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Abstract

In the era of Big Data, knowledge integration is key for
tasks such as social media aggregation, opinion min-
ing, and cyber-issue detection. The integration of differ-
ent kinds of knowledge coming from multiple sources,
however, is often a problematic issue as it either re-
quires a lot of manual effort in defining aggregation
rules or suffers from noise generated by automatic inte-
gration techniques. In this work, we propose a method
based on conceptual primitives for efficiently integrat-
ing pieces of knowledge coming from different com-
mon and common-sense resources, which we test in the
field of concept-level sentiment analysis.

Introduction
Concept-level sentiment analysis focuses on a semantic
analysis of text through the use of web ontologies or seman-
tic networks, which allow the aggregation of conceptual and
affective information associated with natural language opin-
ions. By relying on large semantic knowledge bases, such
approaches step away from blind use of keywords and word
co-occurrence count, but rather rely on the implicit features
associated with natural language concepts. Unlike purely
syntactical techniques, concept-based approaches are able to
detect also sentiments that are expressed in a subtle manner,
e.g., through the analysis of concepts that do not explicitly
convey any emotion, but which are implicitly linked to other
concepts that do so.

The bag-of-concepts model can represent semantics as-
sociated with natural language much better than bags-of-
words. In the bag-of-words model, in fact, a concept such
as cloud computing would be split into two separate
words, disrupting the semantics of the input sentence (in
which, for example, the word cloud could wrongly acti-
vate concepts related to weather). The analysis at concept-
level allows for the inference of semantic and affective in-
formation associated with natural language opinions and,
hence, enables a comparative fine-grained feature-based
sentiment analysis. Rather than gathering isolated opinions
about a whole item (e.g., iPhone 5s), users are generally
more interested in comparing different products according to
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their specific features (e.g., iPhone 5s’ vs Galaxy S5’s touch-
screen), or even sub-features (e.g., fragility of iPhone 5s’
vs Galaxy S5’s touchscreen). In this context, the construc-
tion of comprehensive common and common-sense knowl-
edge bases is key for feature-spotting and polarity detection,
respectively. Common-sense, in particular, is necessary to
properly deconstruct natural language text into sentiments
for example, to appraise the concept small room as neg-
ative for a hotel review and small queue as positive in
a patient opinion, or the concept go read the book as
positive for a book review but negative for a movie review.

Collecting and aggregating such kind of multi-source and
multi-domain knowledge, however, is a formidable task as it
requires advanced natural language processing technologies
such as information extraction, word-sense disambiguation,
and analogical reasoning. In this work, we propose a tech-
nique for integrating common and common-sense sources,
which leverages on conceptual primitives to efficiently ag-
gregate pieces of knowledge and, hence, we employ it in the
context of concept-level sentiment analysis.

The rest of the paper is organized as follows: next sec-
tion presents the different kinds of knowledge and knowl-
edge sources that need to be aggregated; the following sec-
tion describes in detail the proposed integration technique;
the third section proposes an evaluation in the context of
concept-level sentiment analysis; lastly, a final section con-
cludes the paper and suggests directions for future work.

Knowledge Sources
In standard human-to-human communication, people usu-
ally refer to existing facts and circumstances and build
new useful, funny, or interesting information on the top of
those. This common knowledge includes information usu-
ally found in news, articles, debates, lectures, etc. (factual
knowledge), but also principles and definitions that can be
found in collective intelligence projects such as Wikipedia
(vocabulary knowledge).

Moreover, when people communicate with each other,
they rely on similar background knowledge, e.g., the way
objects relate to each other in the world, people’s goals in
their daily lives, and the emotional content of events or situ-
ations. This taken-for-granted information is what is termed
common-sense – obvious things people normally know and
usually leave unstated (Cambria et al. 2009).
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The difference between common and common-sense
knowledge can be expressed as the difference between
knowing the name of an object and understanding the same
object’s purpose. For example, you can know the name of
all the different kinds or brands of ‘pipe’, but not its purpose
nor the method of usage. In other words, a ‘pipe’ is not a
pipe unless it can be used (Cambria and White 2014).

Common Knowledge Sources
Attempts to build a common knowledge base are count-
less and include both resources crafted by human experts
or community efforts, such as DBPedia (Bizer et al. 2009), a
collection of 2.6 million entities extracted from Wikipedia,
and Freebase (Bollacker et al. 2008), a social database of
1,450 concepts, and automatically-built knowledge bases,
such as YAGO (Suchanek, Kasneci, and Weikum 2007),
a semantic knowledge base of 149,162 instances derived
from Wikipedia Infoboxes and WordNet, NELL (Carlson et
al. 2010), with 242,000 beliefs mined from the Web, and
Probase (Wu et al. 2012), Microsoft’s probabilistic taxon-
omy counting about 12 million concepts learned iteratively
from 1.68 billion web pages in Bing web repository.

Common-Sense Knowledge Sources
One of the biggest projects aiming to build a compre-
hensive common-sense knowledge base is Cyc (Lenat and
Guha 1989). Cyc, however, requires the involvement of ex-
perts working on a specific programming language, which
makes knowledge engineering labor-intensive and time-
consuming. A more recent and scalable project is Open
Mind Common Sense (OMCS), which is collecting pieces
of knowledge from volunteers on the Internet by enabling
them to enter common-sense into the system with no spe-
cial training or knowledge of computer science. OMCS ex-
ploits these pieces of common-sense knowledge to automat-
ically build ConceptNet (Speer and Havasi 2012), a seman-
tic network of 173,398 nodes. Other projects that fall under
this umbrella include WordNet, with its 25,000 synsets, and
derivative resources such as WordNet-Affect.

Knowledge Integration
The aggregation of common and common-sense knowledge
bases is designed as a 2-stage process in which different
pieces of knowledge are first translated into RDF triples
and then inserted into a matrix through the use of con-
ceptual primitives. In particular, we use Shank’s depen-
dency primitives (Shank and Tesler 1969) plus SUBSUME,
ARCHETYPE and AROUSE, three primitives that we need
for categorical, analogical and affective reasoning, respec-
tively.

We use Shank’s primitives to generalize most actions usu-
ally performed by humans, animals, or agents. SUBSUME
includes subsumption relationships such as IsA, KindOf,
HasCategory, DefinedAs, and SymbolOf. ARCHETYPE
represents archetypal relationships such as HasA, HasProp-
erty, PartOf, MadeOf, and CapableOf. AROUSE includes
affective relationships such as MakesFeel, HasEmotion, and
GeneratesMood. The full list of conceptual primitives is as
follows:

1. SUBSUME: The notion of belonging to a category

2. ARCHETYPE: The notion of having canonical features

3. AROUSE: The act of making someone feel an emotion

4. PTRANS: The transfer of location of an object

5. ATRANS: The transfer of ownership or control

6. MTRANS: The transfer of mental information

7. MBUILD: The construction of new information

8. ATTEND: The act of focusing attention toward an object

9. GRASP: The grasping of an object

10. PROPEL: The application of a physical force to an object

11. MOVE: The movement of a body or bodypart

12. INGEST: The taking in of an object

13. EXPEL: The expulsion of an object

14. SPEAK: The act of producing sound

All such primitives are used to define basic relations be-
tween natural language concepts that we exploit to general-
ize more complex and opaque conceptual relationships and,
hence, obtain a more compact matrix representation of com-
mon and common-sense knowledge (Table1).

For example, a piece of knowledge such as “René
Magritte is an artist” is first translated into the RDF triple
<René Magritte - IsA - artist> through linguistic patterns.
Its confidence score is then inserted in the matrix SUB-
SUME at the row named René Magritte and column named
artist. The confidence score is either calculated according to
how many times the sentence was found in a corpus, as in the
case of Probase, or it was assessed as valid by annotators, as
in the case of ConcetpNet. Similarly, a piece of knowledge
such as “Horses have tails” becomes <horse - HasA - tail>
and, hence, is inserted in the matrix ARCHETYPE as [tail;
horse; confidence score].

The purpose of such an integration process is two-fold:
firstly, it provides a shared representation for common
and common-sense knowledge to be efficiently stored and,
hence, used for reasoning; secondly, it performs ‘conceptual
generalization’ of common relation types. Such generaliza-
tion enables the representation of pieces of knowledge in a
common framework, which allows the fusing of data from
different sources without requiring ontology alignment and
to combine data arising from multiple knowledge bases dur-
ing reasoning (Kuo and Hsu 2012).

Table 1: The SUBSUME matrix enables the semantic clus-
tering of concepts sharing the same subsumbtion features

SUBSUME artist vehicle phone man car ...
René Magritte 0.98 0 0 0.77 0 ...
iPhone 5s 0 0 0.93 0 0 ...
Leonardo 0.9 0 0 0.83 0 ...
Harley-Davidson 0 0.91 0 0 0 ...
Galaxy S5 0 0 0.8 0 0 ...
Cadillac 0 0.87 0 0 0.7 ...
Dune Buggy 0 0.79 0 0 0.6 ...
... ... ... ... ... ... ...
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Conceptual generalization, moreover, allows the sparse-
ness of common and common-sense knowledge matrices
to be consistently reduced. The SUBSUME matrix, for
example, aggregates pieces of knowledge concerning IsA,
KindOf, HasCategory, and SymbolOf relationships that, if
represented as a matrix singularly, would be too sparse to be
processed and to enable efficient analogical reasoning.

Evaluation
In order to evaluate our integration technique, we reduce
the dimensionality of the SUBSUME matrix (for even better
generalization) and gauge its capacity for analogical reason-
ing on a Twitter dataset by comparing it with the perfor-
mance of singular subsumption resources.

Analogical Reasoning
In order to more-compactly represent the information con-
tained in the SUBSUME matrix S ∈ Rm×n and encode the
latent semantics between its instances, a multi-dimensional
vector space representation is built by applying truncated
singular value decomposition (SVD). The resulting lower-
dimensional space represents the best approximation of S,
in fact:

min
S̃|rank(S̃)=k

|S − S̃| = min
S̃|rank(S̃)=k

|Σ− UT
k S̃Vk|

= min
S̃|rank(S̃)=k

|Σ−Dk|

where S has the form S = UΣV T , S̃ has the form S̃ =
UkDkV

T
k (Uk ∈ Rm×k, Vk ∈ Rn×k, and Dk ∈ Rk×k is

diagonal matrix), and k is the lower dimension of the latent
semantic space. From the rank constraint, i.e.,Dk has k non-
zero diagonal entries, the minimum of the above statement
is obtained as follows:

min
S̃|rank(S̃)=k

|Σ−Dk| = min
di

√√√√ n∑
i=1

(σi − di)2 =

= min
di

√√√√ k∑
i=1

(σi − di)2 +
n∑

i=k+1

σ2
i =

√√√√ n∑
i=k+1

σ2
i

Therefore, S̃ of rank k is the best approximation of S in
the Frobenius-norm sense when σi = di (i = 1, ..., k) and
the corresponding singular vectors are the same as those of
S. If all but the first d principal components are discarded
and S̃U = Uk Sk is considered, a space in which common
and common-sense instances are represented by vectors of
k coordinates is obtained. These coordinates can be seen as
describing instances in terms of ‘eigenconcepts’ that form
the axes of the vector space, i.e., its basis e = (e(1),... e(k))T .

A trial-and-error approach is used to find that the best
compromise is achieved when k assumes values around 500.
Such a 500-dimensional vector space can be used for making
analogies (given a specific instance, find the instances most
semantically related to it), for making comparisons (given
two instances, infer their degree of semantic relatedness),
and for classification purposes (given a specific instance, as-
sign it to a predefined cluster).

Semantic Clustering
In order to cluster different SUBSUME instances accord-
ing to their semantic relatedness, a sentic medoids approach
(Cambria et al. 2011) is employed. Unlike the k-means algo-
rithm (which does not pose constraints on centroids), sentic
medoids do assume that centroids must coincide with k ob-
served points, which allows to better cluster a vector space
of common-sense knowledge. The sentic medoids approach
is similar to the partitioning around medoids (PAM) algo-
rithm, which determines a medoid for each cluster select-
ing the most centrally located centroid within that cluster.
Unlike other PAM techniques, however, the sentic medoids
algorithm runs similarly to k-means and, hence, requires a
significantly reduced computational time.

Generally, the initialization of clusters for clustering al-
gorithms is a problematic task as the process often risks to
get stuck into local optimum points, depending on the initial
choice of centroids. For this study, however, the most repre-
sentative instances of SUBSUME (i.e., the matrix columns
having higher number of entries) are used as initial cen-
troids. For this reason, what is usually seen as a limitation of
the algorithm can be seen as advantage for this study, since
what is being sought is not the k centroids leading to the
best k clusters, but indeed the k centroids identifying the top
k hub concepts (i.e., the centroids should not be ‘too far’
from the most representative instances of these concepts).

Therefore, given that the distance between two points in

the space is defined as D(ei, ej) =

√∑d′

s=1

(
e
(s)
i − e

(s)
j

)2
,

the adopted algorithm can be summarized as follows:

1. Each centroid ēi ∈ Rd′
(i = 1, 2, ..., k) is set as one of the

k most representative instances of the top hub concepts;

2. Assign each instance ej to a cluster ēi if D(ej , ēi) ≤
D(ej , ēi′) where i(i′) = 1, 2, ..., k;

3. Find a new centroid ēi for each cluster c so that∑
j∈Cluster cD(ej , ēi) ≤

∑
j∈Cluster cD(ej , ēi′);

4. Repeat step 2 and 3 until no changes on centroids are ob-
served.

Twitter Classification
In order to assess the accuracy of the proposed integration
technique, we developed an opinion-mining engine that de-
tects opinion targets in tweets and associates a polarity value
to each of these. Such an engine consists of four main com-
ponents: a pre-processing module, which performs a first
skim of tweets; a semantic parser, whose aim is to extract
concepts from text; a target spotting module, which iden-
tifies opinion targets; and a polarity detector, which deter-
mines if each tweet is positive or negative.

The pre-processing module firstly interprets special punc-
tuation, complete upper-case words, cross-linguistic ono-
matopoeias, exclamation words, negations, degree adverbs,
and emoticons. Secondly, it converts text to lower-case and,
after lemmatizing it, splits the opinion into single clauses
according to grammatical conjunctions and punctuation.
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Then, the semantic parser deconstructs text into small
bags of concepts (SBoCs) using a lexicon based on se-
quences of lexemes that represent multiple-word concepts
extracted from the knowledge base selected at each run
(SUBSUME, IsA, KindOf, and HasCategory, respectively).
These n-grams are not used blindly as fixed word pat-
terns but exploited as reference for the module, in order to
extract concepts like buy christmas present from
information-rich sentences such as “I bought a lot of very
nice Christmas presents”.

The target spotting module individuates one or more opin-
ion targets, such as people, places, and events, from the in-
put concepts. This is done by projecting the concepts of
each SBoC into S̃U , clustered according to SUBSUME’s
hub concepts. The categorization does not consist in sim-
ply labeling each concept, but also in assigning a confidence
score to each category label, which is directly proportional
to the value of belonging (dot product) to a specific concep-
tual cluster.

The polarity detector, finally, exploits the Sentic API
(Cambria et al. 2014) to determine if a tweet is positive or
negative by averaging polarity scores associated with each
extracted concept.

The evaluation resource is a collection of 3,000 tweets
crawled from Bing web repository by exploiting Twitter
hashtags as category labels. In particular, hashtags about
electronics (e.g., iPhone, XBox, Android, and Wii), compa-
nies (e.g., Apple, Microsoft, and Google), countries, cities,
operative systems, and cars are selected. A comparative
evaluation was performed against the richest subsumption
resources, i.e., IsA, KindOf, and HasCategory. Results are
reported in Table 2.

Conclusion
The integration of multi-source and multi-domain knowl-
edge is often a problematic issue as it either requires a lot of
manual effort in defining aggregation rules or suffers from
noise generated by automatic integration techniques.

In this work, we proposed an integration technique based
on conceptual primitives for efficiently integrating pieces of
knowledge coming from different common and common-
sense resources. The ‘conceptual generalization’ introduced
by the proposed method not only allows the fusing of
data from different sources without requiring ontology
alignment, but also allows the sparseness of common and
common-sense knowledge matrices to be consistently re-
duced.

Table 2: Target-dependent polarity detection accuracy of dif-
ferent subsumption resources measured on a Twitter dataset

HasCategory KindOf IsA SUBSUME
electronics 33.7% 44.1% 78.1% 79.7%
companies 27.5% 53.3% 80.0% 83.4%
countries 39.9% 67.6% 86.1% 85.9%
cities 26.5% 58.4% 79.5% 82.8%
OSs 38.4% 52.3% 78.8% 79.6%
cars 21.1% 32.2% 77.5% 78.7%

A comparative evaluation of a set of subsumption knowl-
edge resources against the resulting integration matrix
showed that the proposed techiniques enables better polarity
detection. We plan to extend such evaluation to other kinds
of knowledge (besides subsumption) and to more domains
(besides opinion mining). Finally, further research studies
are planned to investigate if a better trade-off between size
and sparseness of the integration matrices can be achieved.
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