 
machine learning implementations are needed. In this study, 
a parallel hardware based implementation of the KNN and 
RCE classifiers will be analyzed to get a better 
understanding of the advantages and disadvantages of 
hardware based machine learning for network intrusion 
detection.    

Introduction 

The worldwide market for embedded systems will have 
sustained growth at a rate of 7% over the next 5 years and 
it is expected that the market will reach $158.6 billion by 
2015 (BCC research, 2012). This new set of devices will 
add to the earlier explosion of data caused by standard 
devices such as PCs, tables, and smart phones. It is 
expected that the so called internet of things will 
eventually generate most of the data in the digital universe. 
This growth in digital data, as a side effect, increases the 
threat to information systems and the need to defend them. 
Hourly down time costs can vary significantly for a square 
foot of data center space and can range from $8,500 to 
$210,000 (Savitz, 2012). Therefore, preventing downtime 
and dealing with cyber-attacks is a big concern for 
companies.  
There are several techniques that can be used to prevent 
cyber-attacks.  In particular, intrusion detection systems 
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can be helpful in preventing attacks or raising alerts when 
networks are under attack. The issue with current network 
intrusion detection systems is their inability to detect 
unknown attacks. IDS systems require a knowledge base of 
known attacks called signatures that must be matched 
against incoming network traffic to detect attacks. 
However, if the attack is not known, there is very little that 
the system can do. Therefore, research in the field has 
proposed that machine learning approaches can help to 
address these problems. In particular, machine learning can 
be used to develop models to try to detect unknown 
attacks. Most implementations of IDS systems focus on 
approaches at the software level. IDSs at the software 
level, however, may suffer from low performance speeds. 
Using standard CPU architectures and standard RAM 
memory may slow down processing of an IDS system. In 
the context of network speeds, a software based machine 
learning NIDS system may not be adequate. To address 
this issue, this study proposes the use of a hardware based 
machine learning cognitive processor for network intrusion 
detection. A KNN algorithm and an RCE algorithm are 
used to perform classification and measure performance of 
the IDS system. 

Literature Review 

An Intrusion detection system is a hardware or software 

system that, by monitoring any system or network, can 

detect malicious cyber activities. There are different kinds 

of IDS systems such as host based IDSs and network based 

IDSs (Scarfone, 2007). With respect to the detection 

methods used, two main types are used which are statistical 

anomaly-based IDS systems and signature-based IDS 

systems. A signature based IDS monitors network traffic 

and compares that traffic to a database of known attacks. 

This method is similar to the method most anti-virus 
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systems use. However, signature based IDS systems are 

not able to address novel attacks since there is no record in 

the database of them. This will result in a time gap between 

the first appearance of the attack and the time when the 

system can finally detect that attack (Barman 2012). One 

of the most popular signature-based IDS system is Snort. 

Snort is a packet sniffer based on the c-based libpcap 

library. It monitors packet traffic and performs pattern 

matching against its knowledgebase. It can generate alarms 

in real time that are sent to the system administrator 

(Roesch, 1999). 

Anomaly-based detection methods, on the other hand, try 

to detect abnormal traffic which has differences in 

characteristics to normal traffic. This method needs to 

define normal traffic first, and then identifies variations 

from the normal model. Hence, it can detect traffic that did 

not generate from a user’s normal activities (Axelsson, 

2000). In other words, anomaly detection tries to measure 

the acceptable or usual behavior of a user and then shows 

potential exceptions (Kumar, 1995). The downside of 

anomaly detection is that not all abnormal traffic is 

necessarily an attack. This approach can therefore result in 

many false alarms.  Normal traffic detected as abnormal 

traffic is known as false positives and abnormal traffic that 

is detected as normal traffic is referred to as false 

negatives. A third category for IDS systems involves 

pattern matching using supervised learning. In this case, 2 

or more classes can be identified using trained 

classification models. This study focuses on supervised 

learning for network intrusion detection. 

Software-based machine learning 

In 1999, Lee et al. introduced a data mining framework in 

order to build an intrusion detection system. Their idea was 

to extract lots of features from the network data and then 

apply machine learning methods in order to learn the 

behavior of abnormal and normal traffic. They used the 

DARPA dataset for their experiments (Tavallaee et al. 

2009). The DARPA dataset includes samples of abnormal 

and normal behavior in the network. Sabhnani and Serpen 

(2003) proposed an approach that learns multiple classifier 

models for each class. Results of their work showed that 

some algorithms provide better results for a given attack. 

Hence a multi-classifier model is more suitable in order to 

deal with different attack categories. Mukkamala et al. 

(2002) suggest that by using neural networks and SVM it is 

possible to create an IDS. Like most of the ML techniques, 

they first extracted patterns of user’s experiences within 

the system and then created a classifier by using those 

patterns. That classifier can be further used in order to 

detect anomalies.  The SVM was trained using an RBF 

kernel. The accuracy of this method was 99.5%. Their 

neural network model achieved similar results with an 

accuracy of 99.25%. 

Hardware-based machine learning 

Intrusion detection systems are highly dependent on their 

hardware architecture. Therefore, some researchers have 

focused on ways to improve IDS performance by analyzing 

various aspects of the hardware implementation. Most 

researchers use field programmable gate arrays (FPGA) as 

a preferred hardware platform. Sidhu and Prasanna in 2001 

provided an efficient method for intrusion detection using 

FPGAs and regular expressions. They showed that 

performing matches using regular expressions can be more 

efficiently done on FPGA implementations than on 

standard PC implementations. They ran their experiment 

using both the Intel Pentium III processor and a Virtex 

FPGA. Their study found that using regular expression 

matching will result in situations where not enough 

memory is available on the PC. In this case, an FPGA can 

be more suitable. Baker and Prasanna in 2004, proposed a 

methodology for building an efficient IDS using an FPGA 

as the hardware platform and optimizing the design of the 

system. They applied optimization processes in order to 

have efficient parallel multi-byte comparisons and partial 

matches for high performance calculations using FPGA. 

They showed that this methodology results in faster 

computing times. As a down side, their approach also 

increased the amount of false-positive alerts issued by the 

system.  

Snort is a popular IDS and many researchers try to improve 

its performance using machine learning algorithms or by 

improving the supporting architecture to speed up 

processing. According to Antonatos et al. (2004), almost 

70% of Snort’s execution time is for string matching.  

Therefore, there have been several studies that focused on 

speeding up string matching. Aldwairi et al. (2005), for 

instance, tried to achieve better performance by increasing 

the throughput of the system. They suggested that using 

hardware accelerators offerd up to 14Gbps in performance. 

They studied Snort rules and argued that 87% of the rules 

involve content matching. This suggests that there is a need 

for hardware acceleration of content matching. They 

proposed a hardware-based string matching technique 

implementing finite state machines.  

Das et al. (2008) proposed an FPGA-based architecture for 

anomaly detection. At first, a feature extractor module 

(FEM) was developed. By using an FPGA, significant 

performance was achieved compared to software solutions 

like Snort. It was shown in that work that around 22 Gbps 

throughput can be reached. Their proposed IDS also used 

Principal Component Analysis (PCA) to reduce data 

dimensionality. The results of their analysis produced good 
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accuracy scores on the KDD Cup dataset. The FPGA used 

in their work was the Xilinx Vertex Family.  

In 2013 Yoon et al. suggested a multicore-based IDS to 

improve performance. This approach used multiple cores 

in parallel to improve processing speeds. They introduced 

the SecureCode framework to detect malicious behavior 

using statistical analysis. Although their study addressed 

parallelism and statistical analysis, they still used 

processors with standard architectures. In a sense, their 

approach may still suffer from the bottlenecks faced by 

software based implementations. Instead, a different type 

of processor may be needed to perform the statistical 

analysis. In particular, a processor designed for parallelism 

and with architecture optimized to run machine learning 

algorithms. This study proposes such an implementation 

and will report the results of the analysis. 

Methodology 

The methodology proposed in this study consisted of 

collecting and pre-processing network data, designing and 

building a hardware-based machine learning IDS 

prototype, and performing the analysis. To collect the data, 

a small packet sniffer was used based on Sniffex (Grabell, 

2008). The data was pre-processed and normalized. 

Finally, using the normalized train and test sets, the IDS 

prototype was tested and an analysis of the results was 

performed.  

IDS Architecture 

A packet sniffer was used to collect the data. This packet 

sniffer ran on a Raspberry PI B+ with an embedded Linux 

distribution. The sniffer handles the data collection to 

create the data sets. To perform the classification, an IDS 

platform was developed. The platform was built around the  

 
 

Figure 1 IDS architecture using the CM1K 

 

CM1K-PGA69 machine learning co-processor produced 

by Cognimem Technologies. The CM1K is a low powered 

co-processor specifically designed for machine learning. It 

can store up to 1024 training samples or neurons. It 

includes 2 different classification algorithms, and is based 

on vector space type distance calculations. In essence, it 

compares a test sample to learned training samples and 

calculates the distance between the test sample and the 

model’s learned neurons. The CM1K co-processor was 

connected to an Arduino Due board which provides the 

power and communication capabilities for the CM1K. The 

data is stored on a micro-SD card and is sent by the 

Arduino Due board to the CM1K processor. Figure 1 

shows a diagram of the architecture and how the data flows 

between the devices.    

A picture of the prototype embedded system device can be 

seen in Figure 2. The Arduino Due board is connected to 

the CM1K via serial I^2C communication protocol.  
 

 
 

Figure 2 Arduino Due connected to the CM1K 

Data Collection 

Two data sets were used to perform the analysis. A small 

dataset was collected and compared against the well-

known NSL-KDD intrusion detection corpus (Tavallaee et 

al. 2009). The NSL-KDD corpus is derived from the KDD 

cup dataset. The NSL-KDD corpus consists of 41 features 

extracted from network traffic captures.  

The smaller data set consisted of a total of 2048 normal 

samples and 2048 abnormal samples. The data was 

collected using a modified version of the Sniffex packet 

sniffer which was installed on a Raspberry PI board. All 

the packet header information gathered by this tool was 

saved in a CSV file. A total of 10 features were used for 

this study. The features are: src_ip, dst_ip, tos, len, id, off, 

prt, src_p and dst_p. The source IP (src_ip) represents the 

host that sends packets to the packet sniffer. The sniffer 

that was used in this project stores this IP address as a 

digit. The destination IP (dst_ip) address in most cases is 

the host which the sniffer resides on. The type of service 

(tos) is a 6-bit differentiated service code.  The length (len) 
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feature stores the length of the packet.  The id feature (id) 

represents the unique identification of a packet.  The off 

feature stores the fragmentation offset which is used for 

assembling packets. The ttl feature is the time-to-live 

information stored in each packet. This 8-bit field is used 

to limit the packet life span to a certain number of routers 

or hops. The prt field stores the protocol being used such as 

icmp, tcp, udp, etc. Finally, source (src_p) and destination 

(dst_p) ports were also used as features.  

In order to collect the required network traffic samples, a 

small isolated LAN was set up. The LAN consisted of a 

network switch and 3 PCs plus a raspberry pi. Normal 

packets like ping trace route and other TCP streams were 

generated in this network. To collect attack traffic, some 

network attacks were performed. These included: ARP 

poisoning, ICMP Redirect attack, SYN Flooding attack, 

TCP RST attack over SSH, and telnet and Video streaming 

session hijacking. Table 1 shows an example of the 

collected data set. 

Table 1: Dataset collected by sniffer program 

src_ip dst_ip tos len id off ttl prt src_p dst_p 

1828716554 3705422800 0 16384 45235 64 64 17 44176 53 

1828716554 3705422800 0 16384 45491 64 64 17 44176 53 

16777226 1828716554 192 23552 55309 0 64 1 0 0 

16777226 1828716554 192 23552 55565 0 64 1 0 0 

 

According to the CM1K datasheet, each neuron can only 

handle 1 vector with up to 256 features. Additionally, each 

feature in the vector can only be represented with 1 byte of 

memory.  As a result, feature values can only range from 0 

to 255. Therefore, the data needs to be normalized to fit 

within this range. Another constraint of the chip is that it 

only accepts integer values (no float values) which means 

that the values most also be rounded.   

 
Classification approach 
 
The CM1K co-processor that was used in this study 

supports the K-Nearest Neighbor (KNN) classifier and the 

Restricted Coulomb Energy (RCE) classifier. The KNN 

algorithm is a famous technique used in machine learning. 

It does not require optimization and is easy to implement in 

both software and hardware. The KNN algorithm stores all 

training samples in its knowledgebase. It then compares a 

new test sample to all learned samples or neurons in its 

knowledgebase. It uses a vector space model approach and 

calculates a distance metric between the test sample and all 

learned neurons. In contrast to the KNN algorithm, the 

RCE algorithm (Scofield et. al, 1987; Reilly et al.,1982) 

does not need to store all training samples. Instead, this 

method selects only samples that best help to represent the 

model. The advantage of this approach is that it is not 

limited by the number of neurons available on the chip. For 

the case of the CM1K, only 1024 neurons are available per 

chip. As a result, the KNN algorithm can only hold 1024 

training samples on 1 chip. To add more training samples, 

more chips need to be added under KNN. The RCE 

method, on the other hand, could in theory build a model 

with less than 1024 neurons even if the training set is much 

larger than 1024 samples. 

To perform classification, each RCE neuron j calculates an 

L1 Manhattan distance denoted as dj between an input 

vector x and the neuron’s learned vector uj. This distance 

can be denoted as follows: 
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where n represents the number of features per vector. For 

each RCE neuron, the calculated distance dj is compared to 

the neuron’s learned threshold. Let us denote this threshold 

as zj. The calculated distance dj is compared to the 

threshold zj. The neuron is said to fire if dj is less than zj. 

Given D to be the set of distance values from the firing 

neurons, the previous rule can be stated as: 

  

}|{ jjj zddD <=                       (2)                                                                             

 

The predicted class is then defined as the category “y” 

associated with the minimum distance neuron from the set 

D. The predicted category hypothesis can be defined as 

follows: 

Dyxh j minarg)( =                       (3)                                                                             

 

This predicted category represents the predicted class for 

the given test sample. 

Analysis and Results 

The data sets were classified using both the KNN and RCE 

methods available on the CM1K co-processor. The 

analysis was performed using the 2 data sets which are the 

NSL-KDD corpus and the 10-feature data set collected for 

this study. For each data set, a series of 10 runs was 

performed to determine the accuracy rates for both 

classifiers.  Table 2 shows the average accuracy score and 

variance for each method using the 10-feature data set. 

Table 3 shows the resulting accuracy score per individual 

run on the 10-feature data set. Each run in Table 3 and 

Table 5 was performed using 1024 training samples and 

1024 test samples. These samples were chosen randomly 

for each run from the original 10-feature dataset (Table 3) 

or the NSL-KDD corpus (Table 5). As can be seen from 

Table 2, the average accuracy score for the RCE algorithm 
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was 73.23% while the accuracy score for the KNN 

algorithm was 70.98%. 

Table 2: Statistical analysis on the 10-feature corpus 

 RCE KNN 

Average 73.23% 70.98% 

Variance 0.00940922 0.04730602 

Standard Deviation 0.09700113 0.21749947 

 
The RCE classifier appears to perform better than the KNN 

algorithm using the 10-feature dataset. It is also important 

to note that the variance for the RCE algorithm was lower 

than the variance for the KNN algorithm. Table 3 also 

shows the processing speeds per run and algorithm. From 

the results it can be seen that the KNN implementation 

appears to be slightly faster. The average testing time for 

the KNN implementation was 110342.5 milliseconds. The 

average testing time for the RCE implementation was 

110443.9 milliseconds. This shows that the required time 

to test the samples is almost the same for both methods. 

Dividing the total testing time by the number of test 

samples, we can estimate the average processing time per 1 

test sample which is around 108 milliseconds.  

Table 3: RCE and KNN runs on 10-feature corpus 

Run RCE RCE_N RCE_TIME KNN KNN_N KNN_TIME 

1 76.76% 3 110249 71.68% 1024 110163 

2 82.03% 3 110112 80.66% 1024 110261 

3 83.59% 3 110207 85.35% 1024 110453 

4 63.78% 5 110003 30.37% 1024 110446 

5 85.44% 4 110075 87.21% 1024 110463 

6 77.54% 3 110136 87.40% 1024 110240 

7 61.82% 3 111890 87.79% 1024 110335 

8 58.89% 3 111331 77.25% 1024 110322 

9 66.31% 3 110177 32.91% 1024 110486 

10 76.17% 3 110259 69.14% 1024 110256 

 

Table 3 also shows the number of neurons that fired to 

perform classification under each method. As can be seen, 

RCE on average required no more than 3 fired neurons to 

perform the classification. The time values in Table 3 are 

expressed in milliseconds.  

Finally, to get a better understanding of the methodologies, 

the experiment was repeated using the NSL-KDD intrusion 

detection corpus (Tavallaee et al. 2009). The results are 

presented in Table 4 and Table 5. 

Table 4: Statistical Analysis on NSL-KDD corpus 

 RCE KNN 

Average 70.44% 83.07% 

Variance 0.015135246 0.007278273 

Standard Deviation 0.123025387 0.085312794 

 

As can be seen in Table 4, on average the KNN method 

performed better than the RCE method. This result is 

different from the results obtained using the smaller 10-

feature data set from Table 2 and Table 3. The variance of 

the RCE methods appears to be larger than the variance of 

the KNN method. As a result, it appears that the KNN 

method obtained more consistent results. Given that the 

NSL-KDD runs were randomly extracted from non-

overlapping sections of a much larger corpus, it is possible 

that these results are more representative of the true state of 

the data. However, it can be argued that both methods 

performed well. Finally, the speed performance across both 

data sets appears to be consistent. This shows that using 

more features (within the constraints of the cognitive 

processor) did not affect performance speeds. 

Table 5: RCE and KNN runs on NSL-KDD corpus 

Sample # RCE RCE_N RCE_TIME KNN KNN_N KNN_TIME 

1 79.39% 2 123728 87.01% 1024 123195 

2 58.40% 3 123522 59.67% 1024 123500 

3 79.59% 2 123853 87.40% 1024 123146 

4 50.88% 7 123188 84.86% 1024 123430 

5 57.91% 2 123662 86.72% 1024 123505 

6 80.57% 2 123824 84.47% 1024 123338 

7 79.88% 5 123362 88.77% 1024 123691 

8 80.66% 3 123611 81.05% 1024 123448 

9 58.30% 2 123678 83.40% 1024 123426 

10 78.81% 2 123974 87.30% 1024 123286 

Conclusion 

As a result of this study, it seems that the use of a 

hardware-based machine learning cognitive processor for 

network intrusion detection holds promise. Using the 10-

feature corpus, the average accuracy score for the RCE 

method was 73.23% and 70.98% for the KNN method. The 

variance for RCE was 0.0094 and 0.0473 for KNN. For the 

10-feature corpus, the RCE implementation performs 

slightly better than the KNN implementation and the 

results seem to be more consistent. In contrast, using the 

NSL-KDD corpus, KNN performed better than RCE. It is 

difficult to determine why the results were opposite. It is 

possible that they are a result of the intricacies of 2 

different datasets. However, the NSL-KDD corpus is larger 

and uses more features (41), and as a result the samples 

drawn from it were more diverse. Additionally, it can be 

noted that with more features, the KNN method performed 

better. Although the RCE method performed worse than 

KNN using the NSL-KDD corpus, it is important to note 

that for a low powered, low cost IDS system, being able to 

use only 1 chip to build complex classification models is a 

great advantage. The KNN algorithm may require more 

neurons and hence more chips to perform the same job. 

Future work will focus on collecting additional features for 

the 10-feature data set and on collecting more samples. 
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Additionally, future work will focus on comparing the 

hardware-based KNN and RCE implementations of the 

CM1K to software-based implementations of the 

algorithms using standard PC processors. This analysis will 

be performed for both classification accuracy and speed 

performance.  
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