
ERMO-DG: Evolving Region Moving Object Dataset Generator

Berkay Aydin and Rafal A. Angryk
Georgia State University

Department of Computer Science
Atlanta, GA 30302-3994 USA
{baydin2, angryk}@cs.gsu.edu

Karthik Ganesan Pillai
Montana State University

Department of Computer Science
Bozeman, MT 59717 USA

k.ganesanpillai@cs.montana.edu

Abstract

It is often essential to create datasets with foreseeable
characteristics. For the design and testing of advanced
spatiotemporal pattern mining algorithms, adaptable
and large datasets are needed. In this paper, we present a
synthetic dataset generator, ERMO-DG, that is intended
for creating spatiotemporal patterns. Generated datasets
consist of spatiotemporal object instances of different
feature types, where these instances are represented by
spatial regions evolving over time. The generator al-
lows researchers to systematically create spatiotemporal
datasets with predictable characteristics such as number
of patterns, cardinality of patterns, velocity, accelera-
tion, lifetime and spatial areas of instances.

Introduction
As the volume of spatiotemporal data continues to grow un-
ceasingly, researchers from academia and industry propose
new algorithms or produce new tools to store, index, and
mine spatiotemporal data. In recent years, there have been
many spatial and spatiotemporal pattern mining algorithms
proposed in (Cao et al. 2006), (Celik et al. 2006), (Wang et
al. 2005), (Yang et al. 2005), and (Pillai et al. 2013) The
motivation for these algorithms comes from different sci-
entific domains such as astronomy, geology, meteorology
etc. These algorithms can be utilized for the verification of
a current scientific theory, the prediction of interesting re-
lationships between different phenomena, or the discovery
of new relationships. Real life spatiotemporal datasets have
been used in order to test the correctness, completeness, and
compare the efficiency of these algorithms. Some of these
datasets include climate data, solar data and volcanic erup-
tion data (Pillai et al. 2012), (Shekhar and Huang 2001),
(Schuh et al. 2013). On the other hand, synthetic data gen-
eration is also useful, because synthetic data simplifies the
experimental repeatability with well-defined data properties,
which points out the the strengths and weaknesses of algo-
rithms as researchers can test their algorithms with specific
boundary conditions. Interestingly, quite a few spatiotempo-
ral pattern mining algorithms were extensively tested using
synthetic data along with real life data (Celik et al. 2006),
(Cao et al. 2006), (Pillai et al. 2013).

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we present a new, highly parameterized spa-
tiotemporal dataset generator, ERMO-DG, which can be uti-
lized for testing the correctness, completeness, and com-
paring the efficiency and scalability of spatiotemporal pat-
tern mining algorithms. Our motivation for creating ERMO-
DG was to be able to generate consistent, pattern-generating
datasets with foreseeable characteristics. ERMO-DG has
been successfully used by Pillai et al. for testing the cor-
rectness and completeness of spatiotemporal co-occurence
pattern mining algorithms (2013).

The instances created by ERMO-DG are moving spa-
tiotemporal objects with evolving region-based representa-
tions. ERMO-DG does not generate point-based or network-
based instances. Additionally, we present the instances with
complete histories; however, the current or near future
movements of spatiotemporal objects are not in the scope of
this paper. To generate instances, ERMO-DG initially cre-
ates feature types and patterns. Then, it generates instances
which will be grouped in randomly generated spatial neigh-
borhoods in order to realize the generation of spatiotemporal
co-occurence patterns.

The rest of this paper is organized as follows. In Related
Work, we present early spatiotemporal dataset generators
and demonstrate examples of synthetic data utilization in
spatiotemporal pattern mining. Next, detailed information
on the dataset generation process is given in Generation of
Dataset. Lastly, we conclude the paper and discuss the future
work issues in Conclusion and Future Work.

Related Work
Many topics that the spatiotemporal research community
has been exploring, such as spatiotemporal pattern min-
ing recently, access methods, query languages and index-
ing, most require either real or synthetic datasets for com-
paring the efficiency and analyzing the performance of al-
gorithms. Many different approaches on the generation of
synthetic spatiotemporal data have been presented in the
last fifteen years. Oporto (Saglio and Moreira 2001) is one
of the first well-known spatiotemporal dataset generators.
Data from Oporto mimics the movement of fishing boats
by following the principle that “real life instances are not
chaotic”. GSTD algorithm is presented by Theodoridis et al.
Theodoridis, Silva, and Nascimento in (1999). The gener-
ated data in GSTD is transaction-time oriented and memory-

Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

321



less; furthermore, the movement of data is controlled by
duration, shift and resizing parameters. Tzouramanis et al.
(2002) proposed a somewhat different dataset generator in ,
G-TERD (Generator for Time Evolving Regional Data). It
is a highly parametrized generator where users can choose
many characteristics such as rotational movement, enlarge-
ment (or reduction), and whether objects can go over other
objects or not. Brinkhoff (2002) presented a network-based
approach on the generation of spatiotemporal datasets with
nine statements that are derived from real life principles.
Düntgen et al. demonstrated a benchmark for moving ob-
ject databases, called BerlinMOD (2009). Their benchmark
is based on a simulation scenario, where they simulate a
number of cars driving on the road network of Berlin; and
it creates network-based point dataset. In addition, Chen et
al. proposed a benchmark targeting the current and near-
future indexing of moving spatiotemporal objects (2008).
These dataset generators allow researchers to compare spa-
tiotemporal access methods, query languages, and indexing
techniques; however, they do not fulfill the needs of spa-
tiotemporal pattern mining research since they do not offer
any heuristics or spatial neighborhoods of instances, which
can eventually lead to the generation of spatiotemporal co-
occurence patterns. Very recently, Hermoupolis, which is
a mobility pattern-aware trajectory generator, is introduced
(Pelekis et al. 2013). It generates synthetic trajectories of
moving objects which will result in mobility patterns such
as flocks, convoys, clusters etc.

None of the above approaches present a stand-alone,
highly parametrized, spatiotemporal dataset generator that
can be used for benchmarking spatiotemporal pattern min-
ing algorithms.

Generation of Dataset
Spatial co-location of objects occurs when moving objects
have the same or close positions in common (Andrienko
and Andrienko 2007). Shekhar and Huang (2001), described
the spatial co-location patterns as the relationships among
different types of instances occurring in different and pos-
sibly nearby (common) locations. On the other hand, spa-
tiotemporal co-occurence can be seen as the temporal ex-
tension of spatial co-location, where instances of different
types of objects occur both in space and time. ERMO-DG
is intended for creating synthetic datasets that have certain
characteristics which lead to the creation of spatiotempo-
ral co-occurence patterns. Spatiotemporal co-occurence pat-
terns represent the subsets of feature types that occur both
in space and time (Pillai et al. 2013). Therefore, the crucial
part of the data generation process is creating the spatial and
temporal co-occurences of instances.

The spatiotemporal patterns are designed as a subset of
different feature types. Feature types being in a pattern, sig-
nifies that the instances associated with these features occur
together in both space and time. A feature type describes the
spatial and temporal characteristics of associated instances.
It can be considered as a set of meta-attributes delineating
the attributes of an instance. Instances in ERMO-DG are
spatiotemporal objects that change their location and shape
over time. Each instance has a lifetime and a sequence of

region polygons that shows the location of instances at each
timestamp. All instances are associated with a specific fea-
ture type.

Generate
Instance
Features

Initialize
Spatial

Framework

Generate
Patterns

Create
Spatial

Neighborhood
Relationships

Generate
Pattern-Related
Instances

Generate
Noise
Instances

Instance
Features

Patterns

Spatial
Framework

Spatial
Neighborhood
Relationships

Pattern-Related
Instances

Noise
Instances

Output
Files

Figure 1: Generation of instances

The overall generation process is outlined in Fig. 1. The
rectangular shapes signifies the procedures and round shapes
show the inputs and outputs of these procedures. Note that
dashed arrows demonstrates order of the procedures and
straight ones shows the flow of input and output among
the procedures. The data generation process starts with ran-
domly creating the feature types. Then, patterns are formed
by arbitrarily grouping the features. It is followed by gener-
ating the instances for each pattern. Definitions of key con-
cepts and the detailed explanation of each step is discussed
in the following subsections.
Definition 1: Spatial Framework
Spatial framework is a rectangle whose upper-left corner is
located at (0, 0) and lower-right corner is located at point
(Dx, Dy). Instances are created within the spatial frame-
work. A real life example for a spatial framework is the 2-
dimensional map of a geographical area or the Sun. Note
that the spatial framework size does not change; however,
the contents (instances) of spatial framework is dynamic and
their locations change over time.
Definition 2: Feature Type
A feature type is a list of attributes that will be utilized
while creating the instances. It comprises shape, area,
lifetime, velocity, and acceleration attributes. An individual
feature type is denoted by Fi={MinV ertex, MaxV ertex,
MinArea, MaxArea, MinAreaEvol, MaxAreaEvol,
MinLifetime, MaxLifetime, MinV elocity, MaxV elocity,
MinAcceleration, MaxAcceleration}.

The explanations for these attributes are as follows:
MinV ertex - MaxV ertex specify the number of minimum
and maximum vertices an instance polygon can have re-
spectively. MinArea and MaxArea indicate the minimum
and maximum area of an instance polygon can have (respec-
tively) through its lifetime.MinAreaEvol andMaxAreaEvol

indicate the minimum and maximum factor of increase

322



or decrease in the polygon area of an instance during
the its lifespan. MinLifetime and MaxLifetime indicate
the minimum and maximum lifespan of an instance re-
spectively. MinV elocity and MaxV elocity shows the min-
imum and maximum velocity of an instance respectively.
MinAcceleration and MaxAcceleration indicate the mini-
mum acceleration of an instance respectively. A real life ex-
ample of feature types can be the different classes of clouds
in the sky. For instance, low level clouds such as cumu-
lus and stratus, and high level clouds such as cirrus can be
represented as different feature types, each characterized di-
versely with different minimum and maximum attribute val-
ues for velocity, area, lifetime etc.

Definition 3: Instance
A spatiotemporal instance is an ordered list of polygons
denoted by <polygoni, ti>, each representing the spatial
representation of the instance in distinct, consecutive times-
tamps. Each instance is associated with a feature type. The
attributes specified in a feature type are used to generate the
polygons. An instance is denoted by Instj , where j shows
the associated feature type. A real life example of spatiotem-
poral instance would be solar flare, which erupts, moves, and
evolves on the corona of the Sun.

Definition 4: Pattern
A pattern is a subset of distinct feature types. The cardinality
(number of feature types involved in the pattern) of a pattern
cannot be less than 2, nor can the cardinality be more than
the total number of feature types. An existence of a pattern
for a subset of feature types signifies that the instances asso-
ciated with those features occur together in both space and
time. An example of a pattern in real life would be the co-
existence of sigmoids and active regions in nearby locations
on the surface of the Sun.

We divide the patterns into core patterns and overlap pat-
terns. Detailed explanation for core and overlap patterns is
provided in the subsection, ”Generation of Patterns”.

Definition 5: Spatial Neighborhoods
Spatial neighborhoods are used for utilizing the spatial co-
occurence of instances associated with a pattern. The in-
stances associated with a pattern (intrinsically with a fea-
ture type in that pattern), are created very close to each other
(spatially) at their birth time. Spatial neighborhoods repre-
sent the common (or close-by) locations where the instances
of a pattern co-occur. We also align the birth time of in-
stances in order to realize the temporal aspect of the co-
occurence. A spatial neighborhood list is created for each
pattern and they are denoted as <SpN >. A real life ex-
ample for spatial neighborhoods is the location of an ac-
tive volcano. The spatial neighborhood can be represented
as the location of an erupting volcano and resulting eruption
columns and ash clouds can be the co-occurring instances in
that spatial neighborhood.

Detailed description of the dataset generation algorithm
is shown in Algorithm 1, and the parameters related to each
part of algorithm are described in the next subsections. In
addition to those, the dimensions (D1, D2) of the spatial
framework are also given as a parameter. Since the spatial
framework initialization is trivial, we skip this part.

Algorithm 1: Dataset Generation Algorithm
Input : D1, D2, FCount, BaseArea,

GlobalMaxV ertex, BaseAreaEvol,
BaseLifetime, BaseV elocity,
BaseAcceleration, NCore, SOverlap, SInst,
MSpN , LNoise

Variables: SpF : Spatial framework
FAll: The set of all feature types
PCore: The set of core patterns
POverlap: The set of overlap patterns
< SpN >: Spatial neighborhood list

Output: Set of spatiotemporal instances with the list of
<polygon, timestamp> pairs

Algorithm:
SpF ← InitializeSpatialFramework(D1, D2)
FAll ← GenerateFeatureTypes(FCount, BaseArea,

GlobalMaxV ertex, BaseAreaEvol,
BaseLifetime, BaseV elocity, BaseAcceleration)

PCore← GenerateCorePatterns(FAll, NCore)
POverlap ← GenerateOverlapPatterns(FAll,

SOverlap, PCore)
foreach Pi ∈ (Pcore ∪ POverlap) do
< SpN >← GenerateSpatialNeighborhood(SpF ,

SInst, MSpN )
GenerateInstances(Pi, SInst, < SpN >)
GenerateNoiseInstances(Pi, SInst, LNoise)

endfor

Generation of Feature Types
Parameters
FCount: The total number of feature types to be created.
BaseArea: The base area parameter used for characterizing
the area attributes of feature types.
GlobalMaxV ertex: The maximum number of vertices that
a polygon can have.
BaseAreaEvol: The base areal evolution parameter used for
characterizing the areal evolution attributes of features.
BaseLifetime: The base lifetime parameter used for charac-
terizing the lifetime attributes of features.
BaseV elocity: The base velocity parameter used for charac-
terizing the velocity attributes of features.
BaseAcceleration: The base acceleration parameter used for
characterizing the acceleration attributes of features.

The attributes of feature types in ERMO-DG are gen-
erated randomly. We use FCount to determine the number
of feature types to be created. After that, we use base pa-
rameters and global maximum vertex count to find maxi-
mum and minimum values described in Definition 2. The
minimum number of vertices that a polygon can have is
3 by definition. We use GlobalMaxV ertex parameter to
decide the number of maximum vertices that a polygon
can have. We generate two random integers between 3 and
GlobalMaxV ertex and we assign those two random values
to MaxV ertex and MinV ertex attributes of a feature. For
area, lifetime, velocity, and acceleration attributes, minimum

323



and maximum attribute values (MinArea, MinLifetime,
MinV elocity, MinAcceleration, MaxArea, MaxLifetime,
MaxV elocity, and MinAcceleration) are:
MinAttr = (BaseAttr)×RAttr

MaxAttr = MinAttr + rAttr

where RAttr ∈ Z+, RAttr ≤ 5,
and rAttr ∈ Z+, rAttr ≤ BaseAttr.

RAttr is a random integer selected between 1 and 5
(standing for RArea, RLifetime, RV elocity, RAcceleration

and generated seperately for each attribute), and serves as
the degree of these attributes. For example, if RV elocity is
set to 1 for feature type F1 and 3 for feature F2, then the in-
stances created using F1 will be slower. By multiplying the
RAttr values with the related base parameters (BaseArea,
BaseLifetime, BaseV elocity, and BaseAcceleration), we
find the minimum attribute values. Then, we randomly gen-
erate and integer value rAttr (stands for rArea, rLifetime,
rV elocity, rAcceleration and generated seperately for each at-
tribute), and add rAttr to minimum attribute value to find the
maximum attribute value. Additionally for acceleration, we
randomly select a sign in order to characterize negative ac-
celeration (deceleration). As an example, let BaseV elocity

be 20, RV elocity value is generated as 4, and rAttr is gen-
erated as 11; then, MinV elocity is 4 × 20 = 80 and
MaxV elocity is 80 + 11 = 91.

For areal evolution, we generate a random real number
(ev) between −2 and 2 and we get largest previous (floor
- bevc) and the smallest following (ceiling - deve) of this
number. Then,
MaxAreaEvol = (BaseAreaEvol)

deve

MinAreaEvol = (BaseAreaEvol)
bevc

Generation of Patterns
Parameters
NCore: The number of core patterns to be generated.
SOverlap: The number of overlap patterns to be generated
for each core pattern.

For the generation of patterns, we have followed the
heuristics described by Agrawal and Srikant (1994), and
Huang et al. (2004). Agrawal and Srikant model the frequent
itemsets as a retailing environment, assuming people tend to
buy items together from a maximal itemset. We extended
this idea into spatiotemporal context; and divided the pat-
terns into two groups -core and overlap patterns. Core pat-
terns can be seen as maximal frequent itemsets in classical
data mining, they are designed to occur more frequently. The
increase of frequency in core patterns is achieved by over-
lap patterns. An overlap pattern is associated with a core
pattern, and it includes all the feature types that the core pat-
tern has and one more different feature type. Hence, the core
pattern’s feature types recur in an associated overlap pattern
with the addition of a new feature type. The instances cre-
ated using a overlap pattern will eventually follow the core
pattern too, but their occurance frequency will be smaller.

The number of core patterns to be generated is determined
by parameter NCore. For each k between 1 and NCore, we

create (k+1)−cardinality core pattern. A k−cardinality
core pattern is formed by arbitrarily selecting k feature types
and adding them to the feature set of this pattern. For each
core pattern created, we generate SOverlap overlap patterns
associated with that core pattern. In order to create an over-
lap pattern, we first copy all the features of the associated
core pattern and add one more randomly selected feature to
the feature set of the overlap pattern.

Generation of Spatial Neighborhoods and
Instances

Parameters
SInst: The number of instances to be generated for each fea-
ture in a pattern.

MSpN : The number of instances to be generated in a spatial
neighborhood for each feature type in a pattern.

LNoise: The ratio of noise instances to be generated.

After creating core and overlap patterns, the next step is
forming spatial neighborhoods (< SpN >) and generating
the instances in these neighborhoods. Spatial neighborhoods
are related by a pattern; furthermore, they are implemented
as points denoted SpN i

k = (Xk, Yk), where i indicates the
associated pattern, k is the index of the spatial neighbor-
hood, and Xk and Yk are the coordinates of the point. The
instances that are created in the same spatial neighborhood
have the same birth locations and birth times. The location
of a spatial neighborhood is randomly generated in spatial
framework. For each spatial neighborhood, we createMSpN

instances for each feature of a pattern. The total number of
instances to be created is SInst for each future. Note that,
for each pattern we create d SInst

MSpN
e spatial neighborhoods.

Instance Attributes To generate instances, we use the at-
tributes from the associated feature. The maximum and min-
imum attributes of a feature type specifies the range of the
values for an asociated instance. For each instance, using
the minimum and maximum attribute values from associated
feature, we randomly pick the values for area (area of the
birth polygon), number of vertices, lifetime, velocity (start-
ing velocity), acceleration, and areal evolution factor. For
example, let MinV elocity be 80 and MaxV elocity is 91. We
randomly select an integer between 80 and 91 and assign this
value to as the starting velocity of the instance Instij . Same
process is applied for area, number of vertices, lifetime, ac-
celeration and areal evolution.

Representation of Instances An instance is a list of poly-
gon and timestamp pairs. The number of vertices (denoted
by n) is constant during an instance’s lifetime. The vertices
of a polygon are represented with a source point (denoted
as src) and n vertex vectors representing the relative loca-
tion of vertices to the source point. A source point is always
inside the polygon. A polygon is represented as following:

Poly = {(Xsrc, Ysrc)|(x1, y1), . . . , (xn, yn)}
where (Xsrc, Ysrc) is the coordinates of the source point and
each (xi, yi) pair stands for a vertex vector.

324



Unit Polygon and Birth Polygon Generation To create
random polygons with desired areas and number of vertices,
a unit polygon generation algorithm is used. Given number
of vertices (n), we initially partition a unit square into n
regions as shown in Figure 2. Each of these regions cover
2π/n degrees and a random point is selected from each re-
gion. These points are utilized for the vertex vectors of the
birth polygon by increasing the magnitude of these vectors
by a growth factor (g). Lastly, we set the location of source
point to the associated spatial neighborhood.
PolyUnit={(0, 0)|(x1, y1), . . . , (xn, yn)}

g=
√

DesiredArea
AreaofUnitPolygon

Polyb={(XS , YS)|(gx1, gy1), . . . , (gxn, gyn)}
where PolyUnit is the unit polygon, Polyb is the birth poly-
gon, and XS and YS is the x and y coordinates of associated
spatial neighborhood relationship.

Figure 2: Unit polygon generation for n = 6: Each region
covers π/3(= 2π/6) degrees and six random points are se-
lected from each of these six regions

Motion and Areal Evolution of Polygons The movement
of instances in ERMO-DG are linear. The parameters for the
movement are decided using the (initial) velocity (V0) and
acceleration (a) attributes of an instance. We randomly se-
lect these attributes using the maximum and minimum at-
tribute values taken from associated feature type. For in-
stance, to determine initial velocity, V0, we select an integer
between MinV elocity and MaxV elocity. The motion is im-
plemented using the classical linear displacement function
(i.e. ∆x = V t + at2). We initially decide the direction of
the movement by selecting a random angle (θ) between 0
and 2π. We then create a displacement function for x and y
coordinates; those are following:

∆xt = Vxt+ axt
2

∆yt = Vyt+ ayt
2

where ∆xt and ∆yt represent the displacements in x and
y coordinates as two functions of time (denoted by t), sim-
ilarly Vx and Vy shows initial velocities, ax and ay shows
accelerations in x and y coordinates. Note that,
Vx = V0cos(θ) and ax = acos(θ)

Vy = V0sin(θ) and ay = asin(θ)

Therefore, for each timestamp we displace the source
point of the region polygons by using the displacements in x
and y coordinates seperately. For the areal evolution, we pick

a real number between the MinAreaEvol and MaxAreaEvol

attributes of the associated feature, and use it as the ratio
between the birth polygon area and death polygon area.

Ratio of area = Area of birth polygon
Area of death polygon

Then the amount of area change (called areal evolution fac-
tor - aef ) at each timestamp:
aef = T

√
Ratio of area

where T is the lifetime of the instance. Hence, the represen-
tation of a polygon at time ti (where 0 ≤ i < T ) , given spa-
tial neighborhood (SpN = (XS , YS)), displacement func-
tions (∆xt and ∆yt), and areal evolution factor (aef ) is
Polyti ={(XS + ∆xti , YS + ∆yti)|(aef ix1, aef iy1)

, . . . , (aef ixn, aef
iyn)}

Noise Instances The last part of instance generation is the
creation of noise instances. In order to determine the num-
ber of noise instances to be generated LNoise parameter is
used. LNoise is the ratio between the number of noise in-
stances and the number of total pattern-related instaces. For
a k-cardinality pattern Pi, we have k features; therefore, we
create k×SInst pattern-related instances. Let Ni−Noise de-
note noise instance count for Pi. Then,
Ni−Noise = k ×NInst × LNoise

In order to create a noise instance for a pattern, we ran-
domly pick a feature that is not in the feature set of the
pattern. After that, we select a random point (done for each
noise instance) set it as the source point. The same instance
generation process is applied after the selection of the source
point.

Adjusting Parameters and Remarks
Parameters play a remarkable role in determining the char-
acteristics of generated datasets; however, it is also im-
portant to mention immutable qualities of our work. The
movement of instances is rectilinear with a variable speed
(using acceleration); for simplicity, random, oscillatory or
circular movements are not included. We also use hard
thresholds (for RAttr and ev values) while determining
the maximum and minimum attribute values of feature
types, this is done for simplicity. Additionally, areal evolu-
tion is incremental and evolution pace is continuous. The
base parameters (BaseDuration, BaseArea, BaseAreaEvol,
BaseAcceleration, and BaseV elocity ) allows users to deter-
mine the instance-related characteristics of datasets. For ex-
ample, increasing BaseArea will result in generating larger
polygons, settingBaseAcceleration andBaseV elocity values
to 0 will result in generating immobile objects.

More importantly, pattern-related parameters (FCount,
NCore, SOverlap, MSpN , SInst can be utilized for creat-
ing patterns with desired characteristics. One example is to
change the maximum cardinality of patterns, using NCore

parameter. To create more repetitive, hence stronger pat-
terns, fewer core patterns should be generated with more
overlap patterns; hence, increasing SOverlap will result in
having core patterns with higher support. The prevalence
of patterns can also be adjusted in many ways. Increasing
the instance areas (by increasing BaseArea) will result in

325



creating more prevalent patterns. Users can generate long-
lasting patterns by having a smaller number of spatial neigh-
borhoods and more instances associated with such patterns.
This can be done by increasing SInst or decreasing MSpN .

Conclusion and Future Work
In this paper, we presented a new spatiotemporal dataset
generator, named ERMO-DG, which produces instances
with evolving regions over time. To our knowledge, it is
the first approach to generate synthetic data specifically de-
signed for spatiotemporal pattern mining algorithms. We
have discussed the important concepts involved in the cre-
ation of a pattern generating synthetic dataset. These include
creating patterns, utilization of spatial neighborhoods, and
generating instances. The objective of this work is to pro-
vide a benchmarking enviroment for evaluating spatiotem-
poral pattern mining algorithms.

0
2
4
6
8

10
12
14
16
18

k=2 k=3 k=4 k=5

P
at

te
rn

 In
st

an
ce

s

Thousands

Pattern Cardinality (k)

Naïve STCOPs

FastSTCOPs (OMAX)

FastSTCOPs (J)
Parameter Name Value

FCount 9
NCore 3
SOverlap 4
SInst 50
MSpN 10

Figure 3: The parameters and the number of instances in-
volved in pattern instance count vs. size of discovered pat-
terns for three algorithms presented in Pillai et al. (2013)

ERMO-DG was successfully utilized for three algorithms
presented in (Pillai et al. 2013). The parameters of the gen-
erated dataset and the number of pattern instances found us-
ing this dataset can be found in Fig. 3. In the chart shown
in Fig. 3, Pattern instance demonstrates the co-occurence
count of instances of different features, which participated in
a spatiotemporal co-occurrence pattern (discovered by algo-
rithms). The algorithms discovered all the patterns reported
by generator. The variability in number of pattern instances
are caused by interestingness measure (participation ratio)
which incorporates spatiotemporal intersection and union
volumes of instances. Note that, attributes of features have a
strong impact on intersection and union volumes. The ran-
domness effect created by minimum and maximum attribute
selection can be observed, because without the existence of
such, the number of pattern instances would be decreasing as
pattern size increases. (See Pillai et al. (2013) for the details
of algorithms and interestingness measures.)

In the future, we aim to enhance the features of ERMO-
DG, to support rotational and curvilinear motion with dif-
ferent variable acceleration features for instances. Also, we
plan to extend the generator to support different geometries
(such as lines, circles and polygons with holes) in order to
support different algorithms in pattern mining.

Acknowledgments
This work was supported by two National Aeronautics
and Space Administration (NASA) grant awards, 1) No.

NNX09AB03G and 2) No. NNX11AM13A.

Source Code
ERMO-DG is open-source and publicly available at
(http://www.cs.gsu.edu/%7Ebaydin2/proj/ermodg.html).

References
Agrawal, R., and Srikant, R. 1994. Fast algorithms for min-
ing association rules in large databases. In Proc. of the 20th
Int. Conf. on Very Large Data Bases, VLDB ’94, 487–499.
Andrienko, N., and Andrienko, G. 2007. Designing visual
analytics methods for massive collections of movement data.
Cartographica 42:117–138.
Brinkhoff, T. 2002. A framework for generating network-
based moving objects. GeoInformatica 6(2):153–180.
Chen, S.; Jensen, C. S.; and Lin, D. 2008. A benchmark
for evaluating moving object indexes. Proc. VLDB Endow.
1(2):1574–1585.
Düntgen, C.; Behr, T.; and Güting, R. H. 2009. Berlinmod:
A benchmark for moving object databases. The VLDB Jour-
nal 18(6):1335–1368.
Huang, Y.; Shekhar, S.; and Xiong, H. 2004. Discover-
ing colocation patterns from spatial data sets: a general ap-
proach. Knowledge and Data Engineering, IEEE Transac-
tions on 16(12):1472–1485.
Pelekis, N.; Ntrigkogias, C.; Tampakis, P.; Sideridis, S.; and
Theodoridis, Y. 2013. Hermoupolis: A trajectory generator
for simulating generalized mobility patterns. In Machine
Learning and Knowledge Discovery in Databases. 659–662.
Pillai, G. K.; Angryk, R. A.; and Aydin, B. 2013. A filter-
and-refine approach to mine spatiotemporal co-occurrences.
In ACM SIGSPATIAL Int. Conf. on Advances in Geographic
Information Systems, 114–123.
Pillai, K. G.; Angryk, R. A.; Banda, J. M.; Schuh, M. A.;
and Wylie, T. 2012. Spatio-temporal co-occurrence pattern
mining in data sets with evolving regions. In Data Mining
Workshops, 2012 IEEE 12th Int. Conf. on, 805–812. IEEE.
Saglio, J.-M., and Moreira, J. 2001. Oporto: A realis-
tic scenario generator for moving objects. GeoInformatica
5(1):71–93.
Schuh, M. A.; Angryk, R. A.; Pillai, K. G.; Banda, J. M.;
and Martens, P. C. 2013. A large-scale solar image dataset
with labeled event regions. Int. Conf. on Image Processing.
Shekhar, S., and Huang, Y. 2001. Discovering spatial co-
location patterns: A summary of results. In Jensen, C.;
Schneider, M.; Seeger, B.; and Tsotras, V., eds., Advances
in Spatial and Temporal Databases, volume 2121 of Lecture
Notes in Computer Science. 236–256.
Theodoridis, Y.; Silva, J. R.; and Nascimento, M. A. 1999.
On the generation of spatiotemporal datasets. In Advances
in Spatial Databases, 147–164.
Tzouramanis, T.; Vassilakopoulos, M.; and Manolopoulos,
Y. 2002. On the generation of time-evolving regional data*.
Geoinformatica 6(3):207–231.

326




