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Abstract

The mining of sequential patterns in environment sensor
data is a challenging task. Most of sequential mining
techniques requires periodically complete data. Further-
more, this kind of data can be incomplete, present noises
and be sparse in time. Consequently, there is a lack of
methods that can mine sequential patterns in sensor data.
In this paper, we proposed IncMSTS, an incremental
algorithm for mining stretchy time patterns. The pro-
posed algorithm is an incremental version of the MSTS,
a previous not scalable algorithm that mines stretchy
time patterns in static databases. The experiments show
that IncMSTS runs up to 1.47 times faster than MSTS.
When compared to GSP, the literature baseline algorithm
for mining frequent sequences, IncMSTS can return 2.3
more sequences and the returned sequences can be 5
times larger, indicating that the sparse time analysis pro-
moted by IncMSTS broadens the mining potential of
finding patterns.

Introduction

The task of sequential mining in environment sensor data
is a difficult issue because of their spatio-temporal, incom-
pleteness, noisy and sparse characteristics. In general, we
have the presence of time sparse patterns, presenting time
gaps inside. These patterns are not detected by traditional
sequential mining techniques.

The first algorithm that mines sparse patterns in sensor
data was MSTS (Silveira Junior, Prado Santos, and Ribeiro
2013). The MSTS algorithm works varying the time analysis
of the sequences occurrences and performing a greedy scan
in the data space to search for patterns. Consequently, MSTS
has a high computational cost. In fact, the mining of patterns
in flexible time scale requires increasing the searching space
of the mining algorithm, making it almost unfeasible to work
with real applications, e.g. sensor data monitoring, which
requires online analysis of periodically incremented data. In
this paper, we increase the applicability of the MSTS algo-
rithm, speeding up its performance in a incremental manner,
allowing it to analyze real sensor data.
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Background and Related Work

A sequential pattern is a sequence of events (itemsets) ! that
keeps an order among their occurrences. Let’s consider a se-
quence s =< 177 .. .1, > wWhere i is an itemset (a nonempty
set of items that happen together), n > 2 and 7,1 precedes
iy for 1 < k < n. s’ is a sub-sequence of s (s < '), if and
only if, for all itemset i, € s, an 7), € s’ where i} C .
The traditional sequential mining algorithms usually separate
the sequences in frequent and non-frequent ones. The fre-
quency of a sequence is called support, it can be calculated

as su O’I”t(S) _ |number of occurrence of s|
pp " |number of sequences on the database|

has a value between zero and one ([0; 1]) (Huang 2009). If
support(s) is equal or greater than a minimum support value
(minSup) set by the user then the sequence s is considered
frequent.

Incremental Data Mining is a technique that aims to avoid
reprocessing the whole database every time the data is up-
dated (Chiu et al. 2011). It shows good performance results
working in data streams (that suffers constantly updates). On
the other hand, the precision of the algorithm can be degraded
because of the possibility of error propagation. The first al-
gorithm, IncSpan proposed by (Cheng, Yan, and Han 2004),
presented the Semi-Frequent Sequences strategy.

The Semi-Frequent Sequences strategy stores also semi—
frequent patterns > because they are considered promising to
become frequent after the update of the database. However,
IncSpan does not find sparse patterns and it also receives
as input a horizontal database. The proposed algorithm, In-
cMSTS, applies the Semi—Frequent Sequences strategy as
IncSpan and works with time series dataset to find sparse
patterns.

(Niranjan et al. 2011) presents Modified IncSpan. This
approach uses a new proposed structure called Patricia to
generate and organize the patterns. Such structure can han-
dle increments INSERT (sequences insertion) and APPEND
(new items insertion). The Modified IncSpan presents the
same restriction of IncSpan.

In (Silveira Junior, Prado Santos, and Ribeiro 2013), the

and it

'The word “events” is sometimes used instead of “itemsets”
because “event” is more user friendly to explanations focusing in
the application domain.

%A semi-frequent pattern has its support value in [minSup x
d; minSup] where d-value (in [0; 1]) is set by a domain expert.



concept of Stretchy Time Patterns (STP) extraction is intro-
duced. In this paper, the window-based mining strategy of
IncMSTS was presented.

The Proposed Algorithm: Incremental Miner of
Stretchy Time Sequences

The Incremental Miner of Stretchy Time Sequences (In-
cMSTS) algorithm is a new incremental algorithm that
finds Stretchy Time Patterns (STP). IncMSTS is based on
MSTS (Silveira Junior, Prado Santos, and Ribeiro 2013). STP
is a pattern that presents time gaps between its events (sparse
pattern) and it is defined by Equation (1), where i .. .14,
are itemsets (not necessarily disjoint) and Aty ... At, 1 are
time gaps.
s =<1 Aty iy ... Atn—l Ty > (1)
For each occurrence occ of a sequence s, the total of time
gaps cannot be greater than p (Maximum Time Gap Size —

parameter set by user), i.e. | 2;11 At9e] < p.

The IncMSTS algorithm, presented in Algorithm 1, re-
ceives as input: (i) Set of data increment db, which is the data
increment that the dataset has received, if it is the first time,
db will be the whole dataset. (i) Minimum support value
minSup that defines the frequent patterns. (iii) Maximum
Time Gap Size p that defines how sparse a pattern can be.
(iv) ¢ value that defines the semi-frequent patterns. (v and vi)
Old frequent and semi—frequent patterns, fs and sfs.

IncMSTS finds the frequent itemsets in the data increment
(line 1) and then these itemsets rebuild the old frequent and
semi—frequent patterns (line 2). The rebuilding of the old
pattern consists in marking their occurrences in the data in-
crement db, if it is the first time the dataset is processed this
step is not executed. The data increment db are mined aim-
ing to find new frequent patterns (line 3 up to 5); if it is the
first time the dataset is processed this step finds the frequent
and semi-frequent patterns. Then the old knowledge (fs and
sfs), which is rebuilt to the new dataset, is mined (line 6
up to 15) — if there is no old knowledge it is not executed.
To process the old knowledge, the support of each pattern is
recalculated (line 7) considering the old occurrences and the
new ones. Then, if the new support is equal to or greater than
minSup X 4, i.e. the pattern is at least semi—frequent (line
8 up to 14), it is rechecked (line 9): if the pattern remains
frequent, it is generalized (line 10), otherwise it is added in
the new semi-frequent set (line 12).

The generalize function is called twice in Algorithm 1,
at lines 4 and 10. The function generalize is presented by
Algorithm 2. Its inputs are: a pattern p that will be general-
ized, dataset db, minimum support value minSup, size of
maximum time gap p and § value. The outputs are: set of
generated frequent patterns and the semi-frequent patterns.

generalize finds the frequent itemsets in the dataset db (line
1). Then the algorithm combines pattern p with each frequent
itemset (line 3 up to 14). The support of each combination is
calculated (line 5) and the combination is sorted into semi-
frequent (line 10), frequent (line 8) or non-frequent (the latter
combination is discarded). The frequent combinations go to
the Result set and, in another iteration of the loop at line
3, the combinations are recombined (with frequent itemsets)
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Algorithm 1: The Incremental Miner of Stretchy Time
Sequences Algorithm.

Input: Set of data increment db, min Sup, u, 6, set of frequent sequences f s, set of
semi-frequent sequences s f s.

Output: Set of patterns C, set of semi—frequent patterns.
1 C «+ {frequentitemset} € db;

/* Recreating the old pattern using the data increment. */
2 renewPatterns(fs|J sfs, db);

/* Finding new patterns in the data increment. */
3 foreach patternp € C do
4 | C <+ CUgeneralize(p,db, minSup, p,5):
5 end

/+ Updating old patterns. */
6 foreach patternp € fs|Jsfsdo
/* Calculating support considering the data increment. */
numberofOccurence(p) .

7 Supp Total of sequences

/* Classifying patterns in frequent or semi-frequent. */
8 if supp > minSup X § then

9 if supp > minSup then

10 ‘ C « ClJgeneralize(p, bd, minSup, p, 6) ;

11 else
12 \
13 end
14 end

15 end

addingSemiFrequent(p) ;

Algorithm 2: The Generalize Function algorithm.

Input: Pattern p, dataset db, minSup, p, §.
Output: Set of patterns derived from p Results, semi—frequent patterns.
1 Itemsets < {frequent itemsets} € db:
2 Result «+ {p}:
/% Combining pattern and frequent itemsets,

and cheking

support. */
3 foreach pattern p’ € Result do
4 foreach itemset . € Itemsets do
/% Calculating support of < p’ ¢ >. */
X checkingOccurrence(p’ 1, 1) .
5 supp Total of sequences ;

/* Sorting < p/ ¢ > in frequent and semi-frequent. x/
6 if supp > minSup X § then

7 if supp > minSup then

8 Results + Results J{p’ Ut} ;

9 else
10 ‘ addingSemiFrequent(p’ Jt);
11 end
12 end
13 end
14 end

trying to create bigger sequences. In this way, all patterns
whose prefix is pattern p are generated. The generalize proce-
dure ends when no pattern in Result can generate a bigger
pattern.

The function checkingOccurrence is called by Algorithm 2
(line 5). Function checkingOccurrence implements Strechy
Time Window (STW) method from MSTS algorithm. The
noisy data can be solved by STW because the noise can be
considered as moments where nothing happens; time gaps.

STW method uses the parameter p, which defines the
maximum size of a time gap. The STW algorithm and an
example are presented in (Silveira Junior, Prado Santos, and
Ribeiro 2013).

An optimal window size depends on the domain that In-
cMSTS is being applied. The setting of x value is made by a
domain expert. IncMSTS assigns flexibility to the algorithm
and can be used in any domain that takes advantage of its
features, i.e. inconsistent and incremental behavior data. As
shown by the experiments, the window size does not have a
critical role in the performance of the algorithm.

The IncMSTS algorithm has a quadratic complexity in
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Figure 1: Example of IncMSTS running in an incremental
dataset that has received three increments.

function of the size of the dataset (©(n?), where n is the
number of tuples in the dataset), as well as GSP, MSTS and
any GSP base algorithm. The performance improvement hap-
pens because the incremental technique eliminates the need
of reprocessing the whole dataset when it is an evolutionary
dataset, i.e. fewer tuples are processed.

Examples of IncMSTS Processing

Consider the situation presented in Figure 1: it is the original
data set (Dataset) composed by 4 tuples. The data have suf-
fered two data increments (Increment 1 and Increment 2).
Increment 1 inserts 4 tuples and Increment 2 inserts 5 tu-
ples in Dataset. To perform the explanation of this example,
consider 1 = 2 (the value of the maximum search window is
2 time units) and § = 0.5 (to be considered a semi-frequent
pattern, its support value should be greater than or equal half
of minimum support value).

Now consider the situation without any increment. Con-
sider stretchy time pattern p =< (A B) (D E) > that is
frequent with any p > 1 because it has happened once (at
tuples timestamps {1, 3}) and there is a time gap in this oc-
currence (at tuple timestamps 2). Stretchy time pattern p’ is
composed by pattern p @{F'} (pattern p concatenated item
F). So the goal is to find in Dataset occurrences of {F'}
that happen after the occurrences of pattern p and are covered
by Search Time Window (method STW). The method STW
receives the pattern p and the item F'. As it was explained in
STW algorithm (Silveira Junior, Prado Santos, and Ribeiro
2013), to the only occurrence of pattern p in Dataset, the
size of Search Time Window is one time unit (because there
is a time gap in the occurrence of pattern p and the Maximum
Search Time Window is two time units). That way, the algo-
rithm searches for the occurrence of itemset { F'} in the next
“size of Search Time Window” tuples after the pattern p occur-
rence (in this case, just the next tuple whose timestamps is 4).
So, at tuple 4, the algorithm finds F and, then, the pattern p’
is considered frequent. Finally, IncMSTS returns the patterns
p and p’ both frequent.

After the Increment 1 of data the support of the frequent
and semi-frequent pattern are rechecked. Considering that,
with increment of data, a frequent pattern should happens
twice and a semi-frequent pattern should happen just once.
Algorithm 1 finds the old patterns p and p’ in the new data
(Increment 1). There is an occurrence of pattern p in the
tuples {5, 6}, although there is no occurrence of pattern p'.
This process uses STW method because the new occurrences
can be sparse too. As pattern p happens twice (one time in the
Dataset and another time in the Increment 1), it is consid-
ered frequent and still at F'S (set of frequent sequences). As
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Figure 2: Performance comparison between IncMSTS and
MSTS with the evolution of the dataset.

Table 1: Example of patterns found in the database without
increment.

Label | Pattern | Support
s1 | < (Rainfally Dischargey) (Rainfally Dischargey)Rain_
fallyDischargey Discharge, Dischargey Dischargey > 0.06
so | < (Rainfally Dischargey) RainfallyRainfally
(Rainfally Dischargeg)Discharges Dischargeg > 0.06

pattern p’ has happened just one time (just in the Dataset);
it is considered semi-frequent; it is removed from F'S and
added in SF'S (set of semi-frequent sequences). Thereby
IncMSTS returns just the pattern p in this iteration.

With the last increment of data (Increment 2), the sup-
port of the frequent and the semi-frequent sequences are
rechecked. Considering that a frequent pattern should hap-
pen twice and a semi-frequent pattern should happens just
once, as the situation of Increment 1. IncMSTS recreates
the old sequences (F'S|JSF'S) using the data increment
(in Increment 2). As function renewPatterns (Algorithm 1,
line 2) also implements STW method, it can find sparse
occurrences of the patterns in the data increment. So pat-
tern p happens in tuples {9, 11} with a time gap (tuple 10)
and pattern p’ happens in tuples {9, 11,13} with two time
gaps (the maximum allowed by p parameter). That way, p
happens three times (twice in Dataset | J Increment 1 and
once in Increment 2) and it is considered frequent. Further-
more, the semi-frequent sequence p’ happens twice (once in
Dataset| ) Increment 1 and another time in Increment 2)
and it is promoted to a frequent sequence. Therefore IncM-
STS returns the patterns p and p’ as frequent.

Experiment and Results

We performed several experiments to validate our proposed
approach, but here we present the ones performed with the
same dataset employed in (Silveira Junior, Prado Santos, and
Ribeiro 2013) for keeping consistence between both works.
Furthermore, either pre—processing step or input configura-
tion (1 = 15 weeks, minSup = 5% and 6 = 0.5) still the
same.

The performance comparison is presented in Figure 2,
IncMSTS has performed faster (until 1.47 times) than MSTS.
Empirical comparison shows that IncMSTS returns the same
MSTS sequence. Thus, IncMSTS has 100%-precision value
as MSTS because both algorithms make full scan search over
the data. As example, Table 1 presents an example of two
STP’s; Table 2 and Table 3 present the evolution of these
patterns because of data increase.

The first pattern in Table 1 is s;, whose support value is
0.06. This pattern starts the double happening of the itemset
(Rain fally Dischargey) that are followed by the measure



Table 2: Example of patterns found in the database after the
first increment.

Label | Pattern Support
s1.1 | < (Rainfally Dischargey) Rain fally Discharge, > | 0.05
s1.2 | < (Rainfally Dischargey) Discharge; > 0.07
s2.1 | < (Rainfally Dischargey) Rainfally Dischargeg > | 0.07

sny ‘ < Discharger Rainfally (Rainfalls Dischargeg) > ‘ 0.03

Table 3: Example of patterns found in the database after the
second increment.

Label | Pattern Support
s1.1.1 | < (Rainfally Discharge,) Rainfally > 0.0512
s1.2 | < (Rainfally Dischargey) Discharge, > 0.0598
s2.1 | < (Rainfally Dischargey) Rainfally Dischargeg > 0.059
(

SN ‘ < (Rains Discharges Autumn) (Rains Discharges) > ‘ 0.008

Rainfally (no rain) and twice the measure of Discharge;
(discharge of Feijdo River value in [2.13;2.62)) all sepa-
rated. After that, it happens Discharges (discharge value
in [3.0514;3.3171)) and Dischargeq (discharge value in
[1.6157;2.13)). Between all itemset could exist At’s. And
for each occurrence of s;, the [22:1 Atg] < p, it means
that the value of any At, (0 < p < k) can be different for
each occurrence of the pattern.

Pattern s, in Table 1, is a 6-sequence (it has
six itemsets) whose support is 0.06. s =<

(Rainfallyg Dischargeg) Aty Rainfally Aty Rainfally Ats
(Rainfally Dischargeg) Aty DischargeyAts Dischargeg >.

Both patterns presented in Table 1, s1 2 evolved to smaller
patterns with the first increment of data. Table 2 brings the
evolved patterns; pattern s; evolves to patterns s1.1 and s1 2
and pattern s, evolves to pattern ss ;.

The pattern s1 1, Table 2, is originated from pattern s;.
Pattern s; is not frequent with the increment. However,
its sub-pattern s ; is frequent, albeit with lower support
value. The pattern s; o also originated from pattern s; and
it is a 2-sequence whose support is higher than s; support
(support(s1.2) = 0.07).

Pattern s5 1 (Table 2) evolved from pattern sy (Table 2).
so.1 presents fewer itemsets (it is 3-sequence), with higher
support values.

The pattern sn; is called Current Pattern (CP). This pat-
tern reached the minimum support if only the tuples of last
database increment is considered. Such patterns may show
a new trend of the dataset that must be observed. In the first
runtime, all patterns mined are current patterns.

sny =< Discharge; Aty Rainfalls Aty (Rainfalls
Dischargeg) > whose support is 0.03 less than minSup
but it would be superior if just the increment were mined.

Pattern s;.1.1 (Table 3) evolved from pattern s; 1 (Ta-
ble 2). s1.1.1 lost the s1.1 last itemset Discharge; and
increased its support value (0.0512). With the second in-
crement, sj.1 iS no more frequent, although s; 11 (sub-
pattern) remains frequent. The patterns s; o and so 1, pre-
sented in Table 3, have not suffered any evolution with the
second data increment and they are still frequent (from Ta-
ble 2). However, their support values have been decreased:
s1.2 decreased 14.57% and so; decreased 15.71%. The
CP sny (Table 2) ceases to be frequent after the incre-
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ment in the dataset. A new CP happens with the second
increment, sns, presented in Table 3. sns is the sequence
< (Rainfalls Discharges Autumn) Aty (Rain falls
Discharges) > whose support value is 0.8%. It means that,
considering only the increment, sny is frequent (its support
value is greater or equal than min.Sup), although consider-
ing all the sequences, snq is not frequent (support less than
minSup).

Conclusions

The sequential patterns extraction in environment sensor
datasets is achallenge. The domain present its own charac-
teristics, e.g. spatio—temporal data, periodic increments of
data, noises and patterns that can present time gaps between
events (sparse patterns). These datasets contain knowledge
that can be extracted by a data mining algorithm. However,
there is no state of art algorithm that considers all these
particular characteristics. Hence, we proposed the Incremen-
tal Miner of Stretchy Time Sequence (IncMSTS) algorithm
that implements the method Stretchy Time Windows (STW).
STW is used to mine patterns in datasets with noises; the
noise are considered as common time gaps. The IncMSTS
algorithm implements incremental data mining technique
that stores semi—frequent patterns. This technique improves
performance in incremental datasets. Our experiments have
shown that IncMSTS returns sequences up to 5 times larger
and up to 2.3 times in higher number than GSP algorithm.
Furthermore, IncMSTS could run 1.47 times faster than its
non-incremental version (MSTS).
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