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Abstract

Instance-based regression methods generate solutions
from prior solutions within a neighborhood of the in-
put query. Their performance depends on both neigh-
borhood selection criteria and on the method for gener-
ating new solutions from the values of prior instances.
This paper proposes a new approach to addressing both
problems, in which solutions are generated by an en-
semble of solutions of local linear regression models
built for a collection of “stretched” neighborhoods of
the query. Each neighborhood is generated by relaxing a
different dimension of the problem space. The rationale
is to enable major change trends along that dimension
to have increased influence on the corresponding model.
The approach is evaluated for two candidate relaxation
approaches, gradient-based and based on fixed profiles,
and compared to baselines of k-NN and using a radius-
based spherical neighborhood in n-dimensional space.
Results in four test domains show up to 15 percent im-
provement over baselines, and suggest that the approach
could be particularly useful in domains for which the
space of prior instances is sparse.

Introduction
Lazy learning methods postpone building a model or mak-
ing an estimation for the target function until a query is sub-
mitted, generating local estimates tailored the specific in-
put problems. Lazy learning can be especially beneficial for
complex and incomplete domains in which a set of (possibly
relatively simpler) local models may provide higher quality
results than a single global model. The notion of locality in
lazy learning is often defined based on a distance function
that is used for finding a set of nearest neighbors for the in-
put query, from whose values a value is computed for the
input query.

Normally the neighborhood is determined by the distance
function and a predefined number of nearby instances to
consider: k-NN considers the k nearest neighbors. How-
ever, other neighborhood selection schemes and combina-
tion functions may sometimes be more appropriate. In this
paper, we explore an approach using new neighborhood se-
lection functions for choosing points from which to calculate
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a target value, using linear regression to develop local mod-
els, and then combining the values of those models to pro-
duce a value. From the perspective of case-based reasoning,
this corresponds to a new approach to adapting the solutions
of prior cases for regression tasks.

The method trains linear regression models for local
neighborhoods of the input query, in which the nearest
neighbor calculation is adapted to “stretch” one dimension.
More specifically, for an n-dimensional space, distances are
computed by a normal domain similarity metric in n-1 di-
mensions, and distances in one dimension are relaxed ac-
cording to either a gradient-based strategy or a strategy
based on a fixed “shape” profile. By generating a model for
a set neighborhoods, each relaxing of one of the n possible
dimensions, n different linear regression models are gener-
ated for the specific query. The final value is generated by
averaging the estimate returned by each of the models. We
first present the approach and then evaluate its performance
for four sample domains, showing encouraging results. We
close with observations and topics for future research.

Related Work
Many instance-based learning approaches use k-NN, select-
ing neighborhoods composed of the k nearest instances. The
effects of neighborhood shape have received little study.

Outside of instance-based learning, numerous approaches
have been explored for regression tasks. For example, Kwok
and Yeung (yau Kwok and Yeung 1997) apply feed-forward
neural networks, Orr (Orr 1996) applies radial basis function
networks, and Scholkopf and Smola (Scholkopf and Smola
2001) apply Support Vector Machines by transforming the
regression problem into a constrained optimization problem.
These methods differ from our work both in the utilized
models and the non-lazy nature of the model generation.

Within case-based reasoning, McSherry (McSherry 1998)
proposes a case-based reasoning regression approach based
on pair-wise comparisons between cases in a case-base and
using those pairs for adapting the solution from a retrieved
case for an input query. Most relevant to our approach, Pat-
terson et. al. (Patterson, Rooney, and Galushka 2002) train
a locally weighted regression model for predicting the dif-
ference in the target value of two cases. They use a distance
weighted average for creating a generalized case from the
top k nearest neighbors to the input query, and adapt the so-
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lution from the generalized case by feeding the differences
between the input query and the generalized case into the
trained linear regression model and adding the estimated dif-
ference to the retrieved solution. However, instead of using
linear regression for adapting the solution from a k-NN com-
ponent, we directly use linear regression for predicting the
target value of an input query.

Linear regression is widely used, but in some domains, the
relation between the input features and the target function is
non-linear, so multiple local linear models can yield more
accurate estimations compared to a global linear model.
Atkeson (Atkeson, Moore, and Schaal 1997) studies as-
pects of locally weighted linear regression such as distance
functions, smoothing parameters, weighting functions, local
model structures and other related issues. However, the dis-
tance functions and consequently the neighborhoods used in
our methods are different from those discussed in Atkeson’s
work and we explore using an ensemble of locally weighted
linear regression models.

Ensemble methods have been the subject of much study.
These methods (e.g. Boosting (Schapire 1990) or Bagging
(Breiman 1996)) combine estimations from different mod-
els to improve performance. Freunnd and Schapire’s (Fre-
und and Schapire 1997) AdaBoost works by generating a
set of weak models and assigning greater weights to exam-
ples with unsatisfactory predicted values. It uses a weighted
majority vote of a set of weak hypotheses for estimating the
target value of the input queries. There are many variations
of boosting (Drucker 1997; Friedman 2000; Ye et al. 2009)
and bagging (Sun and Pfahringer 2011) that usually differ in
the loss function they use or the gradient direction they ex-
plore. In contrast to the ensemble methods discussed so far
where the base models are eager, there are other alternative
methods (e.g. (Zhu and Yang 2008) and (Zhu, Bao, and Qiu
2008)) that use locally weighted base models. The proposed
methods in this paper are lazy bagging methods. They dif-
fer from other similar methods in that they use a different
(overlapping) non-spherical-shaped neighborhood for train-
ing each base model while other similar methods use a fixed
set of instances selected from a spherical-shaped neighbor-
hood and train base models on different sub-sets of those
instances.

Linear Regression

Linear Regression (LR) generates a linear target function,
based on a set of features to consider, from a collection of in-
put instances. Applying linear regression to local neighbor-
hoods requires choosing the instances for training the model
(i.e., selecting the neighborhoods). Applying an ensemble
of linear regression models requires selecting a collection
of possible models and determining how to combine their
values. This section begins with brief background on locally
weighted regression, which our approach applies to the cases
in a neighborhood to build local models, and then considers
the questions of neighborhood selection and exploitation of
the set of models.

Locally Weighted Regression
Given a set of instances to constitute the neighborhood of a
query, Locally Weighted Regression (LWR) generates a re-
gression model based on weighting points according to their
distance from the query, so that the points far away from the
input query contribute less in determining the model com-
pared to the nearby points. Let xi and yi represent the ith

training sample and its value respectively. If f : X → R is
a function that maps an instance to its estimated value and
q represents the input query, then LWR uses the following
criterion C for model selection:

C ≡
n∑

i=1

(f(xi)− yi)
2K(d(xi, q)) (1)

where d(xi, q) indicates the distance (e.g. Euclidean dis-
tance) between the ith training sample and the query and
K is the kernel function used for distance weighting. For
example, the kernel function could be chosen so that only a
few nearby points have significant effect.

Profile-Based Axis Relaxation for
Neighborhood Selection

The motivation for our relaxation-based approach is to make
instance-based regression more sensitive to trends which
may exist outside of a constant-radius neighborhood or
which may arise in a direction outside the majority of the
instances in a radius-based neighborhood. The goal is to en-
able interpolation from points which reflect important trends
but might not be reflected by traditional neighborhoods.

As a baseline, we consider spherical-based neighbor-
hood selection method. In addition, we consider three meth-
ods which relax dimensions along particular shape profiles,
which we describe intuitively as cylindrical, hourglass, and
diamond-shaped. Examples are illustrated, as they apply to
2-dimensional space in Fig. 1. Within each of these basic
shapes a family of neighborhoods can be defined, as follows:

1. Spherical: All points within a fixed radius of the input
query are included.

2. Cylindrical: If xi and qi represent the value of the ith fea-
ture of a stored instance and of the query, respectively, we
delete the dth feature and apply Minkowski’s metric, as
follows:

d1(x, q) ≡ (
∑

i∈{1,..,n}−{d}

(| xi − qi |)p)
1
p (2)

Note that if p is set to 2, this calculates Euclidean distance
in the n-1 dimensional space resulting from ignoring the
dth feature.

3. Hourglass: The level of attention to points along dimen-
sion d can be varied by applying Eq. 2 (using 2 as p) as
the distance function in Eq. 3 and incorporating a kernel
function K1 based on the values of xd and qd, as follows:
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Figure 1: Four different neighborhoods in 2-d space

d2(x, q) ≡
√ ∑

i∈{1,..,n}−{d}

(xi − qi)2 ×K1(| xd − qd |)

(3)
If K1 is inversely related to the difference between xd and
qd (e.g. K1 = 1

|xd−qd| + C where C is a constant) then
a neighborhood like the one depicted at part c of Fig. 1 is
selected.

4. Diamond: If K1 in Eq. 3 is directly related to the differ-
ence between xd and qd (e.g. K1 =| xd− qd | +C where
C is a constant), then a neighborhood such as shown in
part d of Fig. 1 is selected. Using the diamond neighbor-
hood decreases the chance of selecting points distant from
the input query in the direction of the relaxed dimension,
compared to a cylindrical or hourglass neighborhood.

Gradient-based Weighted Axis Relaxation
In addition to the profile-based relaxations illustrated in the
previous section, we consider another method which directly
uses gradients to attempt to stretch the neighborhood to in-
clude points which better represent a trend (either ascending
or descending) for the target function over the relaxed di-
mension. For this we modify the distance function from Eq.
3 so that the trend-representative points contribute more in
training the model:

d3(x, q) ≡
√ ∑

i∈{1,..,n}−{d}

(xi − qi)2 ×K2(n(xd), n(y))

(4)

Here all variables are as used in Eq. 3, y represents the
actual value of the target function at point x and n() is a nor-
malizer function. K2 is a kernel function that assigns more
weight to those points that can capture a trend over the dth

dimension. K2 could be selected so that either points on
a descending or points on an ascending trend over the dth

dimension are weighted more compared to the other data-
points. E.g., favoring data points on an ascending trend can
be achieved with the kernel function:

K2(xi, y) ≡| y − xi | +Ei (5)

Here x and y are normalized (between 0 and 1) values of
the ith attribute of x and its actual target values respectively
and Ei is a value used for biasing the effect of K2 in Eq. 4.
Ei can vary for different points or could be a constant value.
Fig. 2 depicts a sample K2 weighting function where Ei is
always equal to zero. In Fig. 2, the x and y axes represent
the normalized attribute and case values respectively as ex-
plained in Eq. 5. K2 axis is the kernel function used.
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Figure 2: A sample K2 weighting function when E = 0 for
all points.

Ensemble Method for Combining Model
Predictions

We hypothesize that instance-based regression can be im-
proved by training as many locally weighted regression
models as the number of dimensions, with estimations from
those models combined to form the final estimation of the
target function. If fd(q) is the estimation from the model
trained based on a neighborhood defined using Eq. 3 by
stretching the dth dimension, and w is a vector used for
weighting the effect of each model in determining the final
value of the target value, then the following formula can be
used for calculating the final estimation of the target value:

f(q) ≡
n∑

d=1

fd(q)wd (6)

Weights could be set based on different criteria such as
the quality of the trained models (e.g. in terms of Sum
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of Squared Residuals for the training data) or the coeffi-
cient for each dimension obtained from a linear regression
model weighted locally according to the radius-based spher-
ical neighborhood in n-dimensional space. If all elements of
w are equal, then f(q) would simply be the mean of the es-
timations. In our following experiments, except the number
of neighbors to use other aspects of the learning such as se-
lecting the candidate model for a particular neighborhood
according to an information criterion or selecting the set of
features to be considered in the model are handled by Weka
(Hall et al. 2009) which is the tool that we use as the back-
bone linear regression learner in our methods.

Alg. 1 summarizes the process of training a committee of
linear regression models trained by using an arbitrary neigh-
borhood profile and computing the final target value based
on the base model estimations. In Alg. 1, TSd and md rep-
resent the dth training set and the model built based on it
respectively. Also, CombineVals combines the estimations
from individual models. In its simplest form CombineVals
returns the mean of the individual estimations as it is used in
the experiments reported in the next section.

Algorithm 1 the generic stretched-based neighborhood se-
lection ensemble method
Input:
q: input query
dim: number of dimensions
NP : neighborhood selection profile
Output: T: Estimated target value

for d← 1 to dim do
TSd← NeighborhoodSelection(NP , k, d)
md← Train(TSd)
ValEstimated← Estimate(q, md)

end for
return CombineVals(∪d∈{1,...,dim}ValEstimated)

Ensemble Selection for Gradient Method
Likewise the previous method, estimations from stretched
neighborhoods are combined to form the final estimation.
However, in the gradient method, the estimation for a single
neighborhood is calculated by combining two components
itself. In this case, one component is the estimation from
a model trained by ascending trend inclined point selection
and the other would be the estimation from the descending
trend inclined point selection. Same criteria as explained for
the previous method could be used for weighting each model
in this case as well :

f(q) ≡
n∑

i=1

2∑
i=1

fi,j(q)wi,j (7)

Here fi,1(q) and fi,2(q) are the estimations from a model
trained by an ascending trend inclined and descending trend
inclined point selection strategy respectively and wi,j is the
weight assigned to each model.

Experimental Design
We conducted experiments on the four domains all from the
UCI repository (Frank and Asuncion 2010): MPG, with 7
features and 392 cases, Auto Price, with 13 features and
195 cases, Housing, with 13 features and 506 cases, and
Abalone, with 7 features and 4177 cases. Each data set is
cleaned by removing cases with unknown feature values.
For each input feature, values are standardized by subtract-
ing that feature value’s mean from each individual feature
value and dividing the result by the standard deviation of
that feature. Target values are not standardized.

Experiments assess the performance of different neigh-
borhood selection strategies for training a linear regression
model by comparing their mean absolute errors. The follow-
ings are the training data selection methods considered in
our experiments:

1. Spherical-shaped: a radius-based (RB) neighborhood as
the one depicted in part a of Fig. 1

2. Cylindrical-shaped (CS): a radius-based neighborhood
with relaxing one of the dimensions as the one depicted
in part b of Fig. 1 using the Euclidean version of Eq. 2.

3. Hourglass-shaped (HS): an hourglass-shaped neighbor-
hood as depicted in part c of Fig. 1 achieved by using
Eq. 3 and using 1

|xd−qd| + C in as K1.

4. Diamond-shaped (DS): a diamond-shaped neighborhood
as the one depicted in part d of Fig. 1 using Eq. 3 and
using | xd − qd | in as K1.

5. Gradient-based (GB): a cylindrical-shaped neighborhood
by using a kernel function like the one introduced in Fig.
2 for weighting the points in the selected neighborhood.

For each method, we tested for a sequence of parameter
settings (e.g., settings the radius for the spherical neighbor-
hood) to provide a sequence of neighborhoods of different
sizes (e.g., the smallest neighborhood with 5 cases, small-
est neighborhood with 10 cases, etc.), in order to compare
performance with different neighborhood sizes. In all cases
leave-one-out cross validation is used for evaluating the per-
formance of each method.

Experimental Results
Spherical vs. Hourglass and Gradient-Based
Methods
Fig. 3 depicts the percentage of improvement in terms
of Mean Absolute Error (MAE) of hourglass-shaped and
gradient-based training sample selection methods compared
to the performance of the radius-based method, for different
numbers of instances considered.

In all domains, for the same training set size, the hourglass
and gradient-based methods outperform the spherical neigh-
borhood method. This is especially true for smaller training
sizes which acknowledges our hypothesis about the possi-
ble usefulness of using stretched neighborhoods for training
locally weighted linear regression models. However, some-
times this gain is not noticeable. As an example, as depicted
in part d of Fig. 3 for the Abalone domain, this improve-
ment is negligible. On the other hand, for the Housing and
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Figure 3: percentage of improvement in MAE for hourglass-
shaped and gradient-based methods compared to that of
radius-based training selection

Auto domains the gain is more significant. We hypothesize
that this results because the instance sets in the Housing and
Auto domains are relatively sparser compared to those in the
Abalone domain. In the Abalone domain the average num-
ber of cases per solution is 149 while this value in Housing,
Auto and MPG domains decreases to 2.21, 1.1 and 3.1 re-
spectively. Also for neighborhoods that contain nearly the
whole data set (i.e right end of graphs) for each domain all
linear regression models are approximately built using the
same training data and consequently hourglass and gradient-
based methods show same performance as that of spherical-
based method.

We observe that hourglass-shaped and gradient-based
methods usually show very similar performance especially
for Abalone and MPG domains. However, in general the
gradient-based method shows better performance compared
to hourglass-shaped method (especially in the Auto do-
main). This can justify the importance of trend detection for
the target function and using that for guiding the training
data selection over a stretched neighborhood.

Effectiveness of Training Data Selection Methods
Next, we consider all candidate training data selection meth-
ods introduced in the previous section and examine the max-
imum performance gain achievable from each. We use the
best performance achieved by k-NN (with optimal k) as the
baseline and compare the maximum gain in terms of the
MAE from each candidate training data selection method
compared to that of k-NN. Fig. 4 summarizes the percentage
of improvement of each method compared to k-NN.

The range of improvement or deterioration varies in the
different domains, with the Abalone domain showing the
least variation in the percent of improvement (we hypoth-
esize that this is for the same reasons explained for Fig.
3) and the Housing domain showing the greatest variation.
While in the Abalone domain proposed methods (HS and
GB) show less than 1% improvement (the actual MAE val-
ues for HS, GB and k-NN are 1.52, 1.52 and 1.53 respec-
tively) this value is increased to 11% (MAE equals 1.80,
1.81 and 2.02), 7.5% (MAE equals to 1473, 1472 and 1589)
and 15% (MAE equals 2.19, 2.12 and 2.5) for MPG, Auto
and Housing domains respectively.

As depicted in parts b, c and d of Fig. 4, using a diamond-
shaped neighborhood degrades the performance compared
to k-NN in nearly all tested domains. Also, in most cases
the hourglass and gradient-based methods show fairly close
gains compared to k-NN, and always provide better perfor-
mance than the maximum gain achieved by the spherical
neighborhood method.

The cylindrical method yields results that are always bet-
ter than spherical but worse than the hourglass neighbor-
hood selection. This shows that using a method that is in-
clined to choose a wider range of training data, but still along
the relaxed dimension, can be beneficial compared to using
a cylindrical-shaped method. Also, although in Fig. 3 it is
observed that the gradient-based method usually performs
better than hourglass-shaped in all domains except Abalone
for various training set sizes, Fig. 4 shows that for optimal
configurations these two methods perform closer together.
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Figure 4: Percent of improvement in MAE of the best per-
formance achieved by each candidate training data selection
method compared to k-NN

For example, for the MPG and Abalone domains hourglass-
shaped neighbor selection under the optimal configurations
performs slightly better than the gradient-based method and
for the Auto and Housing domain it is the gradient-based
method that slightly performs better than the hourglass-
shaped method.

Conclusion and Future Work
We have described new methods of selecting neighborhoods
of an input query to use as training data for building lin-
ear regression models, and proposed ensemble methods for
combining their results. The neighborhood selection meth-
ods stretch spherical neighborhoods in n-dimensional space
along a single dimension at a time, generating n different
models, whose values are then combined to generate the fi-
nal target value. Experiments showed that using stretched
neighborhoods for training linear regression models can im-
prove accuracy measured by Mean Absolute Error compared
to other candidate methods in four sample domains, espe-
cially if the space of target values is sparse.

Future work includes examining greedy techniques such
as hill-climbing for selecting the optimal set of models
trained by the stretched neighborhoods and their correspond-
ing weights for calculating the final target value and ex-
amining the use of non-parametric regression estimators in
combination with the stretched neighborhoods. Another fu-
ture direction is exploring alternative non-linear and linear
weighting functions for the gradient-based method.
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