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Abstract
Currently, automated gesture analysis is being widely
used in different research areas, such as human-
computer interaction or human-behavior analysis. With
regard to the latter area in particular, gesture analy-
sis is closely related to studies on human communi-
cation. Linguists and psycholinguists analyze gestures
from several standpoints, and one of them is the analysis
of gesture segments. The aim of this paper is to outline
an approach to automate gesture unit segmentation, as
a way of assisting linguistic studies. This objective was
attained by employing a Machine Learning technique
with the aid of a spatial-temporal data representation.

1 Introduction
In the last few years, there has been an increase in research
related to gesture studies, an interdisciplinary area that aims
to analyze the use of hands and other parts of the body for
communication. The study of gesticulation, i.e. the study of
the gestures that accompany speech (McNeill 1992) is an
important topic that has been studied by researchers from
several areas. The usual way to study gesticulation is to carry
out the gesture analysis on recorded videos of people talking
and gesturing.

In these analysis, it is generally necessary to obtain a
transcription of the gestures that are performed, which in-
volves segmenting them into phases. This segmentation can
be divided into two parts: the segmentation of gesture units,
the period between two rest positions; and the segmentation
of phases within the gesture unit (McNeill 1992), (Kendon
1980). These segmentations are usually called labeling and
are carried out manually by researchers, which involves a
slow and arduous procedure. In view of this, automated rou-
tines could greatly assist and accelerate research into gesture
studies (Vinciarelli et al. 2008).

This paper discusses some of the results obtained from the
employment of a Machine Learning (ML) technique – Mul-
tilayer Perceptron (MLP) – in addressing the gesture unit
segmentation problem, as a first step in the phases of gesture
segmentation. For this reason, the problem was modeled as
a binary classification problem, in which each frame of a
video is labeled as gesture unit or rest position.
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In this paper, we address two research questions. The first
is related to the exploration of different data representations.
The second question is related to how to deal with the am-
biguity inherent in the problem of analyzing gestures; even
among experts, there is serious disagreement in determin-
ing when a gesture unit starts and ends. It is necessary to
measure this ambiguity to evaluate the resulting MLP model
correctly. We propose to use classical agreement coefficients
(Artstein and Poesio 2008) in order to handle this topic.

This paper is structured as follows: Section 2 outlines the-
oretical concepts, which provide a background to the discus-
sions that take place later in the paper, and examines some
related studies; Section 3 defines the problem and describes
the spatial-temporal data representation; a proof of concept
is designed to test our hypothesis as outlined in Section 4;
and, lastly, Section 5 concludes the study and makes sug-
gestions for future work.

2 Literature Rewiew
In this section we provide a brief analysis of the theoretical
concepts that are employed in our gesture unit segmentation
approach and comment on some related studies in this field.

Background
The approach discussed in this paper is based on Machine
Learning. The reason for choosing this type of strategy
was largely based on the absence of well-defined models
(or rules) that describe the behavior of gestures within the
scope of gesticulation in natural conversation. Since Ma-
chine Learning techniques can discover patterns, they are
potentially useful in this context. It is also necessary to
present some aspects of the gesture analysis problem, in or-
der to highlight the features that led to the decision mak-
ing undertaken in this research: the study of spatial-temporal
representations and the use of agreement coefficients.

Machine Learning Machine Learning is characterized by
the development of methods and techniques to provide com-
puter programs with the ability of enhancing its performance
in a task, learning from experience (Mitchell 1997). This
type of learning (inductive learning) can be achieved by su-
pervised or unsupervised methods. In the supervised meth-
ods, the technique considers a labeled dataset and adjusts the
parameters to minimize an objective function.
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A well-known technique that implements inductive super-
vised learning is the Multilayer Perceptron (MLP). The MLP
is a feedforward and multilayer neural network architecture,
that is usually trained with the also well-known backpropa-
gation method (or generalized delta rule). In the experiments
discussed in this paper, the backpropagation method is im-
plemented using gradient descent, and an adaptive learning
rate. For further information about the MLP neural network
see (Haykin 2008).

Gesture Theory People commonly perform one or several
movements or “excursion” with their hands, arms or even
their bodies during a natural conversation or when giving a
speech. According to Kendon (1980) and McNeill (1992),
an excursion, particularly regarding the hands, refers to a
movement from a rest position to some region in space, and
then bringing them back to the same or another rest position.
While the hands are away from the rest position, the move-
ment is called a gesture unit. When these gestures co-occur
with speech, they are called gesticulation.

In addition, according to Kendon and McNeill, a gesture
unit can consist of one or more gestural phrases, which can
be divided into phases: preparation, stroke, hold and retrac-
tion. Stroke defines the main movement in a gestures unit
and carries a semantic meaning; holds are pauses during the
phrase, in which the hand configuration used in the stroke is
maintained; preparation and retraction are transitory phases
between the gesture units and rest positions.

In the light of this, when considering the automated ges-
ture unit segmentation, there are two special topics that need
to be addressed:

• the limits between the transitional phases and the rest po-
sitions: in fact, in the analysis of human gestures there
is no precise boundary between the phases, since in real
situations involving gesticulation, these limits are not ap-
parent. Moreover, the differences shown by human coders
(see Section 2) are closely related to this fact.

• the similarity between holds and rest positions: both
phases are characterized by hands in a fixed configuration
with an almost entire absence of movements. However,
rest positions do not have any semantic content, whereas
the interpretation of holds takes account of its meaning1.
Hence, there is a problem that, in a automated analysis
based on a kind of gesture representation that is devoid
of semantic information, frames in a “hold segment” and
frames in a rest position sequence may be too similar to
allow them to be correctly recognized.

Figure 1 shows sequences of rest positions and gesture
units taken from videos. In this diagram, it is possible to
observe the problems outlined above.

Evaluation Strategy There are different methods of eval-
uating results in gesture analysis. Most studies conduct a
frame-by-frame analysis, since they classify each frame as
belonging to a specific phase (Martell and Kroll 2007), (Wil-
son, Bobick, and Cassell 1996), (Bryll, Quek, and Esposito

1This assertion about semantic content and holds is not a con-
sensus in the theory of gesture area.

2001), (Gebre, Wittenburg, and Lenkiewicz 2012). In these
cases, it is difficult to analyze when a segment is detected
correctly, since it is hard to define the maximum number
of incorrect frames that can be accepted within a segment.
In addition, an error in the margin of a segment has the
same weight as an error within the segment, which would
be wrong from the perspective of gesture studies. However,
Ramakrishnan (2011) identifies inflection frames that cor-
respond to the beginning of each phase, and then classifies
each segment as belonging to each phase. Thus, this author
conducts an analysis of the segments, by taking into account
the fact that there is no clear point where the segments start
or end and by admitting some deviation at the borders.

Given this, it would be reasonable to argue that if a de-
gree of ambiguity is revealed when the analytical results of
the gesture are evaluated, this should be also considered in
the conception and evaluation of the model that will be em-
ployed to analyze the gestures. In this paper, we propose to
use agreement coefficients, in particular Krippendorff’s Al-
pha (Kα) coefficient, to carry out this evaluation. The Kα
was chosen because the α-type coefficient is the most com-
monly used measurement in agreement analysis, and be-
cause it minimizes coding biases (Artstein and Poesio 2008).
The Kα coefficients range is from −1 to 1. Negative values
indicate random classification (or labeling) or insufficient
data. Values between 0 and 0.2 indicate slight agreement;
between 0.2 and 0.4, fair; between 0.4 and 0.6, moderate;
between 0.6 and 0.8, substantial; and, between 0.8 and 1, a
perfect agreement (Artstein and Poesio 2008).

Related studies
Although there has been a considerable amount of work
regarding gesture analysis within the gesture studies area
(Kendon 1980), (McNeill 1992), (McNeill 2005), (Kita, van
Gijn, and van der Hulst 1998), efforts for employing auto-
mated methods for gesture analysis are much more recent
(Madeo, Wagner, and Peres 2013). The main studies in au-
tomated gesture phase segmentation are ones presented in
(Martell and Kroll 2007) and (Ramakrishnan 2011).

Martell and Kroll (2007) considered a corpus in which
gesture units are already segmented and used a Hidden
Markov Model to classify each frame in preparation, stroke,
hold or retraction phase. Ramakrishnan (2011), summarized
in (Ramakrishnan and Neff 2013), identified the most fre-
quent rest positions for each person. Following this, gesture
phase segmentation was performed by using heuristics to
identify the hold phases and inflection frames, and Support
Vector Machines (SVM) to identify preparation, stroke, and
retraction. There are other studies that either discuss ges-
ture unit segmentation or specific tasks within gesture phase
segmentation. With regard to gesture unit segmentation, the
authors in (Madeo, Lima, and Peres 2013) used SVM to
classify each frame as either rest position or gesture unit.
Wilson, Bobick and Cassel (1996) used a heuristic method
for performing gesture unit segmentation. In identifying the
specific phases, Gebre, Wittenburg and Lenkiewicz (2012)
used Logistic Regression to detect stroking gestures. Bryll,
Quek and Esposito (2001) applied a heuristic method to de-
tect hand holds in natural conversation.
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Figure 1: In the first line of frames, there is a rest position sequence from 4th to 9th frames. It is difficult to determine the first
frame of the sequence, and there is a hands displacement into the sequence. In the second line, there is a hold sequence from
4th to 7th frames. It is a period with an almost entire absence of movements into a gesture unit.

Although such studies are not directly comparable, it
is useful to observe the performance which were already
reached in this kind of problem. The results obtained in each
study are listed in Table 1.

Table 1: Results obtained in the related works (F-score).
Id. Gesture Preparation Stroke Hold Retraction

Unit Phases
1 0.54 0.59 0.36 0.67

2* 0.88 0.74 0.79 0.95 0.86
2** 0.64 0.78 0.75 0.78

3 0.87
4 0.81
5 0.39
6 0.84

1 (Martell and Kroll 2007) 2 (Ramakrishnan 2011)
3 (Madeo, Lima, and Peres 2013) 4 (Wilson, Bobick, and Cassell 1996)
5 (Gebre, Wittenburg, and Lenkiewicz 2012) 6 (Bryll, Quek, and Esposito 2001)
* user dependent approach ** user independent approach

Bryll et al (2001) also highlights the fact that in gesture
phase segmentation different coders produce different re-
sults. There are a few studies that discuss this problem, such
as Kita et al (1998) and Martell (2005). Kita et al (1998)
reported that there may be an average inter-coder disagree-
ment of up to 28% regarding gesture phase segmentation,
or up to 42% if the gesturing consists of sign language.
Martell (2005) conducted a comparative analysis of inter-
coder agreement and intra-coder agreement (for two differ-
ent codings made by the same coder at different times) in
gesture unit segmentation and gesture movement descrip-
tion, and obtained an average inter-coder agreement of 39%
and an average intra-coder agreement of 13.4%2.

3 Gesture Unit Segmentation
In this work, a video is the input for the gesture unit seg-
mentation. This consists of a sequence S = { f1, f2, · · · , fN}

of RGB image frames. The segmentation problem can be de-
fined as a classification problem, which concerns the prob-

2This assumes there is an exact correspondence between the
gesture unit segmentation and all the attributes for the description
of the body gesture movements.

lem of receiving a frame fi from S as input, and classify-
ing it according to one of the classes in C = {+1,−1}. This
means that if the chosen class is +, fi ∈ a gesture unit video
segment; otherwise, fi ∈ a rest position video segment. It is
therefore, a binary classification problem.

A software application based on Microsoft
KinectTMsensor was implemented to obtain (from each
frame): 3-dimensional coordinates (x, y, z) from six points
of interest in the human body (hands, wrists, head and
chest); a RGB image frame; and an associated timestamp.
The RGB frame and the timestamp are an useful means of
supporting the manual labeling process.

The representations used in this paper include spatial
and temporal information extracted from the gestures. This
information has been represented by using the following:
3-dimensional coordinates (x, y, z) from hands and wrists;
scalar velocity and acceleration calculated in relation to the
movements of the hands and wrists; and a windowed strat-
egy that allows information from past and future frames to
be used to create an implicit temporal representation.

Feature extraction consists of: a pre-processing phase,
which aims at making the representation invariant to the lat-
eral displacement and distance of the user in relation to the
camera; and a velocity and acceleration extraction phase. In
the pre-processing phase, the hands and wrists coordinates
are subtracted from the chest coordinates in each frame,
and this new position is divided by the distance between
the points of the head and chest. Details about the pre-
processing and the feature extraction procedures can be an-
alyzed in (Madeo, Lima, and Peres 2013).

In light of the standardized raw data and the velocity and
acceleration extracted from it, the complete representation
of an isolated frame3 is a 20-dimensional vector with scalar
velocity, scalar acceleration, and the (x, y, z)-coordinates of
left hand, right hand, left wrist and right wrist.

Nevertheless, it is worth taking account of information
about prior and post frames in the analysis of each frame,
to obtain temporal information about the gestures. Thus, a
windowed strategy was applied to make each data represen-

3In fact, the representation of an isolated frame considers three
frames in the raw data due to a frame displacement required in the
velocity calculus.
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tation possible. The vector representation is composed of a
sub-sequence of frames S ′ = { f1, f2, · · · , fn} where n is the
size of a window centered in a frame of interest fint. Table 2
illustrates the framework of window, including the features
of one frame. The dimension of the vector representation
rises n times in a windowed representation.

Table 2: Example of a window with n = 5 centered in the
frame fint. Legend: l – left; r – rigth; h – hand; w – wrist; v
– velocity; a – accelaration; x,y,z – coordinates.

fint−2 fint−1 fint fint+1 fint+2

vlh alh xlh ylh zlh vrh arh xrh yrh zrh
vlw alw xlw ylw zlw vrw arw xrw yrw zrw

The information described above was arranged into four
data representations to study how the spatial and temporal
information can help overcome the problem of gesture unit
segmentation:

• Data Vector 1 – Velocity and Acceleration (Wagner,
Madeo, and Peres 2013): a 8n-dimensional vector includ-
ing scalar velocity and acceleration related to left hand,
right hand, left wrist and right wrist;

• Data Vector 2 – Position: a 12n-dimensional vector in-
cluding the (x, y, z)-coordinates of left hand, right hand,
left wrist and right wrist, in each frame;

• Data Vector 3 – Velocity, Acceleration and Position: a
20n-dimensional vector combining the vectors of Data
Vector 1 and Data Vector 2;

• Data Vector 4 – Velocity, Acceleration and Position of
the Central Frame: 8n + 3-dimensional vector composed
of the vector of Data Vector 1 and the (x, y, z)-coordinates
of the frame fint.

4 Proof of concept
We have designed a proof of concept based on experiments
carried out in a storytelling context to validate our approach.
The subject of comics was chosen because the narrative is
well-known and thus, the storytelling would be an easy task.
In this section, there is a description of the datasets, the ex-
periments and the obtained results.

Datasets
The study of the problem of gesture unit segmentation in
natural gesticulation requires a dataset composed of videos
of people talking and gesturing. The data consists of streams
of gestures, captured with Microsoft KinectTMsensor.

Different data capture sessions were carried out, and in
each session a storyteller read a comic and told the story in
front of the sensor device. Three different stories and three
different users were included: user A told story 1, story 2
and story 3; user B and user C told story 1 and story 3.
Each captured video was represented in accordance with the
four different data representations, as described in Section 3.
Table 3 provides information about the captured videos.

Table 3: Dataset description: videos A1 and A2 were cap-
tured on Session 1; video B1 was captured on Session 2;
videos A3 and B3 were captured on Session 3; and, videos
C1 and C3 were captured on Session 4.

Video Length (-) (+) % (+)
(User/Story) (seconds) frames frames frames

A1 58 698 1049 60.05%
A2 42 468 796 62.98%
A3 61 598 1236 67.39%
B1 36 80 993 92.55%
B3 48 157 1267 88.98%
C1 37 232 879 79.12%
C3 48 350 1098 75.83%

The MLP was applied as the segmentation model. Since
it is a supervised strategy, it requires a labeled training set.
This resource was provided by three human coders (coder
1, coder 2 and coder 3) which have manually labeled the
videos using two classes: gesture unit and rest position. As
described earlier, this is a subjective process and the experi-
ment requires an assurance that these data are reliable. The
reliability of the labeling process was measured by using the
(Kα) coefficient and the percentage of labeling divergence,
and the resulting measurements are listed in Table 4.

Table 4: Agreement coefficients (first numbers in cells) and
percentages of divergence (second numbers in cells).

Coders Videos
A1 A2 A3 B1 B3 C1 C3

1 e 2 0.92 0.88 0.80 0.73 0.66 0.73 0.86
4.64 5.93 9.92 5.66 7.23 10.52 5.52

1 e 3 0.92 0.91 0.91 0.78 0.5 0.82 0.92
4.29 4.19 4.96 6.55 10.88 6.38 2.62

2 e 3 0.89 0.93 0.85 0.88 0.67 0.85 0.88
5.84 3.48 6.71 5.21 7.72 5.94 4.56

From Table 4, it can be noted that the labelings are re-
liable, since the percentage of divergence is low and the
Kα coefficients are around 0.8. This threshold indicates that
there is a substantial or perfect agreement between the label-
ings. This means that, any of the three labelings is suitable to
train the MLP models. However, the agreements concerning
coder 3 gave slightly higher values, and thus, the labeling
produced by coder 3 was chosen to train the MLP models.

Experiments and Results
The experiments have been carried out to determine the
performance of the models built with MLP and using the
data representations described in Section 3. In the case of
Data Vector 1, we are revisiting previously published results
(Wagner, Madeo, and Peres 2013).

Two sets of experiments have been carried out specifically
for this paper with three data representations (Data Vectors
1, 2 and 3). Experiment 1 consists of training the MLPs at
the beginning of the video (70% of the frames) and testing
at the end of the same video (30%). The objective was to
evaluate the ability of MLP to segment the gesture units by
adopting an user-story-session-dependent approach. Exper-
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Table 5: Results for experiments. Parameters – window size in frames, number of neurons at hidden layer and learning rate;
and result – F-score.

Data Video Window Hidden Learning F-score Video Window Hidden Learning F-score
Vector size Neurons (#) rate size Neurons (#) rate

Previous work

1 A1 40 17 0.125 0.9041 B1 75 24 0.0625 0.3000
A2 65 22 0.5 0.6440 B3 65 22 1 0.5060
A3 60 21 1 0.7362 C1 45 18 0.0625 0.7848

A1/A2 45 18 0.5 0.7964 C3 50 20 0.0625 0.6868
Experiment 1

2

A1 40 17 0.0312 0.9264 B1 75 24 0.0156 0.8461
A2 40 17 1 0.8889 B3 50 20 0.25 0.7786
A3 45 18 0.5 0.9129 C1 50 20 0.0156 0.8163

C3 50 20 0.0156 0.9800

3

A1 50 20 0.125 0.9287 B1 50 20 0.0625 0.7333
A2 60 21 0.0625 0.9313 B3 45 18 0.0156 0.7241
A3 40 17 0.25 0.9139 C1 65 22 0.025 0.8081

C3 45 18 0.125 0.9333

4

A1 50 17 0.0625 0.9339 B1 60 21 0.25 0.3809
A2 50 20 0.0156 0.8279 B3 50 20 0.0625 0.7543
A3 75 24 0.0156 0.8778 C1 40 17 0.0312 0.8148

C3 40 17 1 0.8224
Experiment 2

2 A1/A2 40 17 0.0156 0.8234
3 A1/A2 55 20 0.5 0.8473
4 A1/A2 40 17 0.125 0.8750

iment 2 aims to evaluate the MLP performance by using
video A1 for the training and video A2 for the testing; in
an user-session-dependent and story-independent approach.

All the experiments were carried out with the aid of
Matlab R©. We have applied the MLP neural network by us-
ing the following set of parameters: adaptive learning rate
strategy; initial learning rate from 1 to 0.01 varying by a
divide-by-two decrement rate; amount of epochs from 300
to 1300, varying by 100 steps; and number of neurons in the
hidden layer determined by a heuristic rule (geometric mean
between the amount of neurons in the input and output lay-
ers).The size of the window was determined in the range of
40 to 754, varying by 5 frames. The best MLP architectures
were chosen through the performance metric F-score (Han,
Kamber, and Pei 2006), since the datasets were unbalanced.

The models were tested every 10 training epochs to avoid
overfitting. Table 5 shows the results obtained with the best
model for each video and each data representation, in each
set of experiments, considering the test partitions. Notice
that, for Experiment 1, the models built with Data Vector
2 obtained the best results for videos from user B and C;
this users are characterized by performances with few se-
quences of rest positions. The best results for user A were
obtained with data representation that considers information
about trajectory/position (using coordinates) and behavior
(using velocity and acceleration). Regarding to Experiment
2, the data representations that include trajectory/position in-
formation reached results strongly better than those obtained
only considering the velocity and acceleration information.

The classifications obtained with the best models were
4We have tested smaller windows in previous work, but the re-

sults were not so good. See (Madeo, Lima, and Peres 2013)

used to evaluate the model agreement with regard to the hu-
man coders. Table 6 shows the agreement coefficients be-
tween the best models and each coder. When these results
are assessed, it is clear that almost all the models are com-
patible with the understanding of the problem provided by
the coders, when position/trajectory are used. Overall, the
coefficients Kα assume values which are similar to that val-
ues provided in the analysis of agreement among the hu-
man coders; in some cases, the agreement between the MLP
and the coders 1 or 2 is higher than between the model and
the coder 3 (whose labeling was used in the training). This
means that the MLP learning is reasonable, and in this stand-
point, the segmentation models present consistent results.
There are some negative coefficients that were obtained in
the analysis of video B1. In fact, the test set for this video is
really difficult, even to the human coders.

Moreover, the best segmentation results were also eval-
uated by means of metrics that are generally used by spe-
cialists in gesture analysis. Some segmentation errors are
expected due to the subjectivity of the problem, as stated
in Section 2: transition errors; hold frames labeled as rest
position. This analysis was applied for two models, as an
example. The results are shown in Table 7.

5 Conclusions
In this paper, gesture unit segmentation problem was dis-
cussed. The results were analyzed with classical measure-
ments used in binary classifiers and gesture analysis. The
experiments covered story-dependent and independent ap-
proaches and shown that using position/trajectory informa-
tion is useful to reach good results. The comparison with
previous results show that position/trajectory information
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Table 6: Agreement evaluation between the best segmenta-
tion models and the human coders.

Previous work
Coder Videos
(Data A1 A2 A3 B1 B3 C1 C3Vector)
1(1) 0.80 0.42 0.56 0.00 0.29 0.67 0.52
2(1) 0.77 0.42 0.16 0.61 0.28 0.57 0.44
3(1) 0.83 0.47 0.58 0.27 0.45 0.75 0.59

Video Coder 1 Coder 1 Coder 1
A1/A2 0.66 0.63 0.65

Experiment 1
1(2) 0.85 0.77 0.89 -0.01 0.66 0.89 0.89
2(2) 0.86 0.79 0.58 -0.03 0.56 0.83 0.79
3(2) 0.86 0.84 0.87 0.83 0.73 0.78 0.97
1(3) 0.87 0.83 0.88 -0.02 0.56 0.86 0.84
2(3) 0.89 0.85 0.49 -0.04 0.59 0.80 0.72
3(3) 0.87 0.90 0.87 0.72 0.67 0.77 0.91
1(4) 0.85 0.79 0.80 0.00 0.47 0.72 0.69
2(4) 0.86 0.75 0.42 0.45 0.52 0.69 0.59
3(4) 0.88 0.76 0.81 0.35 0.71 0.78 0.76

Experiment 2

Coder Data Data Data
Vector 2 Vector 3 Vector 4

1 0.73 0.77 0.80
2 0.75 0.76 0.77
3 0.69 0.75 0.80

Table 7: Evaluation from experts’ viewpoint. GU-RP: ges-
ture unit labeled as rest position. RP-GU: rest position la-
beled as gesture unit.

Video Incorrect Transition GU-RP RP-GU
Frames Errors

Experiment 1 - Data Vector 4
A1 29 18 18 11

(of 511) of 29 of 29 of 29
Experiment 2 - Data Vector 3

A1/A2 142 61 99* 43
(of 1206) of 142 of 142 of 142

* Among the 99 frames, 10 were hold.

with velocity and acceleration in the data representation
overcomes the representation built with only velocity and
acceleration. Moreover, the agreement coefficient analysis
shows that the MLP models are able to understand the prob-
lem as well as the human coders. The next steps in this re-
search include: (a) verifying the performance of our solu-
tion in user and session independent approaches, since peo-
ple present different gesticulation behavior in different days,
and this fact must influence the segmentation models perfor-
mance; (b) carrying out a new test to verify how a different
human gesture analyzer evaluates the gesture unit segmen-
tation performed by human coders and by MLP models.
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