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Abstract

SLAM (Simultaneous Localization And Mapping)
plays an essential and important role for mobile robotic
autonomous navigation. SLAM in dynamic environ-
ments with moving objects is a challenging problem.
We focus on scan matching for Graph-SLAM in indoor
dynamic scenarios. Scan matching algorithm is pro-
posed and implemented, which consists of the follow-
ing phases: first, conditioned Hough Transform based
segmentation is performed to extract and group line
features; second, occupancy-analysis based moving ob-
jects detection is done to detect and discard the seg-
ments corresponding to the moving objects; third, lin-
ear regression based line feature matching is executed
to estimate the roto-translation parameters. Simulations
to estimate roto-translation and the entire trajectory of
the robot effectively verified the robustness of this al-
gorithm in a dynamic scenario. The proposed algorithm
is based on the line features of the indoor environment.
It is robust to disturbances from moving objects in the
dynamic scenario, and is especially suitable for the case
when large rotational displacement is present.

Introduction

SLAM (Simultaneous Localization And Mapping) aims at
estimating the travelled trajectory of a mobile robot. SLAM
in dynamic scenarios with moving objects is a critical appli-
cation for mobile robots to achieve robust autonomy in nav-
igation and safe coexistence with humans in populated en-
vironments. In many cases, the mobile robot deploys Laser
Range-finders to perceive the obstacles in the environment
and Wheel-Encoders to obtain its own odometric informa-
tion. Based on the sensor data, Graph-SLAM constructs and
optimizes one topological graph to solve the SLAM prob-
lem. We do research on scan matching to construct the edges
for graph SLAM in dynamic scenario. Scan matching tar-
gets at estimating the relative rofo-translation displacement
between two robot poses. This geometrical displacement re-
lationship represents an edge constraint in the graph.

In the literature of scan matching, there are generally two
categories of approaches: point-based matching and feature-
based matching. Point-based matching uses the direct point
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information from the laser scan range data for matching,
while feature-based matching first extracts the higher-level
features from the original scan range data, and then matches
these features for roto-translation. The review of the state-
of-art scan matching algorithm is presented in the section
of related work. Point-based approach works well when the
initial guess of roto-translation does not deviates much from
the true value, but the performance suffers when there is
much rotational error and especially when the scenario is
disturbed by moving objects. This is the motivation for the
work here.

In this paper, a new scan matching algorithm is proposed.
The work presents the following contributions: the main
straight-line features of the indoor office-like environment
is used, it is robust to the disturbances of the moving objects
and suitable for dynamic scenario, and it also deals well with
the moving objects of irregular shapes, since they will be dis-
carded directly due to the absence of line features. Moreover,
line features are matched based on a point-to-line metric, so
it is especially suitable when there is a large rotational dis-
placement.

Related Work

Iterative Closest Point (ICP) (Besl and McKay 1992)
chooses the closest point couples as the corresponding point
couples from the target point clouds and the reference point
clouds in terms of one defined distance metric, and then
minimizes the cost function of the square error between the
couple pairs to estimate the transformation estimation. Iter-
atively the process is repeated until a satisfactory condition
is achieved. There are also variants of ICP (Rusinkiewicz
and Levoy 2001). Nearest Neighbour Search consumes too
much time and converges quite slowly when the function ap-
proaches a local minimum(Lu 1995).

Iterative Dual Correspondence (IDC) (Lu and Milios
1997)(Lu 1995) uses point-to-point correspondence to con-
struct a squared error function and proposes two sets of
correspondences: one by Euclidean distance and the other
by angular distance. There are also variants of IDC ap-
proach. IDC (X)(Bengtsson and Baerveldt 1999) only uses
X% of the best corresponding points for alignment; Sec-
tored IDC(Bengtsson and Baerveldt 1999) divides the scan
data into sectors, detects and removes the sectors that have
changed and matches only the unchanged sectors. The dis-



advantage of IDC and Sectored IDC approaches are the
heuristic way to find the correspondence. In (Bengtsson and
Baerveldt 2001) they estimate the uncertainty in the com-
puted roto-translation, i.e., the covariance matrix.

Metric based ICP Scan Matching(J. Minguez and Mon-
tesano 2005)(Montesano 2006) first constructs the corre-
spondence pair, then it minimizes the objective function of
summed square error to estimate the roto-translation. It uses
a distance metric which includes the angular displacement
term as a contribution to the traditional ICP algorithms.

Probabilistic Scan-Matching approach (L. Montesano
and Montano 2005) uses the Gaussian distribution and total
probability integrating over all possible locations of the tar-
get point and all possible current transformations to compute
the correspondence likelihood for the reference point set.
Then the expectation value is calculated as the most prob-
able reference point, and the distance between the computed
reference points is minimized to find the optimal transfor-
mation. The contributions of this approach regard the uncer-
tainty model of both the sensor measurement and the sensor
displacement.

PL-ICP (Point-to-Line Iterative Closet Point) (Censi
2008) approach proposes a point-to-line metric to increase
the convergence speed of the algorithm. It follows the tra-
ditional ICP iterative procedures, but proves to be much
more efficient: it computes the assumed-to-be correspon-
dence points in the reference frame for each point in the cur-
rent scan, and chooses two actual points from the reference
point set closest to the previously calculated correspondence
point; then it uses trimming procedures to eliminate outliers
and rewrite the error function based on the previously com-
puted point-to-line distances and minimizes the error func-
tion.

Prediction-based geometrical feature extraction ap-
proach(Yilu Zhao 2011) is proposed to detect line and cir-
cle features: instead of traditional two-phased data segmen-
tation/breakpoint detection and feature separation, it calls
for only one phase to extract the features based on a pre-
diction approach. For line detection, it computes the pre-
dicted crossing point of line features with the subsequent
laser emitting radial line, and calculates the distance be-
tween the previously predicted point and the actual testing
scan sample point. Then the distance is judged to distinguish
whether this testing scan sample point is breakpoint/turning
point or not according to a certain threshold value.

Nearby Line Tracking approach was proposed in (Lil-
ian Zhang ) (Zhang and Ghosh 2000) based on searching
nearby lines in parameters space: the corresponding lines are
assumed to have similar parameters such as line parameters
in Hough Space, the length and the middle points of line
segment. The distance between these line parameters with
weighting coefficients is defined to the objective function to
be minimized. For each line in the first image, its nearest
line in the second image is selected according to the objec-
tive function if the function value is smaller than a global
threshold.

In DATMO (Detection and Tracking of Moving Ob-
Jject)(Chieh-ChihWang and Thrun 2003), scans are grouped
into segments using a distance criteria in the preprocessing
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phase, and the segments over different time frames are in-
tegrated into objects. Direct method, namely ICP (Iterative
Closest Point), is used to register the scan segments over
different time frames for localization. For two sets of scan
range data, Sampling-based Approach is used to estimate
the uncertainty in correspondences: it finds ambiguities by
generating the initial guesses randomly and registering the
scan data for the roto-translation. Grid-based Approach to-
gether with Correlation-based Approach is used to estimate
the measurement noises, and the normalized correlation re-
sponses are also assigned as weights to the samples from
the sampling approach. The weighted samples are used for
non-Gaussian pose estimate.

Expectation Maximization (D. Hahnel and Burgard 2002)
is also used for dynamic environments. In the expectation
process, likelihoods is computed to estimate which measure-
ments correspond to the static objects, and in the maximiza-
tion process the estimate is used to calculate the position of
the robot and the map. The advantage is that this approach
does not require a previous knowledge of the map and use
point features instead of any predefined features.

Problem Formulation

Given two sets of laser scan range data and the initial guess
of their spatial geometrical relation, as illustrated in Fig. 1,
the goal is to estimate the relative roto-translation through
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Figure 1: Reference Scan and New Scan

matching the correspondence parts of the two sets of laser
scan range data: Then the estimated roto-translation value
could be used to construct the motion constraints as the
edges of the graph for Graph-SLAM.

The new range data n(*) could be transformed to the ref-

erence frame as follows:
: (1)
@y _ | T cos@ —sinf| |ny
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The goal is to find the optimal solution to the minimum of
the following equation which leads to the estimation of the
roto-translation value.
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Segmentation, Moving Object Detection and
Roto-Translation Estimation

Method Overview

Scan matching algorithm is proposed to solve the relative
roto-translation estimation problem in indoor dynamic envi-
ronment. It consists of three phases, as is shown in Fig. 2:
first, conditioned Hough Transform based segmentation is
used to extract and group line-feature candidate samples into
segments; second, occupancy-analysis based moving objects
detection is performed to detect and discard the segments
corresponding to the moving objects; third, linear regression
based roto-translation estimation is applied to estimate roto-
translation by matching the merged independent line fea-
tures.

INPUT: two sets of laser scan data and odometry data

Conditioned Hough Transform based Segmentation

Occupancy-Analysis based Moving Objects Detection

Linear Regression based Roto-Translation Estimation

\

Output: estimation of relative roto-translation

Figure 2: Overview of the Phases in Scan-matching Algo-
rithm

Conditioned Hough Transform based
Segmentation (CHTS)

Segmentation is performed for the set of laser scan range
data based on line features, and the steps are illustrated in
Fig. 3. Hough Transform line detection is applied to detect
the sample points which represent the small-scale line seg-
ment. Hough Transform(Yilu Zhao 2011)(Richard O. Duda
) is in nature a voting based approach dealing with robust
statistics contaminated with input outliers, suitable for the
case here with line features of different parameters; we add
one conditioning part to the output of the previous algorithm
for anomaly detection to ensure that the line features sample
points extracted are close in scanning index (Bishop 2006).
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Figure 3: Conditioned-HT based Segmentation

Then, we use a prediction based judgment to find the break-
points and perform segmentation. Inspired by (Yilu Zhao
2011), the detected small line segment information is used to
predict the possible coordinates of the subsequent points in
index if we assume they are on the same line. We compare
these supposed-to-be coordinates with their actual coordi-
nates to check whether they are the breakpoints or not.

Occupancy Analysis based Moving Object
Detection (OAMOD)

Moving object analysis is performed to distinguish the com-
mon static parts of the environment from the segmentes de-
tected in the previous phase for the reference scan and the
new scan. For the case of moving objects as depicted in
Fig. 4, we compare the two scan range data segment by seg-
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Figure 4: The Case of Moving Object



ment. We take the angular span [0, 6], and use the line fea-
ture segment from one scan range data within [0, 6] to di-
vide the area into two parts: one part with the polar distance
from the origin of scanning smaller than the polar distance
p; of the observed scan range data, and the other part with
the polar distance greater than p;, like .S, and Sy, divided
by the dotted boundary of object A in Fig. 4. S, is marked as
free space, and S,y is marked as unknown space. Then for
the line features from the other scan range data and within
[61, 6], if they appear inside area Sj, like object B, then for
sure they correspond to moving objects. But if they show up
inside area Sy, then the judgment depends on the distance
from A: if the distance is relatively small like object C' in
Fig. 4, then they correspond to moving object; if it is rela-
tively large, then they correspond to static environment. The
whole judgment flow chart is illustrated in Fig. 5.
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Figure 5: Moving Object Judgment Flow Chart

Linear Regression based Line Feature Matching
(LRLM)
The relative roto-translation value is estimated by matching

the static-environment line features, as is shown in Fig. 6:
initially, pre-nracessine i< done to fionre ont the larger-scale

Line Model Merge and Estimation

:

Correspondence Couple Selection

:

Line Feature Matching

Figure 6: Flow Chart of Line Matching Algorithm

line features on each segment by analyzing their associated
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{p, 0} values from phase I: the ones with similar {p, 8} val-
ues are treated as probable larger-scale line feature sam-
ple points; then, we use linear regression technique (Bishop
2006) to merge all points from the pre-processing result for
each segment to estimate the line parameters for each in-
dependent line feature; thirdly, we find the correspondent
line features from the reference scan data for each of the
line feature in the new scan data according to the angles be-
tween the direction vector of each line feature and the dis-
tance from the middle point of the line feature in the new
scan to the line feature of the reference scan; finally, we find
the roto-translation parameters that can map the new line-
feature sample points to the correspondence reference line
features.

For line matching, we consider the following two cases:

1). when the line model is not orthogonal to x axis as
shown in Fig. 7, the perpendicular distance from the point to
the line is as follows:

) 1 . )
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where {K¢ ;,b¢ ; } stand for the slope and intersection pa-
rameter of the line feature model from the reference scan
range data that is correspondent to the point (x(”, y(’”)). and

1
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Figure 7: Perpendicular Distance for the Point away from
the Line

the line matching objective function is constructed as fol-
lows:

1
J(@,y,0) = —— 5
Zlcnil num; , T 5 2

P _ |cosf
ygk) ~ |sinf

where num¢ ; is the number of sample points on the c seg-
ment for the scan to be matched, and 1, ; is the number of
segments for the scan to be matched.




2). when the line model is almost orthogonal to the z
axis, we just substitute the parameter set { K, b} of the non-
vertical line model with the functional equivalent parameter

1 b
set {—, —} of the vertical line model. For reason of sim-

plicity, the details are not described here.

Threshold Parameters Tuning For The Combined
Scan-Matching Algorithm

There are several parameters which determine the perfor-
mances of the scan-matching results. To find a balanced so-
lution for all the parameters mentioned above and find a suit-
able solution for roto-translation estimation, we use the Ge-
netic Algorithm Optimization Toolbox in MATLAB.

Experimental Verification

To verify the effectiveness of the scan matching algorithm
for the domestic indoor scenario, we have performed exper-
iments using ROS (Robotic Operating System). For simu-
lation, we use the map of Robotics Lab 10 at Politecnico
Di Torino, together with one robot equipped with wheel en-
coders and laser scanner, and three objects able to move
around. We use stage simulator to perform the experiment,
as shown in Fig. 8. The proposed scan matching algorithm

: ¢

Figure 8: Simulation Environment for Robotic Lab

is implemented in MATLAB for fast prototyping. The ac-
curacy of the estimated roto-translation value can be judged
from the degree of coincidence between the two sets of laser
scan range data where they are transformed and plotted in
the same frame, as shown in Fig. 9. Here (a) refers to the
case under the odometry roto-translation value, and (b) un-
der the estimated roto-translation value. In (a), the parts of
the two scan range data corresponding to the same physi-
cal object are not coincident. The deviation shows the er-
ror in rover’s displacement. The parts shown by large ellipse
which exist in the reference scan range data but disappear in
the new scan range data refer to the moving objects. While
in (b), the parts corresponding to the static environment are
well matched after the procedure.

The results shown above only consider the local relative
roto-translation estimation. The effectiveness of the scan
matching algorithm can be further proved by feeding a set
of relative roto-translations as motion constraints to graph
construction and optimization. We present the robot’s esti-
mated trajectory from graph optimization using scan match-
ing based Graph-SLAM in Fig. 10; for the details on the
graph optimization approach, please refer to(Carlone et al.
2012). The ground truth retrieved from simulator is included
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Figure 9: The Two Scan Range Data In Reference Frame

as a comparison, and the robot’s odometric trajectory is also
shown in the figure. The euclidean distance between the
poses on the estimated path and the correct ones on the
the ground truth is plotted in Fig. 11 with the distance be-
tween the poses from the odometry and the ground truth
as a comparison. We can see that the rover trajectory from
scan matching based graph optimization is much closer to
the ground truth, more accurate than the odometry data.

Conclusion

In this paper, we proposed and implemented a scan matching
algorithm for domestic dynamic scenarios, and experimental
results have verified the effectiveness of the proposed algo-
rithm.

However, one weak point still exists: when the moving
objects are close to the walls and especially when their con-
tour includes many line feature sample points, they may be
mistaken as walls within the tolerable deviation range. The
selected common static part is the remaining ones inside
the entire line feature union after the moving objects have
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Figure 10: The Estimated Robot Trajectory from Scan-
Matching based Graph-SLAM
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Figure 11: The Comparison of the Deviations from Ground
Truth for Estimated Results and Odometry

been detected and discarded. Future work should be devoted
to discriminating static parts directly from the line feature
union, which can be more robust to dynamic environment
and can be even adapted for place recognition.
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