
A New Dimension Division Scheme for
Heterogeneous Multi-Population Cultural Algorithm

Mohammad R. Raeesi N. and Joshua Chittle and Ziad Kobti
School of Computer Science, University of Windsor, 401 Sunset Avenue, Windsor, ON, Canada N9B 3P4

raeesim@uwindsor.ca and chittlej@uwindsor.ca and kobti@uwindsor.ca

Abstract

Heterogeneous Multi-Population Cultural Algorithm
(HMP-CA) is a new class of Multi-Population Cultural
Algorithms which incorporates a number of local Cul-
tural Algorithms (CAs) designed to optimize different
subsets of the dimensions of a given problem. In this ar-
ticle, various dimension decomposition techniques for
HMP-CAs are proposed and compared. The concept of
using a dimension decomposition scheme which does
not result in populations having the same number of
dimensions is implemented, and named imbalanced di-
mension division. All the techniques are evaluated us-
ing a number of well-known benchmark optimization
functions and two measures are defined in order to com-
pare them including success rate and convergence ra-
tio. The results show that imbalanced dimension divi-
sion schema works better with a higher number of local
CAs, and outperforms all the other evaluated techniques
in both measures.

Introduction
Evolutionary Algorithms (EAs) are subset of optimization
methods successfully applied to solve problems in various
research areas. EAs are population-based approaches incor-
porating the concept of evolution inspired by natural selec-
tion; that individuals which survive for the next generation
are more likely to be fitter for their environment. An EA
starts with a population of randomly generated individuals
called the initial population. New populations are generated
by applying evolutionary operators on the individuals from
the previous population, followed by incorporating a selec-
tion method afterward for finalization. This routine halts
when a predefined termination criterion (e.g. CPU time, pre-
defined number of generations) has been met.

A Cultural Algorithm (CA) is an EA incorporating knowl-
edge to improve the search mechanism. In a CA, knowledge
is extracted, stored, and updated in a space separate form the
population, called the belief space. The recorded knowledge
in the belief space is then used to direct the search process
during evolution.

Although CAs are successfully applied to various types
of optimization problems, they suffer from immature con-
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vergence. There are a number of strategies introduced to re-
solve converging to local optima, however researchers have
recently been interested in incorporating multiple popula-
tions to increase diversity and escape to the global optimum.
The multiple populations approach divides the whole pop-
ulation into a number of sub-populations, with each sub-
population being evolved using a local CA independently
while the local CAs communicate with each other between
generations.

In addition to incorporating multiple populations in CAs,
we recently showed that incorporating heterogeneous local
CAs offers better solutions compared to the homogeneous
ones. We proposed a Heterogeneous Multi-Population Cul-
tural Algorithm (HMP-CA) to deal with numerical optimiza-
tion problems where the goal is to optimize mathematical
functions with a D-dimensional vector of continuous param-
eters (Raeesi N. and Kobti 2013). The results showed that
dividing the dimensions among the local CAs improves the
convergence rate. Furthermore, by incorporating partial so-
lutions our published method saves both memory and CPU
usage while handling the same total number of individuals
in each generation.

There are various techniques to divide the dimensions
among local CAs in a HMP-CA. In this article, an analysis is
conducted to study the performance of these techniques. Our
published HMP-CA (Raeesi N. and Kobti 2013) is modified
such that it is capable of dealing with a number of dimen-
sion division strategies and any number of local CAs. The
modified HMP-CA includes a number of heterogeneous sub-
populations with a shared belief space. Each sub-population
includes only partial solutions corresponding to its assigned
dimensions and sends its best partial solutions to the belief
space every generation. For each dimension, the shared be-
lief space keeps the best parameters with their corresponding
objective value. In order to evaluate the strategies, a number
of benchmark numerical optimization functions are incorpo-
rated. Each strategy is investigated with variable number of
sub-populations.

The structure of this article is as follows. Section Cultural
Algorithm briefly describes CA and its multi-population ver-
sion, followed by a concise description of HMP-CA in Sec-
tion Heterogeneous Multi-Population Cultural Algorithm.
Section Proposed Method illustrates the proposed HMP-CA
in detail, followed by representing the investigated dimen-
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sion decomposition strategies in Section Dimension Decom-
position Strategies. Section Experiments and Results repre-
sents the experiments and the discussion on the results, fol-
lowed by representing concluding remarks and future direc-
tions in Section Conclusions.

Cultural Algorithm
Cultural Algorithm (CA) as developed by Reynolds (1994)
is an EA which extracts knowledge during the evolutionary
process in order to redirect the search process. CA incor-
porates two spaces, namely a population space and a belief
space. The population space evolves individuals over gener-
ations while the belief space is responsible for storing and
updating the extracted knowledge. CAs incorporate a two-
way communication between the spaces, namely an accep-
tance function which transfers the best individuals from the
population space to the belief space and an influence func-
tion which carries the extracted knowledge from the belief
space to influence the operations in the population space.
The evolution process in population space can be managed
by any evolutionary algorithm such as a Genetic Algorithm
(GA) or a Differential Evolution (DE).

In spite of their successful application in various fields,
CAs suffer from immature convergence. The main reason is
the fact that they do not preserve population diversity over
generations. There are a number of strategies introduced to
overcome this limitation such as rejecting duplicate solu-
tions or having a high mutation rate. Incorporating multiple
populations is another such strategy which represents a good
performance in order to do so. The first Multi-Population
Cultural Algorithm (MP-CA) was introduced by Digalakis
and Margaritis (2002) which was incorporated to schedule
electrical generators. The main characteristic of a MP-CA
is its architecture which determines the knowledge propa-
gation within the local CAs. There are different architec-
tures proposed to implement a MP-CA. The most common
one is homogeneous local CAs (Xu, Zhang, and Gu 2010;
Guo et al. 2011; Raeesi N. and Kobti 2012) in which there
are a number of homogeneous local CAs with their own lo-
cal belief spaces cooperating to find the best solution.

Heterogeneous local CAs is another class of architec-
tures for MP-CA where the sub-populations are heteroge-
neous such that each sub-populations is working on differ-
ent dimensions. Lin et al. (Lin, Chen, and Lin 2008; 2009;
Lin et al. 2009) introduced heterogeneous local CAs by
proposing their Cultural Cooperative Particle Swarm Opti-
mization (CCPSO) to train a Neurofuzzy Inference System
(NFIS). In CCPSO, each local CA has its own local be-
lief space and incorporates a Particle Swarm Optimization
(PSO) to evolve its corresponding sub-population. In this
framework each local CA is responsible for optimizing only
one variable.

In addition to the architecture, incorporating multiple
populations brings more algorithm parameters to be adjusted
in order to get a good performance. The number of sub-
populations, the communication topology, and the type of
migrated knowledge are three instances of MP-CAs param-
eters.

Heterogeneous Multi-Population Cultural
Algorithm

Heterogeneous Multi-Population Cultural Algorithm (HMP-
CA) is an architecture in the class of Heterogeneous local
CAs in which there is only one belief space shared among all
local CAs (Raeesi N. and Kobti 2013). In this architecture,
there are a number of local CAs working on optimization of
different subsets of the all dimensions. The only one shared
belief space is responsible to keep a track of the best param-
eters found for each dimension. The focus of this paper is on
this architecture where there are various strategies to divide
dimensions among local CAs.

In HMP-CA, each local CA is designed to handle only
its assigned dimensions. Therefore instead of complete solu-
tions, each sub-population provides a set of partial solutions.
For instance, if a local CA is responsible to optimize the first
three dimensions of a 30-dimensional optimization problem,
it only works with the values for the first three dimensions of
a solution meaning only a 3-dimensional vector is used in-
stead of a complete 30-dimensional solution. In other words,
in this example a sub-population including 100 partial so-
lutions deals with only 300 parameters in each generation
while a sub-population with the same number of complete
solutions incorporates 3,000 parameters. Due to this huge
deduction in the number of parameters for each generation,
the HMP-CA is an efficient method in terms of both CPU
time and memory usage.

It should be mentioned here that in order to evaluate a
partial solution, it is completed by the complement of its pa-
rameters coming from the belief space. This mechanism pro-
vides a fair comparison platform for partial solutions such
that all the partial solutions are completed with the same pa-
rameters complement.

Heterogeneous local CAs incorporating either a shared
belief space or local belief spaces are initialized by divid-
ing the dimensions. Lin et al. (Lin, Chen, and Lin 2008;
2009; Lin et al. 2009) assigned each dimension to a local
CA, and in our published HMP-CA (Raeesi N. and Kobti
2013) a jumping strategy was incorporated for dimension
decomposition. There are more dimension division strate-
gies, the most common ones are investigated in this study
which are represented in Section Dimension Decomposition
Strategies.

Proposed Method
The architecture of the proposed method is similar to our re-
cently published HMP-CA (Raeesi N. and Kobti 2013). A
number of sub-populations including only partial solutions
are incorporated alongside a shared belief space. In the pub-
lished HMP-CA, sub-populations cooperate with each other
by transferring only their best partial solution to the belief
space, and the belief space updates its only one parameter
for each dimension with its corresponding objective value.
In contrast, the architecture of the proposed method provides
the flexibility to set the number of best partial solutions to be
transferred to the belief space as well as to set the number of
parameters to be stored in the belief space for each dimen-
sion.
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Table 1: A sample belief space with size 3.

Dimensions 1 2 3 4 5

Set 1 Parameters 0.0 0.0 -0.88 -0.23 -0.43
Objective 1.01 1.01 1.01 1.01 1.01

Set 2 Parameters 0.01 -0.26 1.06 -0.24 -0.44
Objective 1.02 1.09 1.37 1.01 1.01

Set 3 Parameters 0.39 -0.31 -0.73 -0.62 0.79
Objective 1.19 1.12 1.49 1.35 1.79

Furthermore, the published HMP-CA incorporates only
one static dimension division strategy, while the proposed
method is capable to deal with any dimension decomposi-
tion technique such as sequential, logarithmic, and even cus-
tomized ones.

Like the published HMP-CA, in order to evolve the sub-
population a simple DE is incorporated which benefits from
DE/rand/1 mutation represented in Equation 1, binomial
crossover illustrated in Equation 2, and a selection mecha-
nism depicted in Equation 3. Due to the extensive experi-
ments conducted in the published HMP-CA, the scale factor
for Equation 1 is selected randomly from intervals [0.5, 2.5]
for each generation and the crossover probability for Equa-
tion 2 is set to 0.5 for all generations.

Vi,g = Xr1,g + F × (Xr2,g −Xr3,g) (1)
where Xr1,g , Xr2,g , and Xr3,g are three randomly selected
target vectors within the same generation g. F is a scale fac-
tor to determine how much the base vector Xr1,g should be
perturbed by the difference of the other two.

zj,i,g =

{
vj,i,g if rj ≤ Cr or j = jrand
xj,i,g otherwise (2)

where rj is a real number randomly selected within the inter-
val [0, 1) for jth dimension, and Cr is the crossover prob-
ability. In order to ensure that the trial vector Zi,g differs
from target vector Xi,g at least in one component, jrand is
randomly selected as the index of the different dimension.

Xi,g+1 =

{
Zi,g if f(Zi,g) ≤ f(Xi,g)
Xi,g otherwise (3)

where Xi,g and Zi,g denote a target vector and its corre-
sponding trial in generation g, respectively and Xi,g+1 rep-
resents the selected target vector for the next generation.

A shared belief space is incorporated in the proposed
HMP-CA which tracks the best found parameters with their
corresponding objective values for each dimension. A sam-
ple belief space of size 3 is illustrated in Table 1 which is
incorporated to solve a 5-dimensional sphere model.

The framework of the belief space starts with receiving a
number of best partial solutions from a local CA. For each
parameter of each partial solution, the corresponding records
are reviewed in order to avoid pushing duplicate parame-
ters. Therefore, for the existing parameters only the objec-
tive value is updated and the new parameters are inserted
into the belief space if they have a better objective value.

The belief space influences the search direction only in
fitness evaluations. When a local CA requires a partial solu-
tion to be evaluated the belief space is queried for the com-
plement of its set of parameters, the belief space returns the
complement parameters which are randomly selected from
its recorded parameters.

The number of local CAs in the proposed HMP-CA and
their corresponding assigned dimensions are dependent to its
dimension division strategy. Therefore the proposed HMP-
CA starts by receiving a dimension division strategy. Based
on the given strategy, each local CA is initialized with its
corresponding sub-population of randomly generated partial
solutions. The local CAs are evolved incorporating the pre-
viously mentioned DE for the maximum number of genera-
tions such that they transfer their best partial solutions to the
belief space in every generation and they request the belief
space for the complement parameters for each fitness evalu-
ation.

In order to avoid trapping into local optimal regions
within a sub-population, a re-initialization mechanism is in-
corporated such that if a local CA cannot find a better solu-
tion for a number of generations its sub-population will be
re-initialized with random partial solutions while the belief
space continues with its recorded parameters. It should be
mentioned that in the proposed HMP-CA, there is no local
search method incorporated to speed up the convergence.

Dimension Decomposition Strategies
In this article, a number of different dimension division
strategies are studied which can be categorized into two
classes including balanced and imbalanced techniques. The
division strategies which assigns the same number of dimen-
sions to each local CA is classified as balanced divisions.
In balanced divisions, the difference of the number of di-
mensions between any two local CAs is at most one. All de-
composition strategies where this difference could be greater
than one are considered to be imbalanced division methods.

Within the balanced category, sequential division, jump-
ing division, and overlapped sequential division are investi-
gated. The jumping strategy assigns the adjacent dimensions
to different local CAs while the sequential strategy assigns
the adjacent dimensions to the same local CA. The over-
lapped sequential division is a modified version of sequential
division such that each dimension is assigned to two differ-
ent local CAs.

A logarithmic division method is considered as well, be-
longing to the category of imbalanced strategies. It starts by
assigning all the dimensions to the first local CA. Two ad-
ditional local CAs are generated by selecting each half of
the dimensions of the first local CA. Remaining local CAs
are generated in a similar fashion by recursively dividing the
dimensions in half.

Table 2 illustrates the described dimension decomposition
strategies dividing 30 dimensions among 15 local CAs. As
mentioned before, the balanced strategies assign almost the
same number of dimensions to each local CA, while the im-
balanced ones assign various number of dimensions to each
local CA ranging from one dimension to the all dimensions.
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Table 2: Dividing 30 dimension into 15 local CAs incorpo-
rating different strategies.

Local Balanced Imbalanced

Jumping Sequential Overlapped LogarithmicCAs Sequential
1 1,16 1, 2 1, 2, 3, 4 1, 2, 3, ..., 30
2 2, 17 3, 4 3, 4, 5, 6 1, 2, 3, ..., 15
3 3, 18 5, 6 5, 6, 7, 8 16, 17, 18, ..., 30
4 4, 19 7, 8 7, 8, 9, 10 1, 2, 3, ..., 8
5 5, 20 9, 10 9, 10, 11, 12 9, 10, 11, ..., 15
6 6, 21 11, 12 11, 12, 13, 14 16, 17, 18, ..., 23
7 7, 22 13, 14 13, 14, 15, 16 24, 25, 26, ..., 30
8 8, 23 15, 16 15, 16, 17, 18 1, 2, 3, 4
9 9, 24 17, 18 17, 18, 19, 20 5, 6, 7, 8

10 10, 25 19, 20 19, 20, 21, 22 9, 10, 11, 12
11 11, 26 21, 22 21, 22, 23, 24 13, 14, 15
12 12, 27 23, 24 23, 24, 25, 26 16, 17, 18, 19
13 13, 28 25, 26 25, 26, 27, 28 20, 21, 22, 23
14 14, 29 27, 28 27, 28, 29, 30 24, 25, 26, 27
15 15, 30 29, 30 29, 30, 1, 2 28, 29, 30

For a 30-dimensional optimization problem, the logarith-
mic strategy can generate up to 59 local CAs including one
local CA with 30 dimensions, two local CAs with 15 dimen-
sions, 4 local CA with 7 or 8 dimensions, 8 local CAs with 3
or 4 dimensions, 14 local CAs of 2 dimensions, and 30 local
CAs including only one dimension.

In this article, a new strategy similar to the logarithmic
strategy is also defined which is called customized logarith-
mic. The new strategy incorporates 35 local CAs for a 30-
dimensional problem which includes 5 local CAs with the
following 5 dimension subsets in addition to the 30 local
CAs with one dimension each.

{1, 2, 3, ..., 30}, {1, 2, 3, ..., 15}, {16, 17, 18, ..., 30},

{1, 2, 3, ..., 8}, {16, 17, 18, ..., 23}

Experiments and Results
In order to evaluate the mentioned strategies, they are in-
corporated by the proposed HMP-CA considering the total
population size to be set to 1000 individuals which can be
divided into any number of sub-populations evenly. Consid-
ering 15 local CAs in the proposed HMP-CA, each local CA
will have 66 solutions within its sub-population. The size of
the belief space is set to 3 and sub-populations transfer their
3 best solutions to the belief space in each generation. The
maximum generation to find the optimal solution is consid-
ered to be 10,000 generations, and if an optimal solution is
not obtained before this upper limit the run is considered to
be an unsuccessful one. For each experiment, 100 indepen-
dent runs were conducted to provide a statistically signifi-
cant sample size.

A number of well-known numerical optimization func-
tions were considered for the experiments which have been
used by various researchers (Yu and Zhang 2011; Mezura-
Montes, Velazquez-Reyes, and Coello Coello 2006). The 12
considered benchmark problems are listed as follows and are
detailed in the aforementioned references:

• f1 - Sphere Model.
• f2 - Generalized Rosenbrock’s Function.
• f3 - Generalized Schwefel’s Problem 2.26.
• f4 - Generalized Rastrigin’s Function.
• f5 - Ackley’s Function.
• f6 - Generalized Griewank’s Function.
• f7 and f8 - Generalized Penalized Functions.
• f9 - Schwefel’s Problem 1.2.
• f10 - Schwefel’s Problem 2.21.
• f11 - Schwefel’s Problem 2.22.
• f12 - Step Function.
The generalized Rosenbrock’s function (f2), for instance is
represented in Equation 4:

f2(x) =
D−1∑
i=1

∣∣∣100 (xi+1 − xi
2
)2

+ (xi − 1)
2
∣∣∣ (4)

−30 ≤ xi ≤ 30

min(f2) = f2(1, ..., 1) = 0

In addition to these 12 functions, a modified version of the
function f2 is considered in this analysis which is called
modified Rosenbrock’s function (f2M ) illustrated in Equa-
tion 5:

f2M (x) =

D−4∑
i=1

∣∣∣100 (xi+4 − xi
2
)2

+ (xi − 1)
2
∣∣∣ (5)

In our experiment, the number of dimensions is set to 30
which is a common number in the area of numerical opti-
mization.

In order to evaluate and compare the strategies using the
benchmark functions, two measures are defined including
Success Rate (SR) and Convergence Ratio (CR). The former
measure refers to the percentage of runs which find the opti-
mal solution within one experiment (100 independent runs).
An experiment with the 100% SR is referred as a reliable ex-
periment. The later measure deals with the average number
of generations required to find the optimal solution. Within
the conducted experiments, the experiment which has the
minimum average is considered to be the base of the CR
calculation, which is as follows.

ConvergenceRatio =
AV G−AV Gmin

AV Gmax −AV Gmin
× 100%

where AV G refers to the average number of generations re-
quired to find the optimal solution for an experiment, and
AV Gmin and AV Gmax denote the minimum and the max-
imum averages obtained over all experiments with respect
to each optimization function. Therefore, the zero CR value
represents the experiment which requires the minimum av-
erage number of generations to find the optimal solution.

Each dimensions division strategy is evaluated with dif-
ferent number of local CAs. The sequential, jumping, and
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Table 3: The CR and SR values with respect to each experiments in percentile form alongside their average in the last two rows.

Style Balanced Strategies Imbalanced Strategies
Seq Jump Seq/Jump Over Seq Log Cust

Local CAs 5 7 10 15 5 7 10 15 30 15 5 7 10 15 30 59 35

f1
CR 25.08 18.48 8.62 4.25 26.30 18.13 8.60 4.29 0.50 9.29 100.00 49.14 42.40 11.69 3.61 0.00 0.42
SR 99 100 100 100 100 100 100 100 100 100 38 95 91 100 100 100 100

f2
CR 24.23 11.90 11.17 24.59 - - - 100.00 99.55 7.85 52.78 31.43 22.43 7.70 1.90 0.00 1.20
SR 95 100 100 100 0 0 0 6 9 100 33 72 73 100 100 100 100

f2M
CR - - - - - - - - - - 90.18 84.22 100.00 59.62 18.52 7.43 0.00
SR 0 0 0 0 0 0 0 0 0 0 33 52 48 100 100 100 100

f3
CR 26.98 16.84 7.82 3.62 27.61 16.41 7.89 3.63 0.20 8.75 100.00 54.49 44.31 11.31 3.33 0.00 0.36
SR 100 100 100 100 100 100 100 100 100 100 20 100 94 100 100 100 100

f4
CR 25.02 15.36 5.89 2.34 32.12 16.22 5.98 2.35 0.00 7.01 100.00 48.93 48.94 9.51 1.84 0.54 0.15
SR 100 99 100 100 100 100 100 100 100 100 49 90 46 99 100 100 100

f5
CR 32.83 20.98 10.13 5.20 33.41 19.98 10.41 5.13 0.61 11.26 100.00 61.21 53.42 14.79 4.24 0.00 0.58
SR 100 100 100 100 100 100 100 100 100 100 33 96 89 100 100 100 100

f6
CR 31.96 18.03 7.16 2.98 24.36 15.19 6.67 2.91 0.00 7.12 100.00 42.18 38.73 9.21 2.28 0.06 0.29
SR 100 100 100 100 100 100 100 100 100 97 54 98 85 100 100 100 100

f7
CR 27.65 17.49 8.63 4.36 25.88 18.08 8.47 4.35 0.48 9.40 100.00 46.73 49.34 11.83 3.54 0.00 0.45
SR 100 100 100 100 100 100 100 100 100 100 31 94 93 100 100 100 100

f8
CR 31.81 19.73 9.78 5.05 32.23 21.14 9.88 4.97 0.59 10.91 100.00 52.55 53.56 13.63 4.16 0.00 0.56
SR 100 100 100 100 100 100 100 100 100 100 21 92 86 100 100 100 100

f9
CR 35.08 24.62 10.12 4.25 32.08 20.64 8.99 4.29 0.00 10.22 100.00 51.90 51.95 13.09 3.28 0.03 0.38
SR 99 100 100 100 100 100 100 100 100 100 39 92 88 100 100 100 100

f10
CR 33.17 20.85 5.92 2.43 31.70 20.52 5.95 2.41 2.52 9.03 100.00 53.89 53.92 10.12 1.68 0.00 2.15
SR 93 97 99 100 97 99 98 100 100 100 2 71 68 95 100 100 100

f11
CR 38.11 24.82 13.27 6.66 41.96 25.83 13.25 6.73 0.74 14.72 100.00 60.93 59.53 19.06 5.75 0.00 0.73
SR 100 100 100 100 99 100 100 100 100 100 16 94 85 100 100 100 100

f12
CR 12.98 6.53 3.15 1.29 12.49 7.50 3.21 1.27 0.00 3.86 100.00 19.33 23.25 5.15 1.35 0.41 0.10
SR 100 100 100 100 100 100 100 100 100 100 69 100 100 100 100 100 100

Average CR 28.74 17.97 8.47 5.58 29.10 18.15 8.12 11.86 8.77 9.12 95.61 50.53 49.37 15.13 4.27 0.65 0.57
SR 91.2 92.0 92.2 92.3 84.3 84.5 84.5 85.1 85.3 92.1 33.7 88.2 80.5 99.5 100.0 100.0 100.0

logarithmic strategies are experimented by 5, 7, 10, 15, and
30 local CAs. Additionally, the logarithmic strategy with 59
local CAs, overlapped sequential with 15 local CAs, and
customized logarithmic with 35 local CAs are evaluated. It
should be mentioned here that the sequential and jumping
strategies with 30 local CAs are equivalent. Therefore, there
are 17 different experiments conducted in this study.

The detail results of all experiments are presented in Ta-
ble 3 where all the numbers are in percentile form. In this
table the Seq, Jump, Log, Over Seq, and Cust refer to the se-
quential, jumping, logarithmic, overlapped sequential, and
customized logarithmic techniques, respectively. For each
optimization function, the first row represents CR value, fol-
lowed by SR value in the second row. The average CR and
SR value with respect to the different experiments are pre-
sented in the last two rows. The zero CR values emphasizes
with bold face illustrate that the logarithmic strategy with
59 sub-populations offers the zero CR for 8 functions, the
sequential and jumping strategies with 30 sub-populations
offers the zero CR for 4 other functions and the zero CR
for the last one which is function f2M is offered by the cus-
tomized logarithmic strategy with 35 local CAs.

It should be mentioned here that CR value for each ex-
periment is calculated based on the runs where an optimal
solution is found. For instance, the sequential strategy with

30 local CAs can find an optimal solution in only 9 indepen-
dent runs out of 100, meaning that its CR value is calculated
only based on those 9 successful runs. Consequently, for the
experiments where no optimal solution is found there is no
CR value, such as the jumping strategy with 10 local CAs
applied on function f2.

Table 3 illustrates that the sequential strategy works
nearly equivalently to the jumping strategy with the excep-
tion of function f2, where the difference value of the adja-
cent dimensions is a key point. Therefore, for this function
the strategies assigning adjacent dimensions to the same lo-
cal CA work better. In order to prove this claim, function
f2M is proposed and the results show that if this key point is
removed the sequential strategy works the same as the jump-
ing one. The results also show that the logarithmic strategy
works well only with higher number of sub-populations.

Generally, the only configurations that offer the SR of
100% for all 13 optimization functions include: (1) the cus-
tomized logarithmic strategy with 35 local CAs, (2) the log-
arithmic strategy with 59 local CAs, and (3) the logarithmic
strategy with 30 local CAs. Within these three configura-
tions, the first two offer average CR values less than 1.00%
which is much lower than 4.27% of the third one. This is due
to the fact that the third one does not include the assignment
of each dimension to one local CA.
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Table 4: The average SR and the number of experiments with the CR of 100% obtained for each optimization function.

Functions f1 f2 f2M f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
Average SR 95.5% 64.0% 31.4% 94.9% 93.1% 95.2% 96.1% 95.2% 94.1% 95.2% 89.4% 93.8% 98.2%
Reliable Experiments 13 8 4 15 12 14 13 14 14 13 7 13 16

In fact assigning only one dimension to a local CA helps
to find an optimal solution when the dimensions of the prob-
lem are independent to each other, and assigning a number
of dimensions to a local CA is more useful where the dimen-
sions are inter-dependent. Consequently, incorporating a hy-
brid mechanism works better when there is no prior knowl-
edge about the given optimization function. Therefore, gen-
erally the imbalanced dimension division techniques outper-
form the balanced strategies.

The overall results are represented in Table 4 illustrat-
ing the average SR obtained by all the configurations for
each optimization function and the number of reliable ex-
periments capable to obtain the SR of 100%. This informa-
tion determines the most challenging optimization functions
which are f2M , f10, and f2. For the rest of the functions,
more than 12 experiments out of 17 are able to find the opti-
mal solutions in all of their 100 independent runs.

Conclusions
HMP-CA is a new architecture for MP-CA which incorpo-
rates heterogeneous local CAs with a shared belief space. In
HMP-CA, local CAs are working to optimize different sub-
sets of dimensions. Therefore, the mechanism that divides
the dimensions among local CAs plays a key role in the per-
formance of the method. In this article, a study is conducted
to analyze different dimension division strategies.

The evaluated strategies are classified into two categories;
namely balanced and imbalanced. Within the former cate-
gory, sequential, jumping, and overlapped sequential strate-
gies are taken into account in addition to the logarithmic and
customized logarithmic strategies from the latter category.

The results show that generally the imbalanced techniques
offer better performance compared to the balanced schemes.
More specifically, the logarithmic strategy with 59 local CAs
and the customized logarithmic technique with 35 local CAs
present the best success rates as well as the minimum con-
vergence ratios.

Future work may include exploring additional dimension
division schemes to discover even better success rates and
convergence ratios. The proposed algorithms may also be
tested in the future against other optimization functions, par-
ticularly on functions with inter-dependent variables.
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