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Abstract
In this paper we propose a novel hierarchical multi-label clas-
sification approach for tree and directed acyclic graph (DAG)
hierarchies. The method predicts a single path (from the root
to a leaf node) for tree hierarchies, and multiple paths for
DAG hierarchies, by combining the predictions of every node
in each possible path. In contrast with previous approaches,
we evaluate all the paths, training local classifiers for each
non-leaf node. The approach incorporates two contributions;
(i) a cost is assigned to each node depending on the level it
has in the hierarchy, giving more weight to correct predic-
tions at the top levels; (ii) the relations between the nodes
in the hierarchy are considered, by incorporating the parent
label as in chained classifiers. The proposed approach was
experimentally evaluated with 10 tree and 8 DAG hierarchi-
cal datasets in the domain of protein function prediction. It
was contrasted with various state-of-the-art hierarchical clas-
sifiers using four common evaluation measures. The results
show that our method is superior in almost all measures, and
this difference is more significant in the case of DAG struc-
tures.

Introduction
The traditional classification task deals with problems where
each example t is associated with a single label y ∈ L, where
L is the set of classes. However, some classification prob-
lems are more complex and multiple labels are needed. For
example, a news story can be classified as sports and enter-
tainment at the same time; this is called multi-label classifi-
cation. A multi-label dataset D is composed of n instances
(x1, J1), (x2, J2), ..., (xn, Jn), where J ⊂ L. When the la-
bels are ordered in a predefined structure, typically a tree or a
DAG (Direct Acyclic Graph), the task is called Hierarchical
Multi-label Classification (HMC). By taking into account
the hierarchical organization of the classes, the classifica-
tion performance can be boosted. In hierarchical classifica-
tion, an example that belongs to certain class automatically
belongs to all its superclasses (hierarchy constraint). Some
major applications of HMC can be found in the fields of text
categorization (Rousu et al. 2006), protein function predic-
tion (Silla Jr. and Freitas 2009a), music genre classification
(Silla Jr. and Freitas 2009b), phoneme classification (Dekel,
Keshet, and Singer 2005), etc.
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There are two major trends to find a path in a hierarchy
(Tsoumakas and Katakis 2007): train one global classifier
or split the problem using various local classifiers. Meth-
ods based on local classifiers tend to produce inconsistent
labels, while global classifiers become computationally too
expensive as the number of classes increases.

We propose a novel HMC approach, Chained Path Eval-
uation (CPE), to predict single paths in tree and multiple
paths in DAG hierarchies (paths from the root down to a leaf
node). A local classifier per parent node is initially trained
for each non-leaf node in the hierarchy. In the classifica-
tion stage, the predictions of all the local classifiers are com-
bined, using a logarithmic sum, to estimate the probability
of all paths in the hierarchy. CPE incorporates two novel
aspects: (i) a cost is assigned to each node depending on its
level in the hierarchy, giving more weight to correct predic-
tions at the top levels; (ii) the relations between the nodes in
the hierarchy are considered, by incorporating the parent la-
bel as an additional attribute similarly to chained classifiers.

CPE was evaluated in ten tree structured hierarchies and
in eight DAG structured hierarchies from protein function
prediction. We compared our method against a number
of state-of-the-art hierarchical classifiers and show that our
method is competitive for tree-structured hierarchies, and
clearly superior for DAG structures.

The document is organized as follows. Related Work re-
views the relevant work in the area, Chained Path Evaluation
describes the method in detail, Experimental Setup outlines
the framework for the experiments, Results contrast our
method against others and Conclusions and Future Work
summarizes the paper and suggests possible future work.

Related Work
In hierarchical classification, there are basically two types
of classifiers: global classifiers and local classifiers. Global
classifiers construct a global model and train it to predict
all the classes of an instance at once. Vens et al. (Vens et
al. 2008) present a global method that applies a Predicting
Clustering Tree (PCT) to hierarchical multi-label classifica-
tion, transforms the problem in a hierarchy of clusters with
reduced intra-cluster variance. One problem of global clas-
sifiers is that the computational complexity grows exponen-
tially with the number of labels in the hierarchy.

Local classifiers can be trained in three different ways: a
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Local Classifier per hierarchy Level (LCL), that trains one
multi-class classifier for each level of the class hierarchy;
training a Local binary Classifier per Node (LCN), where
each classifier decides wether a node is predicted or not;
the third way is training a Local Classifier per Parent Node
(LCPN), where a multi-class classifier is trained to predict
its child nodes.

Cerri et al. (Cerri, Barros, and de Carvalho 2013) propose
a method that incrementally trains a multilayer perceptron
for each level of the classification hierarchy (LCL). Predic-
tions made by a neural network at a given level are used as
inputs to the network of the next level. The labels are pre-
dicted using a threshold value. Finally, a post processing
phase is used to correct inconsistencies (when a subclass is
predicted but its superclass is not). This phase removes those
predicted classes that do not have predicted superclasses.
Some difficulties of this approach are the selection of a cor-
rect threshold and the need of a post-processing phase.

Alaydie et al. (Alaydie, Reddy, and Fotouhi 2012) de-
veloped HiBLADE (Hierarchical multi-label Boosting with
LAbel DEpendency), an LCN algorithm that takes advan-
tage of not only the predefined hierarchical structure of the
labels, but also exploits the hidden correlation among the
classes that is not shown through the hierarchy. This algo-
rithm attaches the predictions of the parent nodes as well as
the related classes. However, appending multiple attributes
can create models that over-fit the data.

Silla and Freitas (Silla Jr. and Freitas 2009b) propose an
LCPN algorithm combined with two selective methods for
training. The first method selects the best features to train
the classifiers, the second selects both the best classifier and
the best subset of features simultaneously, showing that se-
lecting a classifier and features improves the classification
performance. A drawback of this approach is that the selec-
tion of the best features and the best classifier for each node
can be a time-consuming process.

Bi and Kwok (Bi and Kwok 2011; 2012) propose HI-
ROM, a method that uses the local predictions (indepen-
dently of the way they are trained) to search for the optimal
consistent multi-label classification using a greedy strategy.
Using Bayesian decision theory, they derive the optimal pre-
diction rule by minimizing the conditional risk. The limita-
tions of this approach is that it optimizes a function that does
not necessarily maximizes the performance in other mea-
sures.

The approach of Hernandez et al. (Hernandez, Sucar, and
Morales 2013), used for tree structured taxonomies, learns
an LCPN. In the classification phase, it classifies a new in-
stance with the local classifier at each node, and combines
the results of all of them to obtain a score for each path
from the root to a leaf-node. Two fusion rules were used to
achieve this: product rule and sum rule. Finally it returns the
path with the highest score. One limitation of this method
is that it favors shorter (product rule) or longer paths (sum
rule) depending on which combination rule is used. Another
limitation is that it does not take into account the relations
between nodes when classifying an instance.

Extending the work of Hernandez et al., our method
(Chained Path Evaluation or CPE), changes the way the clas-

sifiers are trained to include the relations between the labels,
specifically of the parent nodes of the labels, to boost the
prediction. The score for each path is computed using a fu-
sion rule that takes into account the level in the hierarchy,
thus minimizing the effect that the length of the path has in
the score. We also extended the method to work with DAG
structured hierarchies.

To include the relations of the parent nodes we used the
idea of chain classifiers proposed by Read et al. (Read et
al. 2011) and further extended by Zaragoza et al. (Zaragoza
et al. 2011). The chain classifiers proposed by Read et al.,
link the classifiers along a chain where each classifier deals
with the binary classification problem associated with a la-
bel. The feature space of each link in the chain is extended
with the 0/1 label of all the previous classifiers in the chain.
The order of the labels is random, and a set of chains are
combined using an ensemble. Zaragoza et al. proposed a
Bayesian Chain Classifier where they obtain a dependency
structure out of the data. This structure determines the or-
der of the chain, so that the order of the class variables in
the chain is consistent with the structure found in the first
stage. Each intermediate node is a naive Bayes classifier.
We adapt this idea to a hierarchical classifier, such that the
chain structure is determined by the hierarchy.

Chained Path Evaluation
Let D be a training set with N examples, ee = (xe, Je),
where xe is a d-dimensional feature vector and J ⊂ L, L =
{l1, l2, ..., lM} a finite set of M possible labels. These labels
are represented as Y ∈ {0, 1}M , where yi = 1 iff yi ∈
Ji else yi = 0. The parent of label yi in the hierarchy is
represented as pa(yi).

Our method exploits the correlation of the labels with its
ancestors in the hierarchy and evaluates each possible path
from the root to a leaf node, taking into account the level of
the predicted labels to give a score to each path and finally
return the one with the best score. The method is composed
of two phases: training and classification.

Training
The method trains local classifiers per parent node (LCPN)
(see Figure 1). A multi-class classifier Ci is trained for each
non leaf node yi. The training set for Ci, is composed of the
instances where yi = 1 and a subset of the instances in the
siblings of yi (sib(yi)), the siblings include all the children
nodes of the parents of yi (pa(yi)) except yi. The instances
that belong to sib(yi) are under-sampled to create a balanced
training set. The number of under-sampled instances is pro-
portional to the mean of the training examples for each child
of yi. The possible classes in Ci are the labels of the chil-
dren of yi plus an “unknown” label that corresponds to the
examples in sib(yi).

As in multidimensional classification, the class of each
node in the hierarchy is not independent from the other
nodes. To incorporate these relations, inspired by chain clas-
sifiers, we include the class predicted by the parent node(s)
as an additional attribute in the LCPN classifier. That is,
the feature space of each node in the hierarchy is extended
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l0: 33 inst
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l2:
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l3: 
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l4:
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l7:

3 inst
l9:

5 inst

l8: 15 inst

l10:
5 inst

l11:
5 inst

Classes: l2, l3, l4, unknown
Training set:
       3 instances in l2
       4  instances in l3
       3 instances in l4
       3 instances from S

       S ∈ {l5 U l8}
        | S | = 23

Figure 1: Example of a hierarchical structure. A classifier
(Ci) is trained for each non-leaf node (grey) to predict its
child labels (lj).

with the 0/1 label association of the parent (tree structure) or
parents (DAG structure) of the node, as in a Bayesian chain
classifier.

Classification
The classification phase consists in calculating for each new
instance with feature vector xe, the probability of a node
i to occur given the feature vector and the prediction of the
parents of the current label P (yi = 1|xe, pa(yi)) . When the
structure of the dataset is a DAG, it is possible that we obtain
more than one prediction for one class, then the associated
prediction is the average of all the predictions for that class.
After computing a probability for each node, the predictions
are merged using a rule to obtain a score for each path pj , as
explained below and shown in Figure 2.

Merging Rule. The rule that merges the predictions of
each local classifier into one score considers the level in
the hierarchy of the node to determine the weight that this
node will have in the overall score. Misclassifications at the
upper hierarchy levels (which correspond to more generic
concepts) are more expensive than those at the lower levels
(which correspond to more specific concepts). To achieve
this task, the weight of a node (w(yi)) is defined in Equa-
tion (2), where level(yi) is the level at which the node yi
is placed in the hierarchy (Equation (1)). For a tree struc-
ture it is simply the weight of its parent plus one, and for
DAG structures it is computed as the mean of the levels of
the m parents (pa(yi)) of the node (yi) plus one. Finally,
maxLevel is the length of the longest path in the hierar-
chy. This way of computing the weight of each node as-
sures that the weights are well distributed along the hier-
archy; so that the weights of the lower levels do not tend
rapidly to zero, as in other approaches (Vens et al. 2008;
Bi and Kwok 2011).

level(yi) = 1 +
1

|pa(yi)|

m∑
j=1

level(pa(yi)j) (1)

w(yi) = 1− level(yi)

maxLevel + 1
(2)

Equation (3) describes the merging rule which is the sum
of the logarithms of the probabilities on the nodes along the

l0

l5l1

l3l2 l4 l6 l7

p2 p3 p4 p5 p6

p(l1=1|x0,l0)=0.6 p(l5=1|x0,l0)=0.4

p(l2=1|x0,l1)=0.3 p(l3=1|x0,l1)=0.6 p(l4=1|x0,l1)=0.1 p(l6=1|x0,l5)=0.8 p(l7=1|x0,l5)=0.2

score=(log(0.6)*0.67)+
(log(0.3)*0.33)
score = -0.32

score=(log(0.6)*0.67)+
(log(0.6)*0.33)
score = -0.22

score=(log(0.6)*0.67)+
(log(0.1)*0.33)
score = -0.48

score=(log(0.4)*0.67)+
(log(0.8)*0.33)
score = -0.30

score=(log(0.4)*0.67)+
(log(0.2)*0.33)
score = -0.50

w1=1-(1/3)=0.67

w2=1-(2/3)=0.33

Figure 2: An example of the application of the merging rule
is depicted. The left wj represent the weights associated
to each level of the hierarchy, each node has an associated
probability P (hi|xi, pa(hi)). Below the leaf nodes the score
of the path is obtained using Equation (3).

path, where n is the number of nodes in the path, hi is the
ith node in the path and P (hi = 1|xe, pa(hi)) is the prob-
ability of the node hi to occur obtained by the local clas-
sifier. Taking the sum of logarithms is used to ensure nu-
merical stability when computing the probability for long
paths. This scheme assumes independence between the la-
bels, although in an indirect way the dependencies with the
parent nodes are considered by incorporating them as addi-
tional attributes. As in chain classifiers, this scheme looks
for a balance between classification accuracy and computa-
tional complexity.

score =

n∑
i=0

whi × log(P (hi|xi, pa(hi))) (3)

For DAG structures there might be numerous paths from
the root to one leaf node. In that case, all the paths that end
in that leaf node are returned. Figure 2 shows a classification
example.

Experimental Setup
The proposed method, Chained Path Evaluation (CPE), was
evaluated experimentally with a number of tree and DAG
structured hierarchies, using four different evaluation mea-
sures and compared with various state-of-the-art hierarchi-
cal classification techniques. Next we describe the experi-
mental setup and then present the results.

For tree structured hierarchies, we used ten hierarchical
datasets and compared CPE against three HMC methods:

1. Multidimensional Hierarchical Classifier (MHC). Pro-
posed by Hernandez et al. (Hernandez 2012; Hernandez,
Sucar, and Morales 2013).

2. Top-Down LCPN (TD). Training a LCPN and selecting at
each level the most probable node. Only the children of
this node are explored to preserve the consistency of the
prediction.

3. HIROM. Proposed by Wei and Kwok (2011).

In the case of DAG structures, CPE was evaluated in eight
hierarchical datasets and compared against two HMC meth-
ods:
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1. Top-Down LCPN (TD). Training a LCPN and selecting at
each level the most probable node. Only the children of
this node are explored to preserve the consistency of the
prediction.

2. HIROM. Proposed by Bi and Kwok (2011), the variant
for DAG structures.

These methods were selected because they are all based
on local classifiers and thus are the most clearly related with
our method.

Datasets
Eighteen datasets were used in the tests (see Table 1),
these datasets are from the field of functional genomics
(http://dtai.cs.kuleuven.be/clus/hmcdatasets/). Ten of them
(tree structured) are labeled using the FunCat annotation
scheme (Ruepp et al. 2004). The remaining eight datasets
(DAG structured) are labeled using the Gene Ontology vo-
cabulary (Ashburner, Ball, and Blake 2000) to describe the
roles of genes and gene products in any organism.

All the datasets were pruned to get instances with no more
than one path in the hierarchy from the root to a leaf node.
Only the leaf nodes with enough instances to train were con-
sidered, more than 70 for tree hierarchies and more than
50 for DAG hierarchies thus having a hierarchical tree like
structure with up to four levels of increasing specificity and
a DAG structure of maximum 11 levels.

Evaluation measures
Measures for conventional classification are not adequate for
hierarchical multi-label problems, for that reason specific

Table 1: Datasets used in the experiments. L=Labels,
A=Attributes, I=Instances and D=Maximum depth.

Dataset L A I D
Tree hierarchies

Cellcycle FUN 36 77 2339 4
Church FUN 36 29 2340 4
Derisi FUN 37 65 2381 4
Eisen FUN 25 81 1681 3
Expr FUN 36 553 2356 4

Gasch1 FUN 36 175 2346 4
Gasch2 FUN 36 54 2356 4
Pheno FUN 17 71 1162 3
Seq FUN 39 480 2466 4
Spo FUN 36 82 2302 4

DAG hierarchies
Cellcycle GO 53 78 1708 11
Church GO 53 28 1711 11
Derisi GO 54 64 1746 11
Expr GO 53 552 1720 11

Gasch1 GO 53 174 1716 11
Gasch2 GO 53 53 1720 11

Seq GO 52 479 1711 11
Spo GO 53 81 1685 11

measures for HMC have been proposed. In our work we
used four of the more common evaluation measures.

The notation in the formulas include ŷi as the predicted
labels and yi for the real set of labels.

Accuracy. A multi-label measure of accuracy introduced
in (Godbole and Sarawagi 2004) (see Equation (4)). This
is the ratio of the size of the union and intersection of
the predicted and actual label sets (represented by the log-
ical AND and OR operations in bit-vector notation, respec-
tively), taken for each example, and averaged over the num-
ber of examples.

Accuracy =
1

N

N∑
i=1

|yi ∧ ŷi|
|yi ∨ ŷi|

(4)

Hamming Loss / Hamming Accuracy. Depicted in Equa-
tion (5), where yi⊕ ŷi is the symmetrical difference between
yi and ŷi (the logical XOR operation). It represents a label-
based accuracy.

Hloss =
1

NL

N∑
i=1

|yi ⊕ ŷi| (5)

Hamming accuracy is defined as Haccuracy = 1−Hloss.

Exact Match. Represents the proportion of the real labels
that were predicted.

ExactMatch =
1

N

N∑
i=1

1yi=ŷi
(6)

F1-measure. The F1-measure, commonly used in infor-
mation retrieval, has also been popular for multi-label clas-
sifications. For any vector of label associations y ∈ {0, 1}T ,
a label is relevant if yi = 1 and predicted if ŷi = 1 (in a cor-
responding vector of predicted label associations), and from
this we can define: precision as the fraction of predicted rel-
evances which are actually relevant |y∧ŷ||ŷ| ; and recall as the

fraction of actual relevances which are also predicted |y∧ŷ||y| .
F1-measure (F1) is calculated as in Equation (7).

F1 =
2× precision× recall

precision+ recall
(7)

When it is averaged by the number of examples, like in this
case, it is called F1-macro D.

F1macro×D(D) =
1

N

N∑
j=0

F1(yj , ŷj) (8)

Results
The results were obtained by a stratified 10-fold cross-
validation. The four evaluation measures are reported in dif-
ferent tables for each dataset. We used Naive Bayes as base
classifier for all the methods. The best results are marked in
bold. A paired two-tailed t-test was carried out to find statis-
tical significance in the results with a confidence degree of
95%. Statistically inferior results against CPE are marked
with ↓ and statistically superior results are marked with ↑.
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Table 2: Results obtained using the four different evaluation
measures for ten tree structured hierarchies. Statistically in-
ferior results against CPE are marked with ↓ and statistically
superior results are marked with ↑.

Accuracy
Dataset CPE MHC TD HIROM

Cellcycle FUN 20.80 19.68 19.58 9.33↓
Church FUN 13.23 12.98 13.00 4.01↓
Derisi FUN 13.85 13.44 13.40 4.17↓
Eisen FUN 28.62 28.57 27.82 17.06↓
Expr FUN 23.49 23.28 23.08 17.90↓

Gasch1 FUN 20.05 19.83 19.61 13.28↓
Gasch2 FUN 20.03 20.28 20.16 8.38↓
Pheno FUN 23.25 22.04 22.65 13.30↓

Seq FUN 31.75 31.73 31.86 21.32↓
Spo FUN 15.32 15.20 14.79 6.86↓

Hamming Accuracy
Dataset CPE MHC TD HIROM

Cellcycle FUN 88.87 89.01 88.65 91.22↑
Church FUN 86.00 86.04 85.94 90.61↑
Derisi FUN 87.43 87.59 87.20 90.87↑
Eisen FUN 87.18 87.30 87.07 89.48↑
Expr FUN 88.80 88.82 88.69 91.67↑

Gasch1 FUN 88.74 88.90 88.64 91.55↑
Gasch2 FUN 88.65 89.00↑ 88.59 91.12↑
Pheno FUN 83.85 83.47 83.56 85.53↑

Seq FUN 91.32 91.36 91.33 91.95↑
Spo FUN 87.95 88.30 87.90 90.95↑

Exact Match
Dataset CPE MHC TD HIROM

Cellcycle FUN 17.66 16.42 16.33 3.81↓
Church FUN 11.37 10.98 10.98 2.91↓
Derisi FUN 11.17 10.53 10.67 3.11↓
Eisen FUN 24.80 24.87 23.85 4.52↓
Expr FUN 20.25 20.08 20.07 9.29↓

Gasch1 FUN 17.18 16.92 16.88 6.91↓
Gasch2 FUN 16.43 16.38 16.26 4.16↓
Pheno FUN 12.12 10.93 11.01 2.15↓

Seq FUN 27.25 27.25 27.41 13.26↓
Spo FUN 12.51 12.42 12.12 3.52↓

F1-macro D
Dataset CPE MHC TD HIROM

Cellcycle FUN 22.41 21.35 21.29 11.42↓
Church FUN 14.29 14.20 14.15 4.49↓
Derisi FUN 15.40 15.03 14.99 4.70↓
Eisen FUN 30.62 30.52 29.92 21.64↓
Expr FUN 25.14 24.92 24.64 21.25↓

Gasch1 FUN 21.52 21.31 21.02 15.80↓
Gasch2 FUN 21.89 22.19 22.11 10.06↓
Pheno FUN 28.82 27.61 28.49 17.09↓

Seq FUN 34.02 33.99 34.12 24.43↓
Spo FUN 16.72 16.53 16.12 8.23↓

Tree structured hierarchies
The results for tree-structured hierarchies are summarized in
Table 2. CPE outperforms the other ones in most datasets in
the measures of accuracy, exact-match and F1-macroD. It
is inferior in hamming accuracy to the HIROM algorithm;
however, HIROM obtains such good results due to the fact
that this method optimizes a function which can be reduced
to the hamming loss (Bi and Kwok 2012). CPE, MHC and
TD achieve, in general, a balance between precision and re-
call. HIROM tends to sacrifice precision for recall or vice
versa.

For applications in which obtaining an exact match in all
the classes is important, our method seems to be the best
option as in this measure (exact match) it obtains the best
results. It also obtains the best results for the F1 measure
that provides a balance between precision and recall.

In the case of training and classification time, CPE, MHC
and TD spend approximately the same amount, on the order
of 1 second for training and 0.1 milliseconds for classifying
an instance. HIROM spends twice as much time as the other
approaches for both training and classification.

In summary, our method is competitive with respect to
other state-of-the-art methods. It shows a slightly superior
performance in three of the four measures, and a difference
with respect to HIROM. Our method is also competitive in
terms of running time.

DAG structured hierarchies
The results for DAG-structured hierarchies are summarized
in Table 3. In this case our method is superior in all cases to
the other two approaches, and the difference is statistically
significant in practically all the measures and datasets.

There are different factors that could explain this differ-
ence for DAG structures. One could be that our method was
developed considering this type of hierarchies, while TD
was not. However, HIROM also considers DAG structures,
and our method is superior even for the Hamming accuracy,
the measure that HIROM optimizes. Other possible expla-
nation is that our approach is better for deeper hierarchies,
as the tree datasets have as maximum depth of 3/4, while the
DAG datasets have a maximum depth of 11. The weighting
scheme per level in our method could be one of the reasons
for this difference. A more thorough investigation of these
issues will be a topic of future research.

Conclusions and Future Work
We presented a novel approach for hierarchical multi-label
classification for tree and DAG structures. The method esti-
mates the probability of each path by combing LCPNs, in-
corporating two additional features: (i) a weighting scheme
that gives more importance to correct predictions at the top
levels; (ii) an extension of the chain idea for hierarchical
classification, incorporating the label of the parent nodes as
additional attributes. Experiments with 18 tree and DAG hi-
erarchies show that the proposed method is competitive with
other techniques for tree structures, and superior for DAGs.

As future work we plan to extend the proposed method
for non-mandatory leaf node prediction.
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Table 3: Results obtained using different evaluation mea-
sures for DAG structured hierarchies. Statistically inferior
results against CPE are marked with ↓ and statistically supe-
rior results are marked with ↑.

Accuracy
Dataset CPE TD HIROM

Cellcycle GO 35.12 33.38↓ 16.55↓
Church GO 26.35 26.01 10.58↓
Derisi GO 27.18 25.54↓ 10.69↓
Expr GO 36.45 31.89↓ 12.78↓

Gasch1 GO 34.52 31.66↓ 16.28↓
Gasch2 GO 33.83 32.16↓ 17.34↓

Seq GO 46.30 41.89↓ 14.17↓
Spo GO 27.80 26.13↓ 16.09↓

Hamming Accuracy
Dataset CPE TD HIROM

Cellcycle GO 91.56 90.37↓ 86.68↓
Church GO 90.58 90.29↓ 31.77↓
Derisi GO 90.68 90.19↓ 31.54↓
Expr GO 91.65 90.56↓ 51.23↓

Gasch1 GO 91.49 90.76↓ 70.84↓
Gasch2 GO 91.43 90.56↓ 85.13↓

Seq GO 92.70 91.79↓ 77.67↓
Spo GO 90.72 89.64↓ 64.81↓

Exact Match
Dataset CPE TD HIROM

Cellcycle GO 20.25 14.64↓ 0.17↓
Church GO 11.69 11.40 0.06↓
Derisi GO 12.26 9.80↓ 0.06↓
Expr GO 22.03 15.52↓ 0.35↓

Gasch1 GO 19.99 15.79↓ 0.52↓
Gasch2 GO 18.89 14.71↓ 0.81↓

Seq GO 31.32 22.62↓ 0.00↓
Spo GO 12.58 9.85↓ 1.01↓

F1-Macro D
Dataset CPE TD HIROM

Cellcycle GO 44.83 43.73↓ 27.23↓
Church GO 36.63 36.22↓ 18.51↓
Derisi GO 37.47 36.01↓ 18.65↓
Expr GO 45.88 41.98↓ 21.63↓

Gasch1 GO 44.16 41.71↓ 26.68↓
Gasch2 GO 43.68 42.54↓ 28.19↓

Seq GO 55.17 51.96↓ 24.06↓
Spo GO 38.18 36.48↓ 26.02↓
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