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Abstract

One way for an agent to deal with uncertainty about its
beliefs is to maintain a probability distribution over the
worlds it believes are possible. A belief change opera-
tion may recommend some previously believed worlds
to become impossible and some previously disbelieved
worlds to become possible. This work investigates how
to redistribute probabilities due to worlds being added
to and removed from an agent’s belief-state. Two re-
lated approaches are proposed and analyzed.

1 Introduction
Suppose an agent maintains its beliefs in a knowledge-base
(KB) of sentences. An agent’s possible worlds are simply
the models (in terms of logic) of its current KB. In this work,
we assume that an agent deals with uncertainty about its cur-
rent situation by maintaining a probability distribution over
possible worlds. When we say that a (possible) world ω
has a probability p, we shall mean that the agent believes
that there is a probability p that ω is the actual world. For
instance, you may be in a situation where you care about ex-
actly three things: whether you will receive a call on your
cellphone in the next two minutes, whether the phone’s bat-
tery will last another two minutes on standby and whether
you can reach a charging point within two minutes. There
are eight ways for these three things to be true and false and
there are various probability distributions one could attach
to the eight worlds. We shall use this cellphone scenario as
a running example throughout the paper.

We shall refer to the operations of belief revision, expan-
sion, contraction and update collectively as belief change
(Van Harmelen, Lifshitz, and Porter, 2008, e.g.). Due to
some belief change operation on a KB, the KB may gain
some models and it may lose some others. Then, in terms of
possible worlds, some worlds may be added due to a belief
change operation and some may be removed from the set of
worlds thought possible (represented by the KB).1
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1We shall not restrict how the information contained in the KB
is represented, as long as one can derive which worlds are possible
and their assigned probabilities.

In this paper, we suggest a new unified approach to redis-
tribute the probability mass of worlds in a KB resulting from
any belief change operation.

Related Work “Lewis, in the context of providing seman-
tics for conditionals, distinguished conditional probability
from the probability of conditionals (Lewis, 1976). While
employing Bayesian conditioning for the former, he devised
imaging based on similarity or closeness between worlds to
deal with the latter,” (Chhogyal et al., 2014). In particular,
imaging solves the problem of update when the evidence
Ψ is contradictory to current beliefs P (i.e., P (Ψ) = 0).
“Lewis’ use of imaging based on closeness between possi-
ble worlds offers a way to overcome this limitation in the
context of belief update (in a dynamic environment),” (Chh-
ogyal et al., 2014).

Gärdenfors (1988) proposes a method which retains the
basic idea behind imaging but that is also preservative2

“However this approach is nonconstructive, and does not re-
ally provide a way for performing probabilistic belief revi-
sion,” (Chhogyal et al., 2014).

Chhogyal et al. (2014) explore the use of imaging as a
means to construct probabilistic belief revision, while stay-
ing close to the spirit of Gärdenfors (1988)’s approach to
probabilistic belief change. Specifically, they present ex-
plicit constructions of three candidate strategies to redis-
tribute probabilities after a belief revision operation.

Although our approach makes use of the notion of sim-
ilarity or closeness between worlds, we do not use imag-
ing (with the assumption of a unique closest world for each
world). Our approach is to look at all the currently believed
worlds to inform what probabilities to assign to each world
in the new set of believed worlds, after a belief change op-
eration. Furthermore, whereas Gärdenfors (1988) and Chh-
ogyal et al. (2014) focus on revision, our approach can be
applied to belief revision and belief update.

Boutilier (1995) also presents a method for belief revi-
sion, however, in the setting where probabilistic epistemic
states are represented by Popper functions.

2A probabilistic revision function ∗ is said to be preservative
iff, for all probability functions P and for all propositions Ψ and
Φ, if P (Ψ) > 0 and P (Φ) = 1, then the probability of Φ is still 1
after ∗ is applied to P on Ψ. (Gärdenfors, 1988, p. 115)
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Kern-Isberner (2008) applies the principle of minimum
cross entropy to find the new distribution after belief revi-
sion or update. Furthermore, her work includes the notion
of conditional beliefs.

Some notation and basic definitions are covered in Sec-
tion 2. Section 3 lays the foundation of how to redistribute
probabilities when worlds are either added or removed from
the current set of possible worlds. We provide the details of
our proposed framework for probabilistic belief change in
Section 4, using the definitions developed in Section 3. We
end with a discussion of our approach and pointers to future
research. Due to limited space, all proofs are omitted.

2 Preliminaries
We’ll work with propositional logic. Let P =
{a1, a2, . . . , an} be the set of atomic propositional variables
(atoms, for short). Formally, a world is a unique assignment
of truth values to all the atoms in P . There are thus 2n con-
ceivable worlds. An agent may consider some subset Ω of
the conceivable worlds called the possible worlds.

In this work, we shall have nothing to say about exactly
which worlds should be added and removed to accomplish
a belief change operation. We assume that some well de-
fined approaches are used. For instance, in the case of belief
contraction and revision, the AGM approach (Alchourrón,
Gärdenfors, and Makinson, 1985) may be used and for be-
lief update, the approach of Katsuno and Mendelzon (1991)
may be used.

We use a pseudo-distance measure between worlds, as
defined by Lehmann, Magidor, and Schlechta (2001) and
adopted by Chhogyal et al. (2014)

Definition 2.1 A pseudo-distance function d : Ω × Ω →
Z satisfies the following four conditions: for all worlds
ω, ω′, ω′′ ∈ Ω,

1. d(ω, ω′) ≥ 0 (Non-negativity)
2. d(ω, ω) = 0 (Identity)
3. d(ω, ω′) = d(ω′, ω) (Symmetry)
4. d(ω, ω′) + d(ω′, ω′′) ≥ d(ω, ω′′) (Triangular Inequality)

The notions of distance between worlds and the worlds’
probability should not be confounded; these are two differ-
ent, but related notions: From the perspective of some world
ω, an agent is assumed to consider some (usually other)
world ω′ in Ω as having a degree of similarity, and it is fur-
ther assumed that every world in Ω can be compared to every
other world in Ω by its degree of similarity from the perspec-
tive of ω. This is what the pseudo-distance function does.
Any given pseudo-distance function is fixed for a given set
of worlds.

A world’s probability is also fixed given the current sit-
uation in which the agent finds itself. However, the likeli-
hood of worlds depends on the agent’s past actions and per-
ceptions. And if information is received or if the situation
changes, then the probability mass should be shifted around
while considering the relationships between worlds. That is,
probabilities are fixed for a particular situation, but may need
to be amended due to new information or a new situation.

Suppose you believe that exactly two worlds are possible,
ω1 with probability 0.9 and ω2 with probability 0.1. If you
are told to remove only ω1 due to some higher level rea-
soning, it might seem wrong, because ω2 is the less likely
world. In this work, we take the non-probabilistic aspect
and not the stochastic aspect of an agent’s beliefs to be pri-
mary. That is, deciding which worlds an agent should con-
sider possible/believable is assumed to be based only on
non-probabilistic considerations3. Only after a decision is
made about which worlds (if any) to add and remove, is the
probability distribution determined. We do not argue that
logical and stochastic considerations must be separate; we
separate the two aspects in this work only to simplify our
analyses. Future work may include stochastic considerations
when deciding which worlds to believe possible during a be-
lief change operation.

In this work, as in the work of Lewis (1976) and Chh-
ogyal et al. (2014), probabilistic belief change entails two
steps: (1) determine which worlds to add and remove from
the current belief-state, then (2) re-distribute the probability
mass over the new set of possible worlds (if a change oc-
curred).

A KB can be written as a single sentence k. Let [k] be
the set of models of k: [k] = {ω ∈ Ω | ω |= k}. An
expansion operation on k by information (sentence) Ψ (con-
ventionally denoted k + Ψ) has the consequence (in seman-
tic terms) of removing a (possibly empty) set of worlds R
from [k]. It is assumed that R ⊆ [k]. A contraction op-
eration on k by Ψ (conventionally denoted k − Ψ) has the
consequence of adding a (possibly empty) set of worlds A
to [k]. Here we assume that A ∩ [k] = ∅. A revision op-
eration on k by Ψ (conventionally denoted k ∗ Ψ) has the
consequence of adding (possibly empty) A to and removing
(possibly empty) R from [k]. An update operation on k by
Ψ (conventionally denoted k � Ψ) also has the consequence
of adding A to and removing R from [k]. Of course, in each
case, the content of A may be different (similarly for R). In
the case of revision and update, [k ∗Ψ], respectively, [k �Ψ]
could be accomplished by ([k] ∪ A) \ R or ([k] \ R) ∪ A
or some other series of set theoretic operations resulting in
A ⊆ [k!Ψ] and R ∩ [k!Ψ] = ∅, where ! ∈ {∗, �}.

We represent an agent’s current beliefs as a belief-state

b = {(ω1, p1), (ω2, p2), . . . , (ωn, pq)},

where pi is the non-zero probability that ωi is the actual
world in which the agent is and every world ωi appears at
most once in b. We allow a belief-state to be an empty set,
but if not empty, then

∑
(ω,p)∈b p = 1. A knowledge-base

kb extracted from b is a sentence which has the worlds in
b as models and no other models: kb is extracted from b if
and only if for all worlds ω ∈ Ω, ω |= kb iff (ω, p) ∈ b.
The belief-state after a change (after removal or addition
of worlds) is denoted b!. The set of worlds which model
a KB extracted from b will be denoted as K. We also
say that K is the set of worlds in b. In other words, if k
is the sentence representing the KB extracted from b, then

3Some pre-order on worlds may also be involved during the de-
cisions, however, our approach is independent of that information.
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K = [k]. Therefore, (i) {ω | (ω, p) ∈ b} = K, (ii)
{ω | (ω, p) ∈ b!} = K \R, if worlds are only removed from
K, (iii) {ω | (ω, p) ∈ b!} = K∪A, if worlds are only added
toK and (iv) {ω | (ω, p) ∈ b!} = (K∪A)\R = (K\R)∪A,
if worlds are added to and removed from K.

3 Redistributing Probabilities
We make the following supposition. Two worlds are more
similar the closer they are to each other. Hence, in the ab-
sence of information to the contrary, the closer two worlds
are to each other, the more similar the likelihood should be
that they represent the actual world. We use this insight to
guide the design of the methods for both cases, when re-
moving worlds from and when adding worlds to the current
belief-state. We acknowledge that many probability distri-
butions over worlds seem not to reflect this situation. For in-
stance, a given probability distribution may well have three
worlds ω1, ω2 and ω3 and their respective probabilities p1,
p2 and p3 such that ω2 is much closer to ω1 than ω3 is to
ω1, yet the difference between p1 and p3 is much smaller
than the difference between p1 and p2. However, one can
think of distance information as lying in the background of
probability information; the less informative the probabili-
ties become, the more the distances between worlds move
to the foreground. In this work, both sources of information
are used.

Whether adding or removing a world ω, our method re-
quires a notion of (inverse-)distance-based weight associ-
ated with worlds in K with respect to ω.

In the next two subsections, the foundations of our general
approach are laid. First, the method for removing worlds and
distributing probability mass is detailed. Second, the method
for adding worlds and assigning probabilities is detailed.

Removing Worlds
We consider the case when worlds are removed due to a
belief change operation. The question is, ‘How should the
probabilities of the worlds in R be distributed amongst the
remaining worlds?’

Our reasoning is the following. The closer a world ω
is to a world ω× which is going to be removed, the less
likely/probable ω is: If the agent decides that ω× is impossi-
ble, then by the supposition that two worlds are more similar
the closer they are to each other, ω should also tend towards
impossibility. By moving more of ω×’s probability p× to
worlds far away, closer worlds become relatively less likely.
Our approach is thus, for each world ω× ∈ R removed from
K, assign part of p× to a remaining world in proportion to
the removed world’s distance from the remaining world, for
every remaining world. Let S ⊆ Ω.
Definition 3.1 For ω× ∈ R and ω ∈ S,
δrem(ω×, ω, S) = d(ω×,ω)∑

ω′∈S d(ω×,ω′) .

That is, δrem(ω×, ω, S) is the normalized distance of ω×
from world ω ∈ S.

Let B be the set of all possible belief-states.
Definition 3.2 The probabilistic world removal operation
〈prem〉 : B × 2Ω → B is a function such that b〈prem〉R =

⋃
ω∈K\R{(ω, pnew) | (ω, p) ∈ b and pnew = p +∑
ω×∈R,(ω×,p×)∈b p

×δrem(ω×, ω,K \R)}.4

Note that p×δrem(ω×, ω,K \ R) is added to p for every
ω× ∈ R, where p× is weighted by δrem(· · · ). Note that
Definition 3.2 implies that if K \ R = ∅ or if b = ∅, then
b〈prem〉R = ∅.
Proposition 3.1 The probabilistic world removal operation
b〈prem〉R results in a probability distribution over K \R.

If b is a uniform probability distribution, then, in general,
b〈prem〉R is not. For instance, {(ω111, 0.25), (ω110, 0.25),
(ω100, 0.25), (ω000, 0.25)} 〈prem〉 {ω111}= {(ω110, 0.29),
(ω100, 0.33), (ω000, 0.38)}.

Suppose the set of atoms is {call, battery, charge},
where call stands for the proposition ‘Will receive call
in next two minutes’, battery stands for the proposition
‘The battery will last two minutes on standby’ and charge
stands for the proposition ‘Can reach a charging point within
two minutes’. We abbreviate worlds by their truth vectors,
where, for instance, 111 indicates that call, battery and
charge are true, 110 indicates that call and battery are
true and charge is false, and so on. We may also write
ω111, ω110, and so on. For the purpose of illustration, we
take the distance measure to be the Hamming distance dH(·)
between truth vectors. So, for instance, dH(111, 101) = 1,
dH(011, 101) = 2 and dH(111, 000) = dH(010, 101) = 3.
(Hereafter dH(·) is denoted simply as d(·).) Keep in mind
though that any distance measure conforming to the defini-
tion of the pseudo-distance function (Def. 2.1) can be used.

Suppose that the current belief-state is b = {(ω111, 0.25),
(ω110, 0.25), (ω100, 0.25), (ω000, 0.25)} (K =
{ω111, ω110, ω100, ω000}). In natural language, the
agent believes the following situations are equally likely.
A call will come in in the next two minutes, except if both
the battery will not last another two minutes and a charger
can be reached before then, and the situation in which none
of the propositions is true. And suppose that, due to new
information and some higher level reasoning, the agent
wants to remove 100 and 000 from its belief-state. This
situation can be represented pictorially as in Figure 1.

World 111 gets an extra 0.25δ(100, 111,K) +
0.25δ(000, 111,K) = 0.25(2/3) + 0.25(3/5) = 0.317
and 110 gets an extra 0.25δ(100, 110,K) +
0.25δ(000, 110,K) = 0.25(1/3)+0.25(2/5) = 0.183. The
new belief-state is thus b! = {(ω111, 0.567), (ω110, 0.433)}.

Adding Worlds
We now consider the case when worlds are added due to
a belief change operation. The question is, ‘How should
probabilities be assigned to the worlds in A and how should
the probabilities of the current worlds change?’

There are several ways to assign theA-world probabilities
and change the current worlds’ probabilities. In this paper,
we can only introduce some basic ideas and investigate one
or two intuitive and reasonable approaches. Two operators

4We usually write function signature 〈x 〉(b, S) as an operator in
infix notation: b〈x 〉S, where x and S are just place-holders here.
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Figure 1: Four worlds
in the current belief-state.
Crossed out worlds are to
be removed.

Figure 2: Two worlds
(empty circles) to be added
to two worlds in the current
belief-state.

will be defined, a simpler 〈padd1 〉 and a more sophisticated
〈padd2 〉.

Recall that when removing a world ω×, remaining worlds
closer to ω× become relatively less likely than remaining
worlds farther from ω×. When adding worlds, a similar but
opposite movement of probability mass should occur: When
adding a world ω+, current worlds closer to ω+ should be-
come relatively more likely than current worlds farther from
ω+. When removing worlds, the probabilities of the worlds
to remove are known. However, the worlds to add do not
come with probabilities, we can thus not immediately apply
the approach of redistributing probabilities as is done in the
previous subsection.

One could estimate probabilities for the A-worlds by us-
ing a method based on our supposition that two worlds are
more similar the closer they are to each other.

We shall use the notion of the inverse distance of ω ∈ K
from an added world. There are several ways to define the
inverse of a set of values, each way having slightly different
results. It is beyond the scope of this paper to investigate the
effect of each instantiation of the definition of inverse. We
choose 1/d(ω+, ω) because of its simplicity and because it
integrates well with the rest of our proposed methods: Let
S ⊆ Ω.
Definition 3.3 For ω+ ∈ A and ω ∈ S, δadd(ω+, ω, S) =

(1/d(ω+,ω))∑
ω′∈S(1/d(ω+,ω′)) .

That is, δadd(ω+, ω, S) is the normalized inverse-distance
of ω+ from world ω ∈ S.

Definition 3.4 Let

σ = 1 +
∑

ω+∈A

∑
(ω,p)∈b

pδadd(ω+, ω,K),

a normalizing factor. Operation 〈padd1 〉 : B × 2Ω → B is
a function such that if b 6= ∅, then

b〈padd1 〉A =
⋃
ω∈K
{(ω, p/σ) | (ω, p) ∈ b}

∪
⋃

ω+∈A

{(ω+, p+/σ) | p+ =
∑

(ω,p)∈b

pδadd(ω+, ω,K)},

else ∅〈padd1 〉A = {(ω+, 1/|A|) | ω+ ∈ A}.

Note that ω+ gets the proportion δadd(ω+, ω,K) of p for
every ω ∈ K (in the case b 6= ∅).

Instead of estimating the probabilities for theA-worlds by
using 〈padd1 〉, another approach is to initialize the probabil-
ities of the A-worlds to reflect the average probability of the
worlds already believed, and then adjust added worlds ac-
cording to their distances from the worlds already believed.
In other words, set the probability of every world in A to
1/|b| (= 1/|K|), or if b = ∅, then to 1/|A|. The prob-
lem is that the probability mass of the add-set cannot simply
be shifted to the current worlds—as is done when removing
worlds—because the A-worlds must remain and they still
need their probabilities. One could recover from this prob-
lem by removing the add-set in a way analogous to that of
〈prem〉, and then determine probabilities for the A-worlds
by the application of 〈padd1 〉. A removal process 〈prem ′〉
adapted for the new addition operator 〈padd2 〉 is defined
next.

Definition 3.5 Let J be extracted from b′. Operation
〈prem ′〉 : B × 2Ω → B is a function such that

b′〈prem ′〉A =
⋃

ω∈J\A

{(ω, pnew) | (ω, p) ∈ b′}

and pnew = p+
∑

ω+∈A,(ω+,p+)∈b′ p
+δadd(ω+, ω, J \A)}.

Note that p+δadd(ω+, ω, J \ A) is added to p for every
ω+ ∈ A, where p+ is weighted by δadd(· · · ) (not δrem(· · · )
as in Def. 3.2).

Next we give the formal definition of 〈padd2 〉. Algo-
rithm 1 gives the addition operation procedurally, as an aid
in clarifying the definition.

Definition 3.6 Let σ = 1 + |A|/|K|, a normalizing fac-
tor. The probabilistic world addition operation 〈padd2 〉 :
B × 2Ω → B is a function such that b〈padd2 〉A =
({(ω, p/σ) | (ω, p) ∈ b} ∪ {(ω+, 1/σ|b|) | ω+ ∈
A}〈prem ′〉A)〈padd1 〉A.

Division by σ in Definition 3.6 simulates normalization seen
at line 3 in the algorithm.

Algorithm 1: 〈padd2 〉
Input: b: belief-state, A: set of worlds to add to b
Output: new belief-state b! incl. worlds in A and their

probabilities
1 foreach ω+ ∈ A do
2 b← b ∪ {(ω+, 1/|b|)}
3 Normalize(b)
4 b− ← b〈prem ′〉A
5 b! ← b−〈padd1 〉A
6 return b!

Proposition 3.2 The probabilistic world addition operation
b〈padd2 〉A results in a probability distribution over K ∪A.
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Suppose that the current belief-state is b = {(ω111, 0.5),
(ω110, 0.5)} (K = {ω111, ω110}). In natural language, given
that the agent thinks s/he will receive a call in the next two
minutes and that the battery will last another two minutes, it
is equally as likely that s/he will be able to reach a charger
within two minutes as not. And suppose that, due to new in-
formation and some higher level reasoning, the agent wants
to add 100 and 000 to its belief-state. This situation can be
represented pictorially as in Figure 2.

We work through the example in terms of Algorithm 1.
Lines 2 and 3: b becomes {(ω111, 0.25), (ω110, 0.25),
(ω100, 0.25), (ω000, 0.25)}. Line 4: b− is set to b〈prem ′〉A
which is {(ω111, 0.43̄), (ω110, 0.56̄)}. Line 5: b! is
set to b−〈padd1 〉A which we work out in some de-
tail (cf. Def. 3.4): Initially, before normalizing, p+

100 =
p111δ(100, 111,K) + p110δ(100, 110,K) = 0.43̄(0.333) +
0.56̄(0.667) = 0.522 and p+

000=p111δ(000, 111,K) +
p110δ(000, 110,K) = 0.43̄(0.4) + 0.56̄(0.6) = 0.513.
The final, normalized belief-state is b! = {(ω111, 0.213),
(ω110, 0.278), (ω100, 0.257), (ω000, 0.252)}.

The assigned probabilities change as follows when the in-
put belief-state has a different distribution: b = {(ω111, 0.9),
(ω110, 0.1)}. Then b! = {(ω111, 0.328), (ω110, 0.190),
(ω100, 0.236), (ω000, 0.246)}. Note that even though 000
is on average farther away from the current worlds than 100,
000 is assigned a greater probability than 100. This is be-
cause worlds farther away from the current worlds tend to
get probabilities closer to the average probability of the cur-
rent worlds. In the previous example, however, 100 is as-
signed the greater probability.

4 The Belief-Change Framework
A change in belief-state may require the addition and re-
moval of worlds. A and R are determined appropriately in a
pre-processing step for the particular initial belief-state and
sentence with which to extend, contract, revise or update.

In this section, we shall propose two strategies for general
probabilistic belief change. Then we mention some philo-
sophical and technical problems that can occur.

Recall that K is the set of worlds in the current belief-
state, A is the (possibly empty) set to be added and R the
(possibly empty) set to be removed. Recall that A ∩K = ∅
and R ⊆ K (with the consequence that A ∩ R = ∅). One
more assumption is made: (K \ R) ∪ A = (K ∪ A) \ R 6=
∅, that is, after adding and removing worlds, the resulting
belief-state will contain at least one world.

In the following, when we do not distinguish between
〈padd1 〉 and 〈padd2 〉, then we write 〈padd〉.

Two obvious strategies for performing probabilistic belief
change on b to determine b!, when given an add-set A and a
remove-set R are

(1) First determine b′ = b〈padd〉A, then determine b! =
b′〈prem〉R.

(2) First determine b′ = b〈prem〉R, then determine b! =
b′〈padd〉A.

We define two belief change operators called accepting

(denoted 〈pacc〉) based on strategy (1) and rejecting (de-
noted 〈prej 〉) based on strategy (2). 5

Definition 4.1 The probabilistically accepting belief
change operation 〈pacc〉 is defined as b! = b〈pacc〉A,R if
and only if b! = (b〈padd〉A)〈prem〉R.

Definition 4.2 The probabilistically rejecting belief change
operation 〈prej 〉 is defined as b! = b〈prej 〉A,R if and only
if b! = (b〈prem〉R)〈padd〉A.

With 〈pacc〉, when the A-worlds are added, the proba-
bilities of the R-worlds (not yet removed) are used to de-
termine what probabilities to assign to the A-worlds. This
is arguably counter-intuitive, because R-worlds are about
to be removed; the R-worlds should, in effect, have zero
probability. Their probabilities should thus not influence the
A-worlds. The use of 〈pacc〉 is also affected in this way
when R-worlds are removed; part of the probability mass of
R-worlds is moved to A-worlds. This is arguably counter-
intuitive, because A-worlds do not have a historic relation-
ship with R-worlds. If one takes the stance that the assign-
ment of probabilities toA-worlds is allowed to be influenced
by the probabilities of R-worlds and that the distribution of
R-world probabilities is allowed to influence the A-worlds,
then 〈pacc〉 is acceptable.
〈prej 〉 does not have these problems, however, the case

where K \ R = ∅ when using 〈pacc〉 may be technically
undesirable / philosophically debatable.

We now look at examples involving two cases: when
K \ R 6= ∅ and when K \ R = ∅. Our two belief change
operations are applied to both cases. (〈pacc2 〉 is used for
〈pacc〉.)

Suppose that the current belief-state is b = {(ω111, 0.16̄),
(ω110, 0.16̄), (ω101, 0.16̄), (ω100, 0.16̄), (ω011, 0.16̄),
(ω010, 0.16̄)} and that A = {ω001, ω000} and R = {ω011,
ω010}. Note that K \R 6= ∅.

Using 〈pacc〉: By Definition 4.1, b′ = b〈padd2 〉{ω011,
ω010} = {(ω111, 0.114), (ω110, 0.114), (ω101, 0.130),
(ω100, 0.130), (ω011, 0.130), (ω010, 0.130), (ω001, 0.126),
(ω000, 0.126)} and b! = b′〈prem〉{ω011, ω010} =
{(ω111, 0.149), (ω110, 0.149), (ω101, 0.189), (ω100, 0.189),
(ω001, 0.162), (ω000, 0.162)}.

Using 〈prej 〉: By Definition 4.2, b′ = b〈prem〉{ω011,
ω010} = {(ω111, 0.23), (ω110, 0.23), (ω101, 0.27),
(ω100, 0.27)} and b! = b′〈padd2 〉{ω001, ω000} =
{(ω111, 0.14), (ω110, 0.14), (ω101, 0.19), (ω100, 0.19),
(ω001, 0.17), (ω000, 0.17)}.

Now suppose that the current belief-state is b =
{(ω111, 0.2),(ω110, 0.3), (ω100, 0.5)} and that A = {ω001,
ω000} and R = {ω111, ω011, ω010}. Note that K \R = ∅.

Using 〈pacc〉: b′ = b〈padd2 〉{ω001, ω000} =
{(ω111, 0.134), (ω110, 0.165), (ω100, 0.281), (ω001, 0.197),
(ω000, 0.223)} and b! = b′〈prem〉{ω111, ω011, ω010} =
{(ω001, 0.537), (ω000, 0.463)}.

Using 〈prej 〉: b! = {(ω001, 0.5), (ω000, 0.5)}.
5The names of the operators are only suggestive of the flavor

of their definitions. The names can also be used as mnemonics:
the accepting operator first adds worlds; the rejecting operator first
removes worlds.
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Note that the two operations produce different results.

The Levi identity states that revision of a sentence k by Ψ
is equivalent to first contraction of k by ¬Ψ, then expansion
of the result by Ψ (Gärdenfors, 1988). It is always the case
that the first step (contraction) results in a (possibly new)
sentence k′ such that [k] ⊆ [k′]. In other worlds, the first
step may add worlds to [k], but never remove worlds. The
second step (expansion) results in a (possibly new) sentence
k′′ such that [k′′] ⊆ [k′]. In other worlds, the second step
may remove worlds from [k′], but never adds worlds. If
belief revision were to be performed, we assume that the
add-set A and the remove-set R can be determined in some
pre-processing step. Operation 〈pacc〉 thus mirrors belief
revision translated as the Levi identity. Belief expansion,
contraction and update can also be simulated with this op-
eration. If expansion is the operation to perform, A will be
empty. If contraction is the operation,Rwill be empty. With
belief update, there may be worlds to add and worlds to re-
move, like with revision. Operation 〈prej 〉 does not mirror
belief revision translated as the Levi identity. Nonetheless,
〈prej 〉 satisfies the stance that probabilities of the add-set
and of the remove-set should be independent, while 〈pacc〉
does not.

Whereas the Levi identity defines revision in terms of con-
traction and expansion, the Harper identity defines contrac-
tion in terms of revision. Let Φ be a belief set—the set
of conjuncts of k. The Harper identity states that the con-
traction of k by Ψ is equivalent to the intersection of the
sentences in Φ with the result of the revision of Φ by ¬Ψ
(Gärdenfors, 1988). Semantically, this is adding and remov-
ing worlds due to revision by ¬Ψ, resulting in [k′], then tak-
ing [k′] ∪ [k] as the final result. In the special case where
¬Ψ is consistent with k, you would remove [Ψ] from [k] and
then add [Ψ] again (when you add the models of k; so your
result is exactly [k] again). Operation 〈prej 〉 has this se-
quence. The question in this case is, ‘Is the probability dis-
tribution obtained the same as the one started off with in our
framework?’ It turns out that, in general, b〈prej 〉[Ψ] 6= b.
An example is when b = {(ω011, 0.3), (ω010, 0.7)} and [Ψ]
is {ω010}. Then b〈prej 〉[Ψ] = {(ω011, 0.31), (ω010, 0.69)}.
Strictly speaking, the operation as used in the example above
is undefined. Recall that we assume that a pre-processing
step will determine the add-set and remove-set; moreover,
we demand that A ∩ R = ∅, which is not the case in the
special case under discussion. In our framework, one would
rather determine before hand that A = R and thus not pro-
cess b. In other worlds, we would perform the trivial process
of removing and adding nothing, so that b = b!.

5 Conclusion
Our research into this problem uncovered that whether or
not one takes a stance that the probabilities of worlds to be
added and the probabilities of worlds to be removed should
interact, makes a difference to the approach to be taken and
the resulting probability distribution of the new belief-state.
It is arguable whether the probabilities of the add-set and
remove-set should be independent or whether they need not
be.

Interpreting why 〈pacc〉 and 〈prej 〉 produce different re-
sults is left for the future. We would also like to asses which
of the two operations is in some sense the ‘better’ operation,
or which operation is better suited to which kinds of situa-
tions.

We would also like to prove or disprove the following con-
jecture. When performing the 〈pacc〉 or 〈prej 〉 operation,
the probability mass of the add-set is non-decreasing with
an increase in the probability mass of the remove-set.

An in-depth comparison of the presented framework with
the related work is still necessary. This would also including
an analysis of the presented approach in terms of the postu-
lates of belief change with respect to the axioms of proba-
bility (Gärdenfors, 1988, Chap. 5, e.g.), and in terms of the
theory of Bayesian conditioning and Bayesian update.

Update in the framework presented here is dealt with with
exactly the same processes as for belief revision, contrac-
tion and expansion. This is beneficial from the standpoint
of economy and simplicity. It also allows one to think of all
the belief change operations as part of one family, directly
comparable. However, by placing a probability distribution
over possible worlds, a belief-state may change only because
of a change in probability distribution over the same set of
worlds, due to some new information or change in situation.
Our framework does not consider this possibility. More re-
search in this direction is required.
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