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Abstract

Robots deployed in domains characterized by non-
deterministic action outcomes and unforeseen changes
frequently need considerable knowledge about the do-
main and tasks they have to perform. Humans, however,
may not have the time and expertise to provide elaborate
or accurate domain knowledge, and it may be difficult
for robots to obtain many labeled training samples of
domain objects and events. For widespread deployment,
robots thus need the ability to incrementally and auto-
matically extract relevant domain knowledge from mul-
timodal sensor inputs, acquiring and using human feed-
back when such feedback is necessary and available.
This paper describes a multiple-instance active learning
algorithm for such incremental learning in the context
of building models of relevant domain objects. We in-
troduce the concept of bag uncertainty, enabling robots
to identify the need for feedback, and to incrementally
revise learned object models by associating visual cues
extracted from images with verbal cues extracted from
limited high-level human feedback. Images of indoor
and outdoor scenes drawn from the IAPR TC-12 bench-
mark dataset are used to show that our algorithm pro-
vides better object recognition accuracy than a state of
the art multiple-instance active learning algorithm.

1 Introduction
Sophisticated algorithms are enabling the use of robots1 in
application domains such as search and rescue, surveillance,
and health care. In such domains characterized by non-
deterministic action outcomes and unforeseen changes, it is
difficult for robots to operate without considerable domain
knowledge. Humans, however, may not have the expertise or
time to interpret raw sensor data, or to provide accurate do-
main knowledge, and it may be difficult for robots to obtain
many labeled training samples of domain objects and events.
Widespread deployment of robots thus poses the challenge
of incrementally acquiring relevant domain knowledge us-
ing multimodal cues extracted from sensor inputs and high-
level human feedback based on need and availability.

Consider a room with multiple objects, with the labels of
some of these objects being known. A robot entering this
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1We use “agent,” “learner,” and “robot” interchangeably.

Figure 1: For visual object recognition, images are repre-
sented as bags and specific instances correspond to seg-
mented image regions of interest. Image drawn from the
IAPR TC-12 benchmark dataset (Escalante et al. 2010).

room to retrieve an object may not possess a model of the
corresponding object class, or the specific instance in this
room may be different. The robot may thus have to solicit
help from humans to locate the object and obtain labeled
samples to build or revise the corresponding object model.
Non-expert humans can assist the robot if they are allowed
to provide different types of cues, and their response can
be limited to high-level feedback, e.g., confirming the pres-
ence or absence of specific objects or object classes in the
room. This paper describes an algorithm for such incremen-
tal learning of object models using visual and verbal cues.
We build on multiple-instance learning (MIL) algorithms
that learn from labeled bags of instances. For visual recogni-
tion, each image is a “bag”, while segmented salient regions
of interest (ROIs) are “instances”—see Figure 1. Labeling
bags instead of instances reduces human effort. Although ac-
tive learning algorithms have been developed to revise such
learned object models using verbal or textual feedback from
humans, it is difficult to associate human feedback with spe-
cific image ROIs; existing multiple-instance active learning
(MIAL) algorithms therefore acquire feedback only on in-
stances in the labeled training set. Our algorithm overcomes
this limitation through the following contributions:

• The concept of bag uncertainty is introduced to quantify
the uncertainty about the presence of specific objects in
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an image. Object models learned from an initial set of im-
ages are used in conjunction with existing active learning
algorithms to classify ROIs in new images and compute
bag uncertainty.

• Human feedback, when available, is directed towards im-
ages with high (bag) uncertainty. Verbal cues from hu-
mans about bags are associated with specific image ROIs,
generating (bag) labels for the new images used to revise
the learned object models.

These contributions are a significant step towards incremen-
tal learning for robots collaborating with non-experts. The
algorithm is evaluated by comparing it with a state of the
art MIAL algorithm on images of indoor and outdoor scenes
drawn from the IAPR TC-12 benchmark dataset.

2 Related Work
This section motivates our algorithm by briefly describing
related work in multi-instance learning, active learning and
the use of verbal cues.

2.1 Multiple-Instance Learning
Multiple-instance learning (MIL) is a supervised learning
method that uses labels assigned to bags instead of instances
to decrease the labeling effort. For classification tasks, pos-
itive bags for a class have at least one positive instance,
while negative bags only have negative instances. Maron and
Lozano-Perez (1997) introduced the Diverse Density frame-
work for MIL, which identifies feature space points with
high diverse density, and Maron and Ratan (1998) used this
framework to classify natural scenes. Yang et al. (2000) ap-
plied MIL to classify images with a range of desired objects.
Zhang and Golman (2001) proposed the EM-DD algorithm
based on the expectation-maximization algorithm. More re-
cently, Zha et al. (2008) developed an algorithm for multi-
label MIL, while Zhang et al. (2013) enabled MIL from mul-
tiple information sources. The basic MIL algorithms do not
support incremental acquisition and use of bag labels.

2.2 Active Learning
Active learning seeks to minimize the labeling effort in
supervised learning. Settles (2009) provides a survey of
pool-based, membership query and stream-based active
learning algorithms. Settles, Craven and Ray (2008) intro-
duced multiple-instance active learning (MIAL) by com-
bining pool-based active learning with MIL. The learner is
trained with a small set of labeled data and selectively asks
queries from a larger pool of static unlabeled data. Druck et.
al (2009) used pool-based active learning to solicit labels
for features instead of instances, e.g., water and garbage
are considered features for the label utilities. MIAL algo-
rithms have been used for different classification and regres-
sion tasks (Settles 2012). Active learning has also been used
for other applications that use textual, verbal and/or contex-
tual information, e.g., Siddiquie and Gupta (2010) use active
learning to learn appearance and contextual models that are
used to pose label queries for multi-class classification.

2.3 Verbal Understanding
Sophisticated algorithms have enabled robots to use mul-
timodal data, e.g., vision, speech and text (Aboutalib and
Veloso 2010; Cantrell et al. 2010; Hawes et al. 2010), but
learning from multimodal cues poses the challenge of as-
sociating the information extracted from each cue. Existing
work has predominantly established these associations us-
ing pre-specified rules. Recently, Swaminathan et. al (2012)
proposed an algorithm to automatically learn probabilistic
associations between visual and verbal vocabularies for pos-
ing relevant disambiguating queries, but only reported proof
of concept results with simplistic tabletop objects.

This paper addresses key limitations of existing work.
Our algorithm learns associations between visual and ver-
bal cues, and supports incremental multiple-instance active
learning with previously unseen images to revise learned
models of domain objects.

3 Proposed Algorithm
Figure 2 is an overview of our architecture for MIAL with
online verbal labeling. A set of labeled images are used as
input to an MIL algorithm, generating initial models for de-
sired object classes. These models are used to classify ROIs
in new (test) images, ranking these images based on classi-
fication uncertainty computed using a bag uncertainty mea-
sure. Human feedback is solicited when such feedback is
necessary and available. Verbal (label) inputs from humans
are associated with visual cues extracted from these images,
generating bag labels that support the inclusion of the new
images to revise the learned object models. The architec-
ture’s components thus enable the learner to: (1) establish
the need for human feedback; (2) solicit human feedback
on relevant images; and (3) learn from the human feedback.
Specific details are provided below.

3.1 Estimate Need for Human Feedback
The first key function of our architecture is to estimate the
need for human feedback. Unlike existing MIAL methods
that obtain human feedback on specific instances in a static
set of labeled images, our approach supports incremental
(online) learning. An initial set of images with labeled ROIs
are used to create positive and negative bags for the differ-
ent object classes under consideration, e.g., window, car and
street. Object models learned from these bags using MIL
are used to classify ROIs in new (i.e., previously unseen)
images. The classification uncertainty for the entire image
(or bag) is computed by introducing a bag uncertainty mea-
sure. For a specific object class under consideration, the bag
uncertainty is estimated as follows:

U(Bi) = 2pi(1− pi) (1)

where Bi is the ith bag and pi is the probability of bag i be-
ing positive. The probability of ith bag being positive is esti-
mated by combining the support provided by each instance
in the bag (Settles, Craven, and Ray 2008):

pi = P(yi = 1|Bi) = So f tmaxα(pi1, ..., pin) (2)

=
∑

n
j=1 pi jeα pi j

∑
n
j=1 eα pi j
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Figure 2: Architecture for multi-instance active learning
with online (verbal) labeling.

where α is a non-zero constant that is set experimentally.
An image with a high bag uncertainty for a specific label is
a good candidate for soliciting human feedback for the cor-
responding object class. For each object class, new images
are thus ranked based on bag uncertainty. When there are
multiple such images/bags with high uncertainty, the learner
establishes the need for human feedback.

3.2 Soliciting Human Feedback
The second key function of the architecture is to solicit hu-
man feedback on appropriate bags or images. Our algorithm
uses a combination of stream-based and pool-based active
learning to solicit human input. Each new image is consid-
ered as a candidate and feedback is solicited only on images
with a suitably high bag uncertainty, while other images are
not used for learning; this corresponds to stream-based ac-
tive learning. At the same time, feedback is solicited only
if a human is available for providing feedback. In the ab-
sence of a human willing to provide feedback, images with
suitably high bag uncertainty are ranked and stored for use
when a human is available; this corresponds to pool-based
active learning. Human feedback is obtained by displaying
the selected image and recording verbal inputs.

3.3 Learning from Human Feedback
Human feedback consists of simple sentences about the en-
tire image or a specific ROI in the image. A sentence that
contains negative expressions labels the bag and each of its

Figure 3: Illustrative example of POS tags and BIO tags for
words in a sentence.

Figure 4: Illustration of hypernym relation in WordNet.

instances negative for the corresponding object class and
features. A sentence with a positive expression may, in ad-
dition to object labels, provide information about specific
visual features (e.g., color or size) of specific ROIs in the
image under consideration. As an illustrative example of as-
sociating such verbal cues with visual cues extracted from
specific ROIs in the image, consider a specific sentence and
assume that human input contains color and object labels.
Also assume that each color label corresponds to specific
(known) RGB values. To associate the object label with a
specific instance, a histogram of the RGB values of pixels
is extracted from each ROI (instance) in this image (bag).
These histograms are compared with the expected RGB val-
ues for the color label in the sentence. The instance corre-
sponding to the histogram that best matches the expected
RGB value is assigned the corresponding object label; the
model for the corresponding object class can now be revised
using this labeled instance or the image (as a positive bag).

The degree of match between the observed and expected
color values can be computed using different distance mea-
sures, depending on the representation of the color values for
each color label. For instance, if expected color values are
triples, the Euclidean distance metric is used to identify the
instance whose average RGB value best matches the triple
of the color label:

ID∗ = argmin
i

√
(Ri−Rc)2 +(Gi−Gc)2 +(Bi−Bc)2 (3)

where Ri,Gi,Bi are the average RGB values of instance i,
and Rc,Gc,Bc are RGB values of the color label in the sen-
tence. If the color values are represented as normalized his-
tograms, the Jenson-Shannon distance measure is used for
comparison (Cover and Thomas 2006). If the human input
is ambiguous (e.g., matches multiple instances), one of the
valid candidates is chosen. Incorrect matches are handled by
the underlying MIL algorithm.

To perform the association described above, relevant ver-
bal cues have to be first extracted from the sentence. Indi-
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vidual words in a sentence under consideration may play
different roles such as noun and verb. To identify these
roles, the sentence is parsed to automatically obtain Part
of Speech (POS) tags and BIO tags. POS tags are ex-
tracted for each word using Stanford Log-Linear POS Tag-
ger (Toutanova et al. 2003) with Penn Treebank tag set (Mar-
cus, Marcinkeiwicz, and Santorini 1993). Common POS
tags are noun, adjective, verb, adverb, determiner, which
are denoted by: NN, JJ, VBZ, RB, DT respectively. BIO tags
are extracted according to the IOB2 convention (Ratna-
parkhi 1998), with B, I and O representing the beginning,
inside and outside of the feature or property label. In the cur-
rent example, two types of property labels are considered,
e.g, object category (CAT) and color (COL). For example,
Figure 3 considers the sentence:“There is a blue door in the
image” to illustrate the POS and BIO tags. This sentence
provides information about a specific ROI in the image. It
states that the blue object in the image is a door. This im-
age can thus be a positive bag for object class door, and
the matched instance in the image may be used as a posi-
tive (labeled) instance. Similarly, the sentence may provide
negative information by including words not or no.

Given the verbal tags, the semantic meaning of the rele-
vant words (e.g., color and category labels) is extracted us-
ing WordNet, a large lexical database for nouns, verbs, ad-
jectives, and adverbs, which are grouped into sets of cog-
nitive synonyms (synsets) (Fellbaum 1995; 1998). Synsets
consist of all possible conceptual-semantics. Each Word-
Net’s synsets is linked to other synsets with lexical relations
such as synonyms, antonyms, hypernyms and hyponyms.

Color values such as red, green, blue have the same hy-
pernym chromatic color and encode a is a relation; red is a
chromatic color. Color values such as black, white have the
same hypernym achromatic color, while the second level
hypernym of some colors like aqua, lime is chromatic color,
since olive is a type of green and green is a chromatic color.
Figure 4 illustrates the is a relation in WordNet. The sim-
ilarities are calculated between the given vocabularies and
the vocabularies in a dictionary of words that can be used as
verbal labels, based on the lexical similarity and content. In
the current example, the dictionary consists of all color and
object labels that are likely to be used. Each word is rep-
resented as: “word#pos#sense”, where “pos” refers to the
POS, with values n for noun, a for adjective, and v for verb;
and “sense” refers to the word’s special semantic ID.

Extracting information from visual and verbal inputs, and
associating them appropriately, helps the learner make best
use of the available information to incrementally revise ob-
ject models, as evaluated in the next section.

4 Experimental Setup and Results
We implemented and evaluated our algorithm on images of
indoor and outdoor scenes extracted from the IAPR TC-12
Benchmark database (Escalante et al. 2010). IAPR TC-12
has ≈ 20000 images in 40 folders. Figure 5 shows examples
of images of indoor and outdoor scenes that were chosen
from the IAPR TC-12 database. Each image is segmented
into salient ROIs and annotated as shown in Figure 5; exist-
ing computer vision algorithms can be used to extract such

ROIs from images. For the experiments reported below, the
visual features extracted from an ROI consists of:

< ri,ci,hsbi1,hsbi2,hsbi3, ...,hsbi64 >

where ri represents the ratio of boundary and area of the
ith ROI, ci represents the convexity, and hsbi1...hsbi64 repre-
sents the histogram in HSB color space with 64 bins.

Experimental trials used images drawn from 15 folders
for training object models, and incrementally revised the
models using images randomly selected from four folders.
We use a state of the art MIAL algorithm as the base-
line (Settles, Craven, and Ray 2008)—our algorithm and the
baseline are labeled Bag Uncertainty (BU) and Multiple-
instance Uncertainty (MIU) respectively in the figures be-
low. The underlying MI learner for both algorithms starts
with 200 randomly drawn positive bags and 200 randomly
drawn negative bags; the model is then revised and evaluated
using the remaining bags. Note that incremental learning in
BU occurs with a new learning set consisting of unseen im-
ages; in MIU, learning only takes place using the instances
in the positive bags of the larger training set. The MIL model
uses α = 2.5 for the Softmax function (Equation 2) and is
trained by minimizing squared loss via L-BFGS (Nocedal
and Wright 1999). Results are averaged over ten indepen-
dent repetitions for each object class or category.

The two algorithms are compared by constructing learn-
ing curves that plot the area under the ROC curve (AUROC)
as a function of the number of instances posed as queries for
human feedback for each object category. The starting point
in all experiments is the AUROC for a model trained from
the labeled bags in the training set without including any hu-
man feedback. For our algorithm, stream-based active learn-
ing uses a threshold of 0.3, i.e., images with bag uncertainty
≥ 0.3 are valid candidates for human (verbal) input. Figure 6
shows some illustrative examples of such learning curves for
four object classes. We observe that assigning labels to new
images and instances, and using this information to revise
the learned object models, improves the object recognition
performance. A summary of performance over all the object
classes included in our study is presented in Table 1; the dif-
ferences between BU and MIU are statistically significant.

As discussed by Settles et. al (2008), MIL is a challeng-
ing problem, typically resulting in much lower classification
accuracy that traditional object recognition algorithms. The
improvements in classification accuracy provided by our al-
gorithm thus have practical benefits.

5 Conclusions and Future Work
This paper described an algorithm that introduced the bag
uncertainty measure to compute classification uncertainty in
multiple-instance active learning. Unlike existing MIAL al-
gorithms, our algorithm is able to rank new images based
on classification uncertainty, and solicit human input when
it is necessary and available by combining stream-based and
pool-based active learning algorithms. Furthermore, verbal
cues extracted from the human input are associated with the
visual cues extracted from specific instances in images, en-
abling the learner to make best use of the available infor-
mation. Incrementally revising the learned object models re-
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Figure 5: Examples of images from the SAIAPR TC-12 benchmark (Escalante et al. 2010).
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Figure 6: Learning curves for four object categories; our algorithm outperforms a state of the art MIAL algorithm.
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Instance Queries MIU BU
Cloud 0.00119 0.01081
Street -0.00105 0.00483
Rock 0.0015 0.0073
Tree 0.00429 0.00639

Window -0.01243 0.0097
Bottle -0.00456 0.01009
Door -0.02214 0.00478
House 0.01283 0.001984

Car -0.00352 0.00351
River -0.00103 0.00913

Table 1: The average improvement in AUROC after 50
queries over the baseline MI learner. Numbers are averaged
across all trials for each object category. Results correspond-
ing to the algorithm with better performance are indicated in
bold font. BU performs better than MIU in all but one class.

sults in significant improvement in classification accuracy in
comparison with a state of the art MIAL algorithm.

Future work will investigate the use of different visual
features, and evaluate the algorithm on additional object
classes. Another direction of further research is to include
and reason with some prior domain knowledge about ob-
ject properties and context, which will facilitate the choice
of images presented to humans for feedback. The long-term
objective is to implement such algorithms on robots that will
be able to interact and collaborate with non-expert humans
in complex real-world domains.
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