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Abstract 
Bidirectional Associative Memories (BAMs) are artificial 
neural networks that can learn and recall various types of 
associations. Although BAMs have shown great promise at 
modeling human cognitive processes, these models have 
often been investigated under optimal conditions in which 
the network is fully connected. Whereas some BAM models 
have shown to be robust to connection sparseness, those 
particular models could not handle highly sparse 
connectivity, unlike the human brain. This paper shows that 
a particular type of BAM can perform learning and recall 
under higher levels of sparse connectivity by increasing 
input dimensionality. This study provides a better 
understanding of the conditions impacting the convergence 
of the learning in BAM models and introduces a new 
avenue of research in learning in biological levels of 
sparseness, namely network dimensionality.  

 Introduction  
A successful approach to modeling human classification 
and recall of various associations has consisted of 
distributing information over parallel networks of 
processing units. Brain inspired recurrent associative 
memories offer the ability to develop attractors for each 
pattern through feedback connections such as the Hopfield 
model (Hopfield 1982). Kosko (1988) generalized the 
Hopfield model to a heteroassociation, creating a new class 
of neural network models, the Bidirectional Associative 
Memory (BAM). Numerous BAM models were developed 
following Kosko's (e.g. Xu, Leung and He 1994; Zhuang, 
Huang and Chen 1993) that showed improvements such as 
performing multi-step pattern recognition or learning real-
valued correlated patterns. In this paper, a BAM model 
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proposed by Chartier & Boukadoum (2006, 2011), the 
Bidirectional Heteroassociative Memory (BHM) is used. 
Although the BHM has shown great promise at modeling 
human cognitive processes, this model has often been 
investigated under optimal conditions in which the 
network is fully connected. In other words, the BHM does 
not take into account sparseness, unlike what is known of 
biological neural networks.  
  Evidence from neuroscience research has shown that 
the brain is sparsely connected (Brecht, Schneider, 
Sakmann and Margrie 2004, Fiete, Hahnloser, Fee and 
Seung 2004). On a global level, neurons are generally 
connected to only 1×10! neurons of the total 1×10!! 
neurons in the brain, therefore extremely sparsely 
connected. Extreme sparseness also holds on a local level 
where for example, it was shown that neurons of the 
hippocampus are connected to not more than 5% of other 
neurons (Amaral, Ishizuka and Clairborne 1990; D'Este, 
Towsey and Diederich 1999). Although the human brain 
only makes up 2% of body mass, it consumes 20% of the 
body’s resources (Kety 1957; Clarke and Sokoloff 1999). 
Based on this evidence, if the brain was fully connected, as 
in the case of artificial neural networks, it would need to 
consume about 400% ( !.!

!.!"
×100) of the current energy 

resources needed for body functioning. Currently, 
assuming full connectivity in artificial neural network 
models contradicts the empirical evidence that biological 
neural networks cannot afford to be fully connected.  
 The implementation of sparseness in a BAM model was 
studied recently in Tremblay et al. (2014), where it was 
shown that the BHM is robust to connection sparseness as 
the performances of the network in recall associations are 
not reduced in medium sparseness conditions. However, 
high levels of sparseness (i.e. higher than 70%) drastically 
reduced the performance of the network. Again, this 
performance is barely more biologically plausible, as a 
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connectivity level of 30% (sparseness level of 70%) as 
opposed to 5% as observed in the hippocampus would 
result in 6 times the actual energy consumption of the 
brain. Another sparsely connected BAM model was 
proposed in Bhatti (2009), which required a minimum 
interconnection of 15%. Although this model showed 
improvements in model performance, it does not achieve 
the plausible minimum level of connectivity. The problem 
also holds in standard associative memories where it was 
shown that connection sparseness leads to reduced 
performances where even minimal connection sparseness 
diminished the storage capacity of the memory (Bosh and 
Kurfess 1998; Shirazi, Shirazi and Maekawa 1993) 
limiting the biological plausibility of this class of models. 
The issue of a high minimum connectivity in BAM 
networks is a serious limitation to the biological 
plausibility of the model and should be solved for the latter 
to be considered a good model of neurodynamics.  
 This paper proposes a solution to this limitation by 
increasing input dimensionalities. It is showed that such an 
increase leads to better performances for a same memory 
load ratio. In other words, having a higher input 
dimensionality is not a burden but rather a blessing in 
natural system. This study provides a better understanding 
of the conditions that impact learning and recall of BAM 
networks and suggests that the BAM is a versatile neural 
network model that can take into account many cognitive 
and biological constraints simultaneously.  
 The remainder of the paper is divided as follows: 
Section II describes the network's architecture. Section III 
shows simulation results regarding the network's 
performance in learning and recalling autoassociations. 
Section IV discusses the results and provides a conclusion 
of our work. 

Model  
The model proposed by Chartier & Boukadoum (2006,  
2011) is made of two Hopfield-like neural networks 
interconnected in head-to-tail fashion, providing a  
recurrent flow of information that is processed in a  

 
Figure 1: Architecture of the BAM.                                         

         
 

 
bidirectional fashion. The network's architecture is 
presented in fig. 1 where x(0) and y(0) represent the initial 
vectors-states, W and V are the weight matrices and t is 
the current iteration number. 

Transmission Function 
The transmission function is defined by the following 
equations:  
 
∀𝑖𝑖, … , 𝑁𝑁, y! !!! = 𝑓𝑓 a!(!)

=
1,
−1,
𝛿𝛿 + 1 a!(!) − 𝛿𝛿a!(!)

! ,
      
if  a!(!) > 1
if  a!(!) < −1
else

  (1a) 

 
and 
 
∀𝑖𝑖, … ,𝑀𝑀, x! !!! = 𝑓𝑓 b!(!)

=
1,
−1,
𝛿𝛿 + 1 b!(!) − 𝛿𝛿b!(!)

! ,
        
if  b!(!) > 1
if  b!(!) < −1
else

  (1b) 

 
where N and M are the number of units in each layer, i is 
the unit index, δ is a general transmission parameter and a 
and b are the activation. These activations are obtained the 
usual way: a(t)=Wx(t) and b(t)=Vy(t). In short, the 
equation is made of a cubic function with hard limits 
added at 1 and -1. This function has the advantage of 
exhibiting grey-level attractor behaviour (Chartier and 
Boukadoum 2006). 

Learning Rule 
As for the learning rule, the weight connection's 
modification is done following a Hebbian/anti-Hebbian 
approach (Storkey and Valabregue 1999)/(Begin and 
Proulx 1996): 
 
𝐖𝐖 𝑘𝑘 + 1 = 𝐖𝐖 𝑘𝑘 + η y(0) − y(𝑡𝑡) x 0 + x(𝑡𝑡) !

𝐕𝐕(𝑘𝑘 + 1) = 𝐕𝐕(𝑘𝑘) + η x 0 − x(𝑡𝑡) y 0 + y(𝑡𝑡) !  (2) 

 
where x(0) and y(0) are the initial inputs to be associated, 
and k is the learning trial number. However, the learning 
differs from the original BHM by replacing the learning 
parameter η  by a matrix of learning parameters (Tremblay 
et al. 2014). This matrix of learning parameters allows the 
introduction of sparseness. These matrices are given by:  
 

𝐀𝐀 =

𝛼𝛼!! 𝛼𝛼!"
𝛼𝛼!" 𝛼𝛼!! ⋯

𝛼𝛼!!
𝛼𝛼!!

⋮ ⋱ ⋮
𝛼𝛼!! 𝛼𝛼!! ⋯ 𝛼𝛼!"

  (3a) 

 
for linking the x-layer to y-layer and  
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𝐁𝐁 =

𝛽𝛽!! 𝛽𝛽!"
𝛽𝛽!" 𝛽𝛽!!

⋯ 𝛽𝛽!!
𝛽𝛽!!

⋮ ⋱ ⋮
𝛽𝛽!! 𝛽𝛽!! ⋯ 𝛽𝛽!"

  (3b) 

 
for linking the y-layer to the x-layer. In a standard BHM, 
the network convergence is guaranteed if the learning 
parameter (𝛼𝛼!"� ∧ �𝛽𝛽!") is smaller than the threshold 
found with: 
 
(𝛼𝛼!"� ∧ �𝛽𝛽!") =

!
! !!!! !"# !,!

, 𝛿𝛿 ≠ !
!
  (4) 

 
where M and N are respectively the dimensionality of the 
input and its association (Chartier & Boukadoum 2006). 

Simulation  
This simulation assesses the performances of a sparse 
BHM on a random auto associative task using large input 
dimensionalities.  
Methodology 
The BHM used was described in the model section. 
Sparseness was applied by setting a number of learning 
parameters to 0. It is noted from Equation (2) that if 
(𝛼𝛼!"� ∧ �𝛽𝛽!") = 0 for a given connection, then wij(k+1) = 
wij(k). The task performed is an autoassociation of random 
bipolar patterns. The input dimensions varied from 500 to 
2000, while the memory load (number of input patterns 
compared to their dimensionality) was kept constant to a 
value of 10% for every condition tested. In addition to this, 
the degree of sparseness was tested for 80% and 90% 
throughout the simulations. The patterns were generated 
randomly without repetition within the list of associations. 
The transmission function parameter (δ) was set to 0.2 
throughout the simulations and the number of iterations 
through the network before the weight matrices are 
updated was set to t = 1. 
 Learning was carried out according to the following 
procedure:  

1) Random selection of a pair of patterns 
 (x(0) and y(0)). 

2) Computation of x(t) and y(t) according to the 
transmission function (1). 

3) Computation of the weight matrices update 
according to (2). 

4) Repetition of steps 1) to 3) until all  pairs have 
been presented. 

5) Repetition of steps 1) to 4) until the mean square 
error is lower than 10-4. 

The network was then tested on a recall task with pixel 
flipped noise (flipping a proportion of pixels, varying from 

        

 

0% to 50%). Each recall task was repeated 200 times for a 
given pattern. Mean performances are reported. 
Performances are given by the number associations 
correctly reconstructed (MSE < 1, where MSE is mean 
squared error between the reconstructed and target vector) 
over the total number of associations.  
Results 
Figure 2 (top) presents the simulation results for the 80% 
sparseness condition white Figure 2 (bottom) presents the 
same results with 90% sparseness. Both show a clear 
increase in the performances of the network as the 
dimensionalities are increased, even with memory load 
kept constant. Of course, if the noise level is too extreme 
(higher than 42% pixel flipped) then performances are 
poor in every conditions tested. Results also show a bigger 
impact of dimensionality on performances when 
sparseness levels are higher (i.e. 90%).  
 

 

 
Figure 2: Performances of the BHM on a recall task with pixel 

flipped under varying levels of input dimensionality for 
(top) 80% sparseness and (bottom) 90% sparseness. 

 

Discussion 
As the results showed, the BHM is indeed capable of 
handling high levels of sparseness (i.e. 80%). The results 
are consistent with the ones reported in other types of 
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connectionist models where sparse connectivity was 
shown to still lead to stable solutions (Shirazi, Shirazi and 
Maekawa 1993; Bosch and Kurfess 1998, Hoyer and 
Hyvarinen 2002; Bhatti 2009). However, the influence of 
input dimensionality on network performances was never 
clearly explored in connectionist models. Also, our results 
show that unlike what was shown in Tremblay et al. 
(2014), sparseness levels higher than 70% do not lead to 
reduced performances as long as the input dimensions are 
high enough. These also add to the results found in Bhatti 
(2009), where increased dimensionalities could fix for the 
decreased maximum memory load in sparse network. In 
short, these results show that the network size should be 
taken into account in future research on sparseness 
tolerance where high level of dimensionality, as is seen 
biological neural networks (Curcio et al. 1990), could lead 
to a higher tolerance to connection sparseness. The results 
also show that network sparseness, at a natural level, does 
not systematically lead to reduced performances and that 
sparseness therefore represents a clear advantage.   
 In conclusion, the present paper introduces a way to 
correct for reduced performances in highly sparse BHM 
conditions by increasing the input dimensionality. By 
showing that the BHM can handle highly sparse 
connectivity, this article provides a better understanding of 
the conditions that impact the convergence of the BHM. 
This research should have implications for VLSI where 
extreme sparse connectivity could be used in order to save 
processing time with no effect on network performances. 
Finally, this research should also have implications in 
physical neural networks and in robotics where it is shown 
that large networks can tolerate extreme sparseness, again 
saving time and resources.  
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