

Learning Case Feature Weights from Relevance and Ranking Feedback

Luc Lamontagne1 and Alexandre Bergeron-Guyard2
1 Department of Computer Science and Software Enginering, Université Laval, Québec, Canada

Luc.Lamontagne@ift.ulaval.ca
2 Defence Research and Development Canada, Valcartier, Canada

Alexandre.BergeronGuyard@drdc-rddc.gc.ca

Abstract
We study in this paper how explicit user feedback can be
used by a case-based reasoning system to improve the
quality of its retrieval phase. More specifically, we explore
how both ranking feedback and relevance feedback can be
exploited to modify the weights of case features. We
propose some options to cope with each type of feedback.
We also evaluate, in an interactive setting, their impact on a
travel scenario where some user provides feedback on a
series of queries. Our results indicate that the combined
weight-learning scheme proposed in this paper succeeds, on
average, to assign more weights to the features used to
formulate relevance and ranking feedback.

 Introduction
To be useful, a case-based reasoning (CBR) system must
provide recommendations that meet the information needs
of its users. In most CBR systems, the quality of the
recommendations strongly depends on how case similarity
is evaluated. However, it is difficult to determine at design
time a generic similarity configuration that will be
satisfying for most situations encountered by the system.
Moreover, this configuration might have to be personalized
for multiple users having different needs, interests and
preferences.
 Our objective is to study how CBR systems can improve
the quality of their content-based recommendations by
learning from their interactions with human users during
online retrieval sessions. Given some preliminary retrieval
results made by the system, we would like the CBR system
to self-adapt its retrieval knowledge to the on-line feedback
of a specific user.
 In this paper, we address the problem of learning the
weights of case features when the system is provided with
mixed feedback. More specifically, we propose an

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

optimization scheme that combines techniques to cope
with both relevance feedback and ranking feedback.
 This approach is useful for CBR applications where case
solutions are complex objects. For instance, one of our
applications is the support of intelligence operations where
products such as likely events and courses of actions are
recommended based on the similarity of past operational
situations. In this scenario, human feedback is required to
assess the retrieval results. As this revision process is
usually tedious, we assume that CBR self-adaptation has to
be conducted on a limited amount of feedback.

Learning Weights Based on User Feedback
We assume that some user is responsible to train the CBR
system according to its own needs and preferences. As we
do not assume that the user is familiar with CBR
technology, training of the system is solely accomplished
by critiquing the recommendations made by the CBR
retrieval component. A training episode would proceed as
follows (Figure 1):
a) The trainer (i.e. the user) submits a query to the CBR

system and gets some recommendations (retrieval
results). We assume that case similarity is estimated as
a weighted average of the local similarity measures of
the case features;

b) The trainer analyzes the recommendations and, if not
satisfied, provides some feedback on the validity
and/or the relative importance of the cases presented in
the retrieval results;

c) A learning component then takes the recommendations
of the system and the feedback of the user to
determine how the similarity configuration of the
system should be modified. A similarity configuration
contains all the functions and parameters necessary to
estimate the similarity between two cases.

 Once the similarity configuration of the system is
updated, the user can submit new queries and proceed
again with steps a) to c) to further refine the similarity

Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

301

configuration. Such a process would be repeated until the
user is satisfied with the quality of the recommendations
provided by the CBR system.

As the user might use have strict criteria and soft
preferences for evaluating retrieval results, we want the
system to handle two types of explicit feedback: ranking
feedback and relevance feedback.

Ranking feedback allow the user to reorder the results as
a function of his perceived similarity to the current
situation. In our experiments, the user is able to perform re-
ranking by using some graphical user interface to move a
selected retrieval result up or down. Relevance feedback is
done by tagging results as either “relevant”, “irrelevant”,
or as “unknown” (the latter indicating that the user is
uncertain about the relevance of a case).

Figure 1: Learning weights from user feedback

The objective of the system is to modify the weights of
the similarity measure to obtain a new ordering of cases
that reflects the specified feedback. This is accomplished
by using the techniques discussed in the next sections.

Learning from Ranking Feedback
Given a list of cases retrieved by the CBR system that are
presented in decreasing value of similarity, a user can
provide a ranking feedback describing the ordering of
cases he would have liked to get from the system. An
example of ranking feedback is presented in Figure 2.

The new ordering of cases provided by the user indicates
that, for any two consecutive cases, the first should either
have a higher rank or be ranked equal to the other. The
latter occurs either when two cases are considered
equivalent (e.g. having similar feature values) or when the
user has no specific preference over two cases. Hence a
ranking feedback does not necessarily require a strict total
order of the cases. It is also important to mention that the
feedback of the user only applies to the cases returned as
retrieval results by the CBR system.

Figure 2: Example of Ranking Feedback

 To modify the ranking of some cases, we need to modify
the global similarity of each case c with the
query q such that the ranking of the system becomes
identical to the ranking of the user. In our work, this
similarity is estimated as the weighted sum of the local
similarities , i.e.

 .

 Given a ranking feedback from the user, we want to
determine a new set of weights such that if

 then
where

 .

The general algorithm to update the weights is described in
Figure 3. The LEARN-RANKING-WEIGHTS algorithm is a
heuristic search that tries to adjust feature weights so that
the cases returned by a CBR component have the same
order as those in the ranking feedback. This algorithm
relies on three functions:
- UPDATE-WEIGHTS modifies the weights according to

the differences between the retrieval results and the
ranking feedback provided by the user.

- RERANK-CASES evaluates, using a set of weights, the
similarity of cases with the query problem. In practice,
this function simply invokes the retrieval phase of the
CBR component with the cases that were contained in
the initial retrieval results.

- ESTIMATE-ERROR estimates to what extent the ranking
in the retrieval results diverges from the ranking
feedback.

function LEARN- RANKING-WEIGHTS(query,
 retrievalResults, weights, feedback) returns weights

cases the k nearest cases contained in retrievalResults.
 repeat until some stopping criterion is satisfied
 weights UPDATE-WEIGHTS(weights, retrievalResults,
 feedback);
 results RERANK-CASES(query, cases, weights);
 error ESTIMATE-ERROR(results, feedback);
 return weights
Figure 3: General algorithm for learning weights from ranking

feedback

LEARN-RANKING-WEIGHTS iteratively tries to find a
promising set of weights, determine the new case ranking
obtained with these weights and determine if this new
ranking still contains errors. These were repeated steps

302

until a combination of the following stopping criteria is
satisfied:
• There is no more ranking error (as estimated by the

ESTIMATE-ERROR function);
• The algorithm has completed N iterations (N being a

threshold value defined by the system designer);
• The ranking error is small and does not get further

reduced over multiple iterations.

Estimation of the Learning Error
A ranking error occurs when two cases are not respectively
ranked as recommended by the ranking feedback. For
instance, as illustrated in Figure 4, the user would have
liked that the ranking of cases c2 and c4 to be inversed in
the retrieval result.

Figure 4: Ranking error between cases c2 and c4

The estimation of the ranking error for two wrongly
ranked cases ci and cj could be estimated using the
following measures:
• The difference of similarity between the two cases. In

our example, the similarity difference is 0.53.
• The number of ranks separating the pair of cases. In

our example, c2 and c4 are separated by 2 ranks.
• A combination of both errors. For instance:

function ESTIMATE-ERROR(results, feedback) returns weights
 cases the k nearest cases contained in the results.
 totalError 0.0;
 for each case1 in cases
 for each case2 following case1 in cases

if (WRONG-RANKING (case1, case2, results, feedback))
 simError = sim(case1) – sim(case2)
 rankError = rank(case2) – rank(case1)
 totalError totalError + (simError * rankError)
 return totalError

Figure 5: Error estimation function

In our work, we use the latter error definition and the
total error over all the wrong rankings in the retrieval
results of the CBR system as estimated by the ESTIMATE-
ERROR function described in Figure 5.

Learning to Rerank
To learn new weights from ranking feedback, we adopted a
gradient descent approach [Stahl 2001]. Gradient descent is

an optimization method that search for a local optimum by
modifying a solution step by step. The modifications made
at each step are proportional to some gradient values,
which is a quantity estimating to what extent a feature
contributes to the total ranking error.

function LEARN-WEIGHTS-GRADIENT(query, retrievalResults,
weights, feedback) returns weights
 bestWeights 0
 lowestError ESTIMATE-ERROR(retrievalResults, feedback);
 repeat until (error 0) or (nbIterations > MAX_STEPS)
 newWeights UPDATE-WEIGHTS -GRADIENT(bestWeights,
 retrievalResults, feedback, learningRate);
 results RERANK-CASES(query, cases, newWeights);
 newError ESTIMATE-ERROR(results, feedback);
 if (newError < lowestError)
 bestWeights newWeights
 lowestError newError
 else
 learningRate learningRate * scalingFactor
 increment nbIterations
 return bestWeights

Figure 6: Learning weights from ranking feedback using gradient
descent

function UPDATE-WEIGHTS -GRADIENT(weights,
 retrievalResults, feedback, learningRate) returns weights
 for each weight in weights
 gradient COMPUTE-GRADIENT(retrievalResults,
 feedback, feature);
 newWeight weight + (learningRate gradient)
 add newWeight to newWeights
 return NORMALIZE(newWeights)

function COMPUTE-GRADIENT(retrievalResults, feedback,
 feature) returns double
 cases the list of cases from retrievalResults
 gradient 0.0;
 for each case1 in cases
 for each case2 following case1 in cases
 if (WRONG-RANKING (case1, case2, results, feedback))
 simDiff = simfeature(case1) – simfeature(case2)
 rankDiff = rank(case1) – rank(case2)
 gradient gradient + (simDiff * rankDiff)
 return gradient

Figure 7: Updating weights using gradient descent

 More formally, the gradient is obtained from the first
derivative of the total ranking error function with respect to
each weight variable. To minimize the ranking error, we
update each feature weight by making a step
corresponding to the inverse of the gradient (i.e. we follow
the opposite direction of the slope of the error function to
reach some minimum point). The resulting update function
corresponds to the sum of the local errors for each inverted
pair of cases, i.e.

where is the set of wrongly ranked pairs of cases and

303

 .

A pseudo-code description of the algorithm is provided
in Figure 6 and Figure 7. The learning rate is a small
positive value that regulates the changes made to the
weights. Usually the learning rate is adjusted empirically
by conducting trials on a representative domain case base.
We found in our experiments that a small value should be
selected to prevent the algorithm from bouncing back and
forth over a local optimal set of weights. A scaling factor,
between 0 and 1, is used to decrease the learning rate when
weight updates fails to reduce the error rate.

Learning from Relevance Feedback
We describe in this section how to adjust the weights of the
CBR system when a user provides some feedback on the
relevance of some cases.

Relevance Feedback
The idea of relevance feedback is to get the user to indicate
that some cases should either be present or not present in
the retrieval results. In general, relevance should indicate if
a case meets some user’s information needs. However, in
practice, a case might be judged irrelevant for one of the
following reasons:
a) The value of one important feature is not acceptable.
b) Some combinations of feature values do not go well

together.
c) The solution of a case is not useful.

With respect to weight optimization, the reasons a) and
b) indicate that more weight should be assigned to the
features used to determine the relevance of a case.
However reason c) is more complex as it relates to the
utility of a case. While we expect case utility to be
proportional to case similarity, it cannot be fully
guaranteed in practice. Hence, relevance feedback should
work well if the feedback given by user is solely based on
the features of the case problems.

Rocchio Update
The field of Information Retrieval (IR) [Manning et al.
2009] has studied for many years how to cope with
relevance in retrieval systems. Their main intuition was
that the keywords of a query should be assigned a higher
weight if they appear in relevant documents. Conversely,
they should be penalized if they appear frequently in non-
relevant documents.

We adapted this intuition to case-based reasoning as
follows: features assigning higher similarity values to
relevant cases should see their weight increased while

weights of other features should be decreased. Extending
the Rocchio equation proposed in the IR literature, we
propose the following update function to adjust weights
based on relevance feedback:

where casesREL is the group of relevant cases and casesNR is
the group of non-relevant cases. This relevance feedback
update function has the effect of modifying the feature
weights so that the query problem q is moved closer to the
centroid of the relevant cases and moved away from the
centroid of the non-relevant cases.
 The parameters and determine the relative important
of relevant cases to irrelevant ones. In practice, values such
as and are frequently used. But we
recommend determining them empirically on a
representative data set.
 It is important to mention that this approach does not
require an iterative algorithm as the learning algorithm
presented for coping with ranking feedback. Given some
retrieval results and a relevance feedback, the update
function is applied only once to each feature weight.

Pseudo-ranking Approach
A relevance feedback suggests some observations on the
desired ranking of the cases. First, we would expect the
group of relevant cases to be returned at the top of the case
ranking. For instance, in our example presented in Figure
8, relevant cases c1 and c5 should be the most highly
ranked cases. Even if ranked first, it is impossible to
determine a strict total ordering among the relevant cases
solely based on their relevance value. Hence we considered
that they should all have the same rank (rank 1).

Figure 8: Relevance feedback as a pseudo-ranking

In contrast, non-relevant cases should have lower
similarities than those of the relevant group and be located
at the bottom of the case ranking. For instance, c2 and c3
should not precede c1 and c5.

 This leaves the remaining group of cases for which
we do not have a relevance feedback (c4 in our example).
One option would be to ignore these “unknown” cases
during the learning process. However we believe that some

304

valuable information resides in the fact that these cases are
neither relevant nor non-relevant. We assume that the
similarity of the “unknown” cases should be lower than
those of the relevant group and higher than those of the
non-relevant. This implies that they should be ranked as an
intermediate group in-between relevant and irrelevant case.

Given that a relevance feedback can be interpreted as a
pseudo-ranking of three groups of cases (relevant,
unknown and irrelevant), it becomes possible to apply a
gradient descent algorithm to learn weights from relevance
feedback. However, to do so, we need to refine the notion
of error. A pseudo-ranking error occurs if:
- Two cases do not have the same relevance feedback;
- And the case with lower relevance has a higher

similarity value than the other.

Learning with Combined Feedback
To learn weights when both types of feedback are provided
by the user, we simply adopt a cascade of learners where:
• Cases are ranked first based on the ranking feedback.

Gradient descent is applied to establish this ranking.
• The resulting weights are then updated using the

modified Rocchio update function to take into account
the relevance of the cases.

This first step of this scheme ensures that a suitable set
of weights is selected to respect the relative ranking
desired by the user. This approach also offers the
advantage that a pseudo-ranking optimization can be
conducted if the user only provides some relevance
feedback.

The second step, where a relevance feedback update is
applied to the ranking weights, aims to reduce further the
global similarity of the non-relevant cases so that it would
leave some opportunity to insert new cases in the retrieval
results during successive search over the entire case base.

Empirical Study
To study the behavior of the proposed weight-learning
scheme, we conducted experiments in an interactive setting
to evaluate how user feedback were translated into feature
weights. The training sessions made use of the travel case
base1, a data set containing an interesting variety of feature
types (numerical, categorical, ontological…). The training
scheme and the learning algorithms described in the paper
were implemented in Java. We also made use of jCOLIBRI
[Recio-Garcia et al. 2008] as a CBR framework to perform
case retrieval and to obtain the retrieval results needed by
the weight learning algorithms.

1 The travel case base contains 1024 cases defined with 7 problem
features (holiday type, number of persons, region, transportation mean,
duration, season, accommodation) and 2 solution features (hotel & price).
This case base is available at http://www.cs.auckland.ac.nz/~ian/CBR/.

 Each of our training sessions followed this procedure:
1. The human trainer selects some features to

determine the relevance and ranking of the cases.
2. The trainer submits a query to the CBR system and

analyzes the retrieval results. In our experiments,
the 5 top-ranked cases were presented.

3. The trainer formulates relevance and ranking
feedback based on the features selected in step 1.

4. The learning scheme updates the weights and stored
them in the similarity configuration to be reused for
other training episodes. In our experiments, we used
a learning rate of 0.1, a scaling factor of 0.5,

 and .
5. Steps 2-4 are repeated with new queries until the

ranking and relevance of the results are deemed
satisfactory by the trainer.

 The results presented in this section are the average
values obtained over 5 different training sessions.
 In our first experiment, we use a single feature (holiday
type) to determine the relevance of a case. To be relevant, a
case must have the same feature value as the query. We
also use another feature (season) to establish the relative
ranking of the cases. A ranking feedback corresponds to
the cases ranked in decreasing order of similarity for this
feature. The training results, presented in Figure 9, clearly
indicates that the learning scheme recognizes, within 2 or 3
user queries, the two features used to formulate the
feedback. It is interesting to observe that most of the
weight is assigned to the feature associated to relevance
(holiday type). We also notice that the feature assigned to
ranking feedback (season), is assigned sufficient weight by
the learning scheme to act as a soft constraint.

Figure 9: Weight learning results with relevance and ranking

feedback determined using one feature each.

 We repeated the same experiment using two features to
determine the relevance of a case (holiday type and season)
and one feature to establish case ranking (accommodation).
Again the features used to establish case relevance were
quickly recognized through learning and are assigned most
of the global weight (see Figure 10). In practice, most of
the recommendations become relevant after a few training

305

episodes. We also observed that the learning scheme
assigns sufficient weight to the ranking feature
(accommodation) to get a consistent case ordering in most
situations. However we noticed during our training
sessions that the gradient learner sometimes had difficulty
to perform its optimization satisfactorily.

Figure 10: Weight learning results for relevance and ranking
feedback established from 3 features.

Part of this problem is due to the error estimation
function. If two cases have inverted ranks but also have the
same global similarity score, the training scheme estimates
that there is no error as the difference of similarity is null.
In these conditions, weight learning does not get applied.
This relates to the fact that ranking feedback corresponds
to non-strict partial rankings. Other criteria to force
optimization in these situations should be studied.

Another problem occurs when some features get
assigned a weight of 0. These features have no more
influence on the ranking of the cases. It then becomes
difficult in the following training episodes to reassign them
some weight. As fewer features contribute to similarity
estimation, the likelihood of having multiple cases with the
same similarity score is increased - which brings us back to
the problem with the error estimation function.

Related Work
Early work in this research direction was dedicated to the
modification of feature weights when CBR is applied to
classification tasks. [Wettschereck & Aha 1997] compared
various learning algorithms based on a leave-one out
evaluation of the cases to estimate the classification
accuracy of a CBR retrieval component. In [Bonzano et al.
1997], learning is used to update feature weights in order
to optimize the problem-solving performance of a CBR
system. [Branting 2003] proposed an approach to
determine feature weights by looking at selections from a
set of items. Feature weights are modified by
adding/subtracting fixed values so that selected items are
moved higher in the recommendation list. Our presentation
of the gradient descent approach to learn weights from
ranking feedback is inspired from the work of Armin Stahl

[Stahl 2001]. The topic of user preferences has also been
studied for recommender systems [Bridge et al. 2005] and
conversational CBR [Aha et al., 2005]. Our research effort
differs from previous work as it incorporates both
relevance and ranking feedback to learn CBR feature
weights. We also make use a modified formulation of
Rocchio relevance feedback to update CBR feature
weights.

Conclusion
In this paper, we explored how CBR weight learning can
be conducted for both ranking and relevance feedback. We
proposed to combine techniques to consider both types of
feedback simultaneously. Experiments conducted to
evaluate the algorithms clearly indicate that the learning
scheme can recognize within a few sessions the features
used to formulate both types of feedback.

As future work, we recommend to experiment with more
complex learning schemes to estimate their benefits. For
instance, stochastic gradient descent seems to be an
interesting candidate. Other error estimation functions
should be studied to force weight optimization when
multiple cases have the same global similarity. Finally, to
improve the robustness of the solutions, we would like to
integrate past feedback into the learning scheme using
some decay functions for preferences change over time.

References
Aha, D.W. ; McSherry, D. ; & Yang, Q. 2005. Advances in
conversational case-based reasoning. Knowledge Engineering
Review, 20(3), pp. 247-254.
Bonzano, A.; Cunningham, P.; and Smyth, B. 1997. Using
Introspective Learning to Improve Retrieval in CBR: A Case
Study in Air Traffic Control, In Proceedings of the Second
International Conference on Case-Based Reasoning Research
and Development, Springer, pp. 291-302.
Branting, K. 2004. Learning Feature Weights from Customer
Return-Set Selections, Knowledge and Information Systems, vol.
6, issue 2, Springer, pp. 188-202.

Bridge, D.G. ; Göker, M.H. ; McGinty, L. ; Smyth, B. 2005.
Case-based recommender systems. Knowledge Engineering
Review, 20(3), pp. 315-320.
Manning, C.; Raghavan, P.; and Shutze, H. 2009. Introduction to
Information Retrieval, Cambridge University Press.

Recio-Garcia, J. A.; Diaz-Agudo, B.; and Gonzalez-Calero, P.
2008. jCOLIBRI: Tutorial, Technical report, Facultad de
Informatica, Universidad Complutense de Madrid, Spain.
Stahl, A. 2001. Learning Feature Weights from Case Order
Feedback, Case-Based Reasoning Research and Development,
Springer. pp. 502-516.
Wettschereck, D.; Aha, D.; and Mohri, T. 1997. A Review and
Empirical Evaluation of Feature Weighting Methods for a Class
of Lazy Learning Algorithms. Artificial Intelligence Review, 11
(1-5), pp. 273-314.

306

