
Computational Notebooks for AI Education

Keith J. O’Hara
Computer Science Program

Bard College
Annandale-on-Hudson, NY

kohara@bard.edu

Douglas Blank
Computer Science Department

Bryn Mawr College
Bryn Mawr, PA

dblank@brynmawr.edu

James Marshall
Computer Science Department

Sarah Lawrence College
Bronxville, NY

jmarshall@slc.edu

Abstract

Computational notebooks are documents that serve dual
purposes: they serve as an archive format containing
code, text, images and equations; but they can also be
run like computer programs. This paper explores the use
of these new computational notebooks to teach AI and
introduces tools that we have developed — ICalico and
Calysto — to facilitate that use. Not only do these new
tools broaden the languages and contexts available to
students exploring notebook-based AI computing, but
they offer a new mode of teaching and learning for the
AI classroom.

A computational notebook is a document that can be read
like a journal paper and run like a computer program. Al-
though the idea is not new, the computational notebook ap-
proach has just recently begun to be widely adopted by com-
puter science educators. For example, Peter Norvig recently
shared notebooks on the web presenting topics in Artifi-
cial Intelligence such as the Traveling Salesperson Problem
(TSP, see Figure 1). A new computational notebook system,
called Jupyter (Pérez and Granger, 2007), is being devel-
oped and appears to be an excellent medium for teaching
many topics, especially AI. This paper explores the use of
these new computational notebooks to teach AI and intro-
duces tools that we have developed — ICalico and Calysto
— to facilitate that use. Not only do these new tools broaden
the languages and contexts available to students exploring
notebook-based AI computing, but they offer a new mode of
teaching and learning for the AI classroom.

Jupyter Computational Notebooks
This paper focuses on the use of the Jupyter computa-
tional notebook project. The Jupyter system itself evolved
from the IPython project (Pérez and Granger, 2007). Orig-
inally, IPython was just a better console-based read-eval-
print loop for Python—it had many conveniences for pro-
gramming including command-line history, command com-
pletion, and a set of built-in macros called “magics.” How-
ever, in the last few years, IPython has evolved into a vast

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

client-server architecture for running Python programs. Re-
cently IPython was expanded to allow any language to be
used, and the Jupyter project was born. Jupyter has three
language-agnostic clients, or frontends, in which users can
enter and edit code and text. There is a plain-text frontend,
called “console” and a graphical frontend, called “qtcon-
sole”. However, the frontend of interest to us is the web-
based frontend, called “notebook”. The notebook client al-
lows users to combine code, text, images, videos and math-
ematical equations (via LATEX), in a web browser. In addi-
tion, graphs and plots produced by code appear directly in
the browser. Finally, not only do Jupyter notebooks provide
the live, interactive interface for a running programming lan-
guage, but can also serve as a static, archived view of the
document. In that manner, a notebook can be rendered in a
manner that allows it to be viewed by anyone (see Figure 1).
This makes notebooks serve a dual-purpose: they are the di-
rect interface to the computational engine, and also serve as
a well-formatted archive of that computation.

Although Jupyter has not been released as of this writ-
ing (January 2015) it is slated to be released in the next few
weeks. We have been developing, exploring, and teaching
with a pre-released version of Jupyter, and find it to be a
useful tool in the classroom. To facilitate its use in courses
such as AI, we have developed additional tools. First, we
have expanded the list of languages that can be used to in-
clude Prolog, Java, and Scheme (among others). Secondly,
we have added additional features to these languages to
make their use in the AI classroom especially effective. For
example, we have added non-deterministic backtracking to
Scheme. Finally, we have developed libraries for integra-
tion into projects such as ROS, the Robot Operating System.
These extensions will be discussed below.

Because Jupyter’s notebook interfaces with a program-
ming language through a web browser, one can run pro-
grams over the web. The Jupyterhub1 project does exactly
that: it allows users to login, create notebooks, and execute
code on a remote server. With some caveats (discussed be-
low), this is a very useful manner of managing classroom
materials. For example, it allows students to begin work-
ing immediately without having to install anything. In ad-
dition, getting all of the packages installed for running AI

1https://github.com/jupyter/jupyterhub

263

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference



Figure 1: Peter Norvig’s TSP exploration using a computa-
tional notebook. The document can be downloaded and run
by anyone using the Jupyter system. http://nbviewer.ipython.org/url/
norvig.com/ipython/TSPv3.ipynb

experiments can be tricky. Having a server-based solution
means that the system can be set up once for all students
to use. Although it does require a server, the requirements
and set up are fairly minimal. However, for classes with a
large number of students, computational resources may be
a concern. If the computational requirements are minimal,
one could expect a standard desktop computer could sup-
port many dozens of students. One could also consider hav-
ing students use a system like SageMathCloud (Stein, 2014);
however, you can’t control a student’s environment (they

would need to install and configure all required libraries),
and there could be extensive lag in processing.

We have explored four uses for these computational note-
books in the AI classroom: 1) Lectures/Discussions; 2)
Readings/Flipped classroom; 3) Homework; and 4) Exams.
Using notebooks (instead of presentation software) with a
digital projector can be quite effective for lectures and dis-
cussions. There is a fairly low bar for this use: one simply
needs to create the notebook as one works, and use it as the
basis for a lecture/discussion. There are three options for lec-
tures: use a static version of the notebook (like those shown
in Figure 1); use a notebook connected to a live language
backend with outputs precomputed; or use a live notebook
with no output data shown. One can also export the note-
book as an HTML slideshow. Exporting to HTML has two
options: shown as a static, pre-rendered HTML page; or a
slideshow connected to a live computational engine (called a
“kernel”). These slideshows have all of the glitter of modern
presentation software, such as animated transitions. How-
ever, one can also run code in them as well. Ensuring that
lectures are exactly reproducible reduces any discrepancies
between old-style lectures and code, making an easy path
for the student to duplicate the demonstration.

Because the notebook is also executable, using well-
written notebooks as out-of-classroom readings fits in very
well with the notion of the “flipped classroom” (Bergmann
and Sams, 2012). The flipped classroom is a teaching phi-
losophy that replaces lectures with classroom discussions,
moving the lecture material to be consumed outside of the
classroom. Typically, outside classroom activities include
prepared videos, or reading chapters from a textbook. In-
class time often revolves around discussions or hands-on ac-
tivities. We have found that computational notebooks can
also be used as material for the outside classroom activity.

Requiring students to create notebooks for homework is
a useful method to instill literate computing. Literate com-
puting is a term coined by Fernando Pérez (2013). We take
literate computing to be substantially different from its un-
cle, “literate programming” (Knuth, 1992). The focus of lit-
erate programming is to document a program. In this man-
ner, it is an inward-facing document, designed to explain it-
self. On the other hand, literate computing is meant to focus
on the computational goals, rather than on the specific de-
tails of the program. The goal of literate computing is not to
explain the workings of a program to programmers, but to
explain a computational problem to a wide audience. Liter-
ate computing does not subsume literate programming — it
is something altogether different. Thus the goals of literate
computing align very well with the goals of student writing
in the college environment.

Using notebooks as the method for examinations has had
mixed results, and warrants further study. Like any on-line
computational exam, students can get bogged down on the
details of any single problem. However, if one is in an en-
vironment that supports “take home” exams, that can allevi-
ate in-class limited time pressures. Even allowing for that,
students have reported that they often work in a non-linear
fashion, and it can be hard to keep track of which problems
on a test have been completed, and which ones are left to

264



&DOLFR
,'(

6FULSWLQJ�
(QJLQH

S\WKRQ
VFKHPH
UXE\
MDYD

&RQWH[W�
0RGXOHV

0\UR
3URFHVVLQJ
0\526

,3\WKRQ�
1RWHERRN

,3\WKRQ�
TWFRQVROH

,3\WKRQ�
FRQVROH

5RERW�2SHUDWLQJ�
6\VWHP��526�

,3\WKRQ�NHUQHO

,&DOLFR

=04�0HVVDJLQJ�%XV

Figure 2: The Architecture of ICalico: integrating Calico, Robot Operating System (ROS), and IPython/Jupyter.

complete. Automatic grading of code is a project under de-
velopment2, and could be used at least for homework assign-
ments.

ICalico and Calysto
Calico is a .NET/Mono-based software framework that in-
cludes a stand-alone Integrated Development Environment
(IDE) for writing programs in a number of programming
languages using a variety of libraries (Blank et al. 2012). It
is designed to support the beginning student, provide appro-
priate scaffolding as students develop computational skills,
continue to support them as they gain more experience, and
provide assistance to teachers to help make them more effec-
tive. Calico is designed to support a smooth continuum from
beginner to expert. ICalico makes the Calico languages and
libraries available to Jupyter. The ICalico architecture is vi-
sualized in Figure 2.

There are a variety of languages supported in ICalico, in-
cluding Python, Java, Scheme, Logo, Basic, Ruby, F#, and
Boo (similar to Python, but with types and macros). All of
these languages are treated as dynamic languages, allow-
ing students to interactively enter code snippets and incre-
mentally develop programs. In addition to a particular lan-
guage’s standard libraries, ICalico also contains a number of
additional language-agnostic libraries. For example, ICalico
comes with a rich library for exploring introductory robots,
called Myro. The Myro library allows students to control
a real or simulated robot, take pictures, do image process-
ing, make the robot speak, go through a maze, draw a pic-
ture, etc. (However, to use a real robot requires a student to
run the notebook locally, rather than on a server.) ICalico
also contains libraries for making artwork, creating graph-
ics games and physics simulations, exploring GIS, develop-
ing distributed systems, connecting to the Arduino (Banzi,
2008), accessing the Kinect, and many other libraries.

2https://github.com/jupyter/nbgrader

Building upon the Myro module, ICalico includes a pro-
totype module for the Robot Operating System3 (ROS)
called MyROS (described below). MyROS provides two
main functions: it makes ROS available to all of the ICalico
languages, and it handles much of the complexity for start-
ing ROS-based servers. The effect is that users gain access
to sophisticated robotics (real and simulated) and much pre-
packaged, sophisticated functionality (such as face recogni-
tion) without having to wrestle with irrelevant system de-
tails.

The Calysto project takes all the Python-based com-
ponents from Calico and makes them available without
the .NET/Mono framework. This allows Calysto-based lan-
guages and libraries to use standard CPython-based li-
braries, such as numpy and matplotlib. To make our Calysto-
based languages have the same kind of utility that Python
has in IPython, we have worked with other open source
developers to create metakernel4. Metakernel adds magics,
command completion, command-history, shell access, par-
allel processing support, and more to Calysto-based lan-
guages. Thus, students can use parallel processing with Ca-
lysto Scheme and Calysto Prolog. The following sections
describe how one can explore topics in AI through Jupyter
notebooks.

Non-Determinism and Search
As part of the Calico project, we developed a version of the
Scheme programming language. Our Scheme is written in
Scheme, and can be converted to run on either .NET/Mono
or Python. The .NET/Mono version (Calico Scheme) can
use native Common Language Runtime (i.e., Windows) li-
braries, whereas the Python version (Calysto Scheme) can
use native CPython libraries (e.g., numpy, matplotlib). One
interesting aspect of our Scheme is that it has a non-
deterministic choose function built into the language (see

3http://www.ros.org/
4https://github.com/blink1073/metakernel

265



“Baker, Cooper, Fletcher, Miller, and Smith live on dif-
ferent floors of an apartment house that contains only
five floors. Baker does not live on the top floor. Cooper
does not live on the bottom floor. Fletcher does not live
on either the top or the bottom floor. Miller lives on a
higher floor than does Cooper. Smith does not live on a
floor adjacent to Fletcher’s. Fletcher does not live on a
floor adjacent to Cooper’s. Where does everyone live?”

(define floors

(lambda ()

(let ((baker (choose 1 2 3 4 5))

(cooper (choose 1 2 3 4 5))

(fletcher (choose 1 2 3 4 5))

(miller (choose 1 2 3 4 5))

(smith (choose 1 2 3 4 5)))

(require (not (= baker 5)))

(require (not (= cooper 1)))

(require (not (= fletcher 5)))

(require (not (= fletcher 1)))

(require (> miller cooper))

(require (not (= (abs (- smith fletcher)) 1)))

(require (not (= (abs (- fletcher cooper)) 1)))

‘((baker ,baker) (cooper ,cooper) (fletcher ,fletcher)

(miller ,miller) (smith ,smith)))))

Figure 3: To the right is the Scheme code necessary to solve the stated constraint satisfaction problem (Abelson et al. 1996).

Figure 3). In addition, we have incorporated a version of
Prolog (written in Python) into both ICalico and Calysto.
Both Scheme’s choose function and Prolog allow students
to easily explore logic-based, declarative programming.

Machine Learning
Because Machine Learning (ML) is heavily based on statis-
tics and many statisticians have already adopted notebook-
based computing, many ML examples are widely available
(see Figure 5). As can be seen, the visualizations depicting
ML analysis makes the notebook a nice vehicle for relaying
ML concepts and processes to the student.

Robotics and Computer Vision
Although Myro can control the Scribbler, Finch, Humming-
bird, and Arduino robots, Calico includes a prototype inter-
face to the Robot Operating System (ROS). The Robot Op-
erating System (Quigley et al., 2009) is an open source en-
vironment for building end-to-end robot applications. ROS
is rapidly becoming the standard in the robotics research
and development community. ROS abstracts away the de-
tails of interfacing with hardware and provides many stan-
dard algorithms. Our ROS module allows students to easily
access and configure ROS nodes from Windows, Mac, and
Linux. Traditionally, development of ROS programs meant
students must work inside Linux using C++, Common Lisp
or Python. In addition to a wide variety of robotics hardware
platforms, ROS provides higher-level software capabilities,
like computer vision routines, robot localization and naviga-
tion, and a 3D point-cloud library. ROS can be used at three
different levels within ICalico depending on the background
of the user and the intended application.

ROS robots can be made accessible via the Myro in-
terface. ROS is completely hidden at this level. Students
in a CS1 class that would like to explore computing via
simple ground robots and commercial quadcopters like the
ARDrone (see Figure 6). ROS robots can be accessed via
ROSs provided Python wrappers. However, this option only
works on Linux. Although this would not use ICalico, some
users might want to go the route of using only Jupyter and

ROS. The computational notebooks would still be useful in
this case even if the Calico back-end is not used. Or some-
where in the middle, ROS robots be accessed via MyROS,
a full-fledged visible ROS module. Although more complex
than Myro, MyROS still provides the user with a wide vari-
ety of programming languages and utilities for configuring
and maintaining ROS nodes. The various possibilities are
visualized in Figure 4.

Calico was used in a coures called (De-)Coding the
Drone. In this class, students interfaced three different types
of robots using the same Python API. The students began
with Arduino, then moved on to the Scribbler, and finally to
the Parrot ARDrone. The students used the Arduino to build
a simple streetlight and telegraph. Using the Scribbler and
the ARDrone the students explored autonomous and teleop-
erated operation. Other non-robotics assignments included
an Eliza-based chatbot and a graphical avatar. Students ex-
plored all these varied contexts using the same Python-based
environment.

Notebooks are also well suited for computer vision ap-
plications, particularly as an interface to OpenCV. OpenCV,
a C++ library for state-of-the-art computer vision, provides
Java and Python APIs. Students in a 300-level class called
The Computational Image used the notebooks to explore
camera calibration5 and augmented reality6. The online tuto-
rials mix prose, mathematical foundations, images, and code
and are fertile ground for students relying on the notebook-
based approach. The students are able to recreate the tutori-
als step-by-step by writing a notebook using images and text
to document milestones as they proceed.

Computational notebooks complement and supplement
the static, read-only tutorials7 already made available by the
OpenCV and ROS communities. These tutorials already mix
prose with images and code, and are generally very good.
However, there are a number of issues with such tutorials:
a) the tutorials are not executable they require the student

5http://docs.opencv.org/trunk/doc/py tutorials/py calib3d/py calibration/
py calibration.html#calibration

6http://docs.opencv.org/trunk/doc/py tutorials/py calib3d/py pose/py pose.
html#pose-estimation

7http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics

266



5RERW�
2SHUDWLQJ�
6\VWHP

,3\WKRQ�
1RWHERRN

&DOLFR

$
&'

%

A The intersection of the three core technologies. Example: using computational note-
books to describe graph search as applied to motion planning in robotics. Various al-
gorithms are described, compared, contrasted, and then implemented in Java, Python,
or Scheme.

B IPython with ROS. Example: Students use CPython, taking advantage of scipy and
BLAS. This configuration limits the student to working in Python on Linux, but al-
lows the students to use many popular CPython libraries. Requires maintenance of
many subsystems, which could be beyond many instructors’ abilities.

C Calico backend with an IPython frontend. Example: a class taught using Java with no
robots or simple robots, as Calico supports a variety of robots without ROS. Lacks
access for exploring advanced robotics.

D Calico with ROS. Example: the Calico IDE provides a more traditional IDE, stepper,
and other debugging support. Students are unable to explore the integrated literate
computing approach for developing computational narratives and explanations.

Figure 4: Synergies between different components of ICalico.

to cut-and-paste to replicate; b) they take a long time to con-
struct and format to look good and include media and output;
c) the example code can become out-of-sync with the ROS
codebase. The approach this paper puts forth is a way to
more tightly couple code, documentation, and explanation
in a way that improves understanding of concepts through
code, and understanding of code through concepts. More-
over, rather than only ROS experts writing these tutorials,
students can be tasked with writing as well as reading tuto-
rials. By combining ROS with Calico we have the recipe for
accessible robots: many hardware platforms, rich robotics
system software, and support for many languages all with
front-ends on the major three operating systems.

Conclusion
We believe that using Jupyter, ICalico, and Calysto in the AI
classroom could have the following benefits:

• Combined with Jupyterhub, students can start quickly as
there is nothing for them to install.

• Materials previously given by lectures can be made avail-
able by notebooks, ala the flipped classroom.

• Encourages the creation of visualizations to help explain
complex topics.

• Emphasizes reproducible research and literate computing.

• Increases the availability of topics in AI through easy-to-
use interfaces.

We believe that writing with combined text, code, and
equations in the form of an executable, computational note-
book is fundamentally different from current paradigms and
worth exploring as a means of teaching advanced artificial
intelligence topics. In this paper, we identified and explored
the possible uses of notebooks in AI education. In future re-
search we plan to explore their effectiveness.

References
M. Banzi. 2008. Getting Started with Arduino. O’Reilly
Media/Make.

J. Bergmann and A. Sams. Flip Your Classroom: Reach Ev-
ery Student in Every Class Every Day. 2012. International
Society for Technology in Education.

D. Blank, J.S. Kay, J. Marshall, K.J. O’Hara, and M.
Russo. 2012. “Calico: A Multi-Programming-Language.
Multi-Context Framework Designed for Computer Science
Education.” ACM Technical Symposium on Computer
Science Education (SIGCSE).

D. Knuth. Literate Programming. 1992. Stanford, Califor-
nia: Center for the Study of Language and Information.

L. Lamport. LaTeX: A Document Preparation System, 2/E.
1994. Addison-Wesley Professional.

F. Pérez, B.E. Granger. 2007. IPython: A System for
Interactive Scientific Computing, Computing in Science
and Engineering, vol. 9, no. 3, pp. 21-29, http://ipython.org

F. Pérez. 2013. URL: http://blog.fperez.org/2013/04/literate-
computing-and-computational.html

M. Quigley, K. Conley, B.P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A.Y. Ng. 2009. ROS: an open-
source Robot Operating System, in ICRA Workshop on
Open Source Software.

R Development Core Team. 2008. R: A language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria.

W. A. Stein et al. 2014. Sage Mathematics Software. URL:
http://www.sagemath.org.

H. Abelson, G.J. Sussman, and J. Sussman. 1996. Structure
and Interpretation of Computer Programs, 2nd ed.

267



Figure 5: Examples of a Jupyter notebook on Machine
Learning by Jake Vanderplas. Students can read the pro-
duced, static notebook. More importantly they can also
download the notebook and re-run the experiments ex-
actly. http://nbviewer.ipython.org/github/jakevdp/sklearn pycon2014/blob/master/
notebooks/01 basics.ipynb

Figure 6: Flying a quadcopter drone using the ICalico pro-
totype, ROS, and Calico. Creating still photos and short an-
imated GIFs, both displayed in the browser inline with the
text and code.

268




