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Abstract

Any computing with words (CW) system is required to
assign a phrase in natural language to the fuzzy val-
ues it provides as its output. This paper explores differ-
ent linguistic approximation methods for CW systems.
The outputs of these methods are evaluated through
various measures such as fuzziness, specificity, valid-
ity, and sigma-count. We illustrate that certain linguistic
methods may result in complex and incomprehensible
phrases in natural language. Some might even include
an invalid linguistic term in their linguistic approxima-
tion.

1 Introduction
Zadeh introduced the concept of computing with words
(CW) over a decade ago(Zadeh 1996),(Zadeh 2000) and
highlighted the significant role that perceptions are capable
of in development of science and technology. CW interprets
propositions in natural language as a relationship between
a linguistic variable (V ) and a linguistic term (T ). This re-
lationship is called generalized constraint (GC) and is rep-
resented as V isrT where r determines the modality of the
relationship.

So far, there have been minimal efforts to implement
a CW engine in the soft computing community (Mendel
2001),(Khorasani et al. 2011). To our knowledge, CWShell
(AKA CWJess), built on top of Jess rule based engine (Kho-
rasani et al. 2011), is the only computing with words expert
system shell implementation. CWShell executes a sequence
of inference steps for producing fuzzy results as an output of
the user’s query. CWShell should be capable of translating
the results of its reasoning from a fuzzy set representation
into an appropriate and understandable word or a natural lan-
guage sentence. In other words, it should be able to decode
a fuzzy value to a linguistic term that can be evaluated by
a human decision maker. Fig. 1 illustrates an overall view
of a general CW system. In this paper, we explore differ-
ent methods for retranslating the fuzzy values applicable to
the paradigm of CW. The retranslation refers to the decod-
ing of a GC to a linguistic proposition in natural language,
as shown in Fig. 1. This process of associating propositions
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Figure 1: Retranslation of fuzzy values to words in a CW system

in natural language, based on the semantic meaning of the
fuzzy values, has been referred to as linguistic approxima-
tion (LA).

The study in this paper is an attempt towards discovering
an appropriate LA method for CW. We evaluate applicabil-
ity of several methods to the CWShell system through a case
study. Our case study is the real world problem of calculat-
ing a person’s insurance cost (Khorasani et al. 2012). In sec-
tion 2, we categorize existing LA methods and in Section 3,
we apply these methods to the case study and assess perfor-
mance of each LA method based on several criteria, such as
fuzziness, specificity, validity, and sigma-count.

2 Linguistic Approximation Methods
Formally, given a collection of terms in natural language as-
sociated with fuzzy subsets in the universe X , a linguistic
approximation algorithm maps a fuzzy set to the collection
of terms (Eshragh and Mamdani 1979). In terms of com-
puting with words, it is a retranslation process of replacing
the proposition V isZ with V isT , where T is a collection of
linguistic terms predefined for X . We categorize LA algo-
rithms into three groups as follows in this section.

2.1 Simple LA
A simple LA method compares the fuzzy value directly with
the basic terms of a linguistic variable. LetZ be the fuzzy set
that needs to be approximated using the term set T , called
atomic linguistic terms. The terms in T have pre-existing
natural language labels assigned to it. A simple LA algo-
rithm compares Z with all the terms in T and selects the one
with the highest similarity measure.

To perform the comparison, some indices are required to
determine similarities between the fuzzy value and the ba-
sic terms in the database. These indices may either measure
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the distance, compatibility, or the similarity of sets , and as
characteristics of fuzzy sets, they may consider the shape or
proximity of the sets. A similarity relation, R(A,B), is de-
fined on the interval [0, 1] and determines the similarity of
fuzzy sets A and B.

There has been a vast amount of effort by researchers
to define and evaluate the performance of such indices. In
the literature, approximately 50 expressions have been in-
troduced to compare fuzzy sets. We have selected some of
these methods, which either are intensively cited or have re-
cently been proposed, and applied them to retranslation of
fuzzy sets to words in CWShell engine. For an exact defi-
nition of these comparison methods, please refer to (Zwick,
Carlstein, and Budescu 1987).

Tversky’s similarity function This approach determines
the common and distinct features of objects to compare ob-
jects with each other. One of the very popular methods that
can be considered a particular case of Tversky’s ratio model
is Jaccard’s index which can be calculated by the scalar car-
dinality of the intersection and union of the two fuzzy sets.

Bonissone’s distance This method approaches the prob-
lem from a pattern recognition point of view and defines
some features for each fuzzy set which are assigned to each
set in a vector. This method consists of two stages where the
first stage employs weighted Euclidean distance (d1) while
the Bhattacharyya distance is used in the second stage (d2).

Wenstøp’s method Wenstøp represents each fuzzy set
with two parameters, centroid and cardinality. Similar to the
first step of Bonissone’s approach, this approach uses the
regular Euclidean distance between the two corresponding
vectors to determine similarity of sets.

VSM measure Vector Similarity Measure (VSM) (Wu
and Mendel 2008) employs a vector composed of two differ-
ent measures to evaluate the similarity of two fuzzy sets. To
compare shapes of sets, VSM shifts the sets such that their
COGs (Center of Gravity) coincide, and computes Jaccard’s
measure for the shifted sets.

A very basic LA algorithm would compare all the atomic
terms, say T , with a fuzzy value output of a CW system,
say Z, using one of the similarity measures, R(A,B), de-
scribed above. The term with the best match (highest sim-
ilarity value) is selected as LA for the fuzzy value Z . Al-
though this approach is computationally efficient, it might
not provide a good approximation for Z, particularly when
the similarity between Z and the selected term is low.

2.2 LA using Modifiers
Fuzzy modifiers, or hedges, can be used for better approxi-
mation. The most commonly discussed modifiers in the liter-
ature include NOT, VERY, MORE OR LESS, INDEED, etc.
To apply the modifiers to basic atomic terms, we can gener-
ate the expression of the form < linguistic modifier ><
atomic term >. Next, the closest LA expression can be
selected by comparing all the pairs of atomic terms and lin-
guistic modifiers with the fuzzy value, Z, and selecting the
one with the largest value of similarity measure. We call this
approach ModifiedLA algorithm from here on.

This simple approach can be optimized by using the
method called piecewise decomposition, in which the fuzzy
value is decomposed into several segments. Each segment is
then combined with the modifiers and used for comparison
with the fuzzy subsets in S to generate linguistic expres-
sions. These individual linguistic expressions are combined
using the connectives Ci, such as AND and OR, based on
the properties of their segments. The resultant linguistic ex-
pression would be of the form < linguistic modifier ><
atomic term > [Ci < linguistic modifier ><
atomic term >]∗, where the expression in square brackets
can have zero or more occurrences.

Algorithm 1 PiecewiseLA(Z)
1: segmentsZ = decomposition of fuzzy valueZ into segments
2: for all segZ in segmentsZ do
3: modifiedSentence = ModifiedLA(segZ)

4: if bestSentence is empty then
5: bestSentence = modifiedSentence

6: else
7: determineCi

8: bestSentence = bestSentence Ci modifiedSentence

9: end if
10: end for
11: return bestSentence

Algorithm 1 summarizes the approach for piecewise de-
composition for generating modified LA sentences. The
fuzzy value Z is decomposed into segments segmentsZ.
There are multiple ways to decompose fuzzy sets into
segments (refer to (Dvořák 1999),(Eshragh and Mamdani
1979)).

2.3 LA using Quantifiers
In most real situations, even the best linguistic approxi-
mation method can provide only a partial match. Hence,
some information is inevitably lost in every approximation
method. To deal with this problem, the quantified linguistic
approximation method (Kowalczyk 1999) suggests the addi-
tion of another attribute, i.e. a linguistic quantifier, to an LA
method in order to determine what proportion of the fuzzy
value under approximation matches with the outcome of the
LA method. In other words, the quantified LA method al-
lows us to map a fuzzy value Z into QZisT where Q is a
linguistic quantifier and T is a linguistic term obtained by
using an LA method.

The fuzzy quantifier Q signifies the portion of Z belong-
ing to T . Q is a mapping from [0, 1] to [0, 1] and can be
expressed by using relative sigma count or cardinality. Rel-
ative cardinality determines the portion of elements from Z
belonging to A and can be formulated as

c =
∑

Count(A/Z) =
∑
x∈X

µA∩Z(x)/
∑

µA(x) (1)

where µA(x) stands for membership value of x in A. The
value of the relative sigma count, c, is henceforth used to de-
termine the appropriate label for the linguistic quantifier Q
from a set of predefined fuzzy quantifiers. The fuzzy quan-
tifier which has the highest degree of membership at c is
chosen to represent Q.
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Algorithm 2 QuantifiedLA(Z)
1: bestSentence = PiecewiseLA(Z)

2: A = fuzzy set represented by bestSentence
3: c = ΣCount(A/Z)

4: m = 0
5: for all q inQSet do
6: if µq(c) ≥ m then
7: m = µq(c)

8: Q = label of q
9: end if
10: end for
11: bestSentence = QZ is bestSentence
12: return bestSentence

Figure 2: Predefined linguistic terms for insurance premium

Algorithm 2 summarizes the quantified linguistic approx-
imation method. This algorithm takes the outcome of the
piecewise LA method (Algorithm 1), calculates the relative
sigma-count, and finds a linguistic quantifier which can best
describe how much of the fuzzy value under approximation
is covered by the outcome of the piecewise LA method. The
Qset denotes the set of predefined fuzzy quantifiers.

3 Towards LA for CWShell
In order to evaluate the LA techniques, we applied these
methods to the output fuzzy value of an insurance premium
problem using CWShell.

3.1 Case Study: Insurance Premium
The case-study is about finding the auto-mobile insurance
premium, provided some information about a car and its
owner such as age, residency, driving records, price of the
vehicle and etc. Details of the case study can be found in
(Khorasani et al. 2012)):

The linguistic term sets for the linguistic variable insur-
ance premium, as provided by the company’s experts, is
plotted in Fig. 2. The output (the individual’s insurance pre-
mium) as computed by CWShell inference engine for the
case study is a fuzzy set shown in Fig. 3. Although its shape
is similar to a simple trapezoid, linguistic approximation for

Figure 3: Output of CWShell as a fuzzy set

Table 1: Similarity of the fuzzy set insurance premium with pre-
defined linguistic terms according to different measures

Linguistic Term VSM Jaccard Wenstøp/d1 Bonissone-d2

cheap 0 0.2776 1.7378e4 0.6521
average 1.1e-81 0.3540 3.2626e4 0.5761
expensive 0 0.0549 2.4310e3 0.8934
about $850 1.4e-255 0.2327 4.0093e4 0.6082

this set is a challenging problem since it overlaps with three
different terms.

The result of applying the simple LA method category
(section 2.1) to this case study, using different indices, is rep-
resented in Table 1. Results of Wenstøp and Bonissone-d1
are exactly the same so they are shown under the same col-
umn. For VSM and Jaccard similarity measure, the output
of LA would be the term with the largest value. In contrast,
Wenstøp and Bonissone (d1, and d2) select the term with the
least index, since they measure distance between fuzzy sets.
The VSM, Jaccard, and Bonissone-d2 assign the term av-
erage to the output plotted in Fig. 3 while the Wenstøp and
Bonissone-d1 assign the term expensive. Result of piecewise
LA (section 2.2) for the case study is “VERY cheap AND
EXTREMELY average AND MOREORLESS about $850”.
Applying quantifiers (section 2.3) to this combination would
result in the expression “ALMOST ALL Z are (VERY cheap
AND EXTREMELY average AND MOREORLESS)”

3.2 Evaluation Criteria
We applied specificity and fuzziness of the sets, and validity
of assigning a linguistic term to fuzzy values, as the three
criteria to evaluate LA results. Detailed explanation on these
criteria can be found in (Yager 2004). The other criterion we
use is the relative sigma count of the terms with respect to
the fuzzy value insurance premium.

Following (Yager 2004) work, fuzziness of a fuzzy set A
is determined as

fuzz(A) = 1− 1

n

∑
x∈X

|2µA(x)− 1| (2)

where n is the number of members of A in universe of dis-
courseX . Fuzziness is a concept that distinguishes members
from non-members of a set.

Specificity of a fuzzy set is related to how much informa-
tion is conveyed by that fuzzy set. It is defined as

spf(A) =Maxx∈X(µA(x))−
1

n− 1

∑
x∈X,x6=xmax

µA(x) (3)

The degree of validity explains the validity of the entail-
ment (V isrZ ⇒ V isrT ), where Z refers to the fuzzy value
insurance premium and T is substituted by any of the lin-
guistic terms. Degree of validity is calculated according to

Degvalidity(Z, T ) =Minx∈X [I(µZ(x), µT (x))] (4)

where there are different methods to define operator I and
we use three of those method as follows

Lukasiewicz : I(z, t) =Min(1, 1 + t− z) (5)

Goguen : I(z, t) =Min(1,
t

z
) (6)

Godel : I(z, t) =

{
1 z ≤ t
0 z > t

(7)

329



Table 2: characteristics of fuzzy sets- the fuzzy set insurance pre-
mium is shown in Fig. 3 and the rest of sets are plotted in Fig. 2

Linguistic Term Fuzziness Specificity Relative Sigma-Count

insurance premium 0.1943 0.7435 1
cheap 0.0444 0.8889 0.4262
average 0.0444 0.9286 0.9351
expensive 0.0222 0.9500 0.0840
about $850 0.0698 0.9165 0.9689

3.3 Discussion and Conclusion
These criteria can not directly be applied to the result of
piecewise LA algorithm since its output is a combination
of words and a fuzzy value cannot directly be constructed. If
we use AND to aggregate different segments, then the inter-
section of very cheap, extremely average, and more or less
about $850 does not cover a significant area of the fuzzy set
in Fig.3 and hence is not a good approximation for it.

If the value of fuzziness and specificity of the assigned
term is closer to the value of fuzziness and specificity of the
original fuzzy set, then it signifies a more accurate LA. Also,
the value of relative sigma count approaching to 1 signifies
a better LA result. Specificity, fuzziness, and relative sigma
count of all the available terms is calculated and compared
to the fuzzy value insurance premium in Table 2. Fuzziness
of all terms is much less than the fuzziness of the insurance
premium’s fuzzy value and its specificity is not that close to
any of the terms’ fuzzy value. Therefore, none of the single
terms is a perfect match for it. Relative sigma count of terms
average and about $850 are closer to one.

Table 3 shows validity of assigning different linguistic
terms to the target fuzzy value (insurance premium). Only
the linguistic terms average and about $850 have positive
degree of validity so only these terms are valid to be assigned
to the fuzzy value insurance premium. Therefore, the result
of LA methods based on similarity measures VSM, Jaccard,
and Bonissone-d2 are reasonable. In contrast, the terms very
cheap and expensive in result of piecewise LA algorithm are
not proper.

Similarity based LA methods, assign a single term to the
target fuzzy value, although combination of the terms aver-
age and about $850 seems more reasonable as an LA output.
The output of piecewise LA algorithm is a combination of
the terms cheap, average and about $850, but term cheap is
not a valid term. Consequently, VERY cheap in the expres-
sion of piecewise LA algorithm, not only makes validity of
the result questionable, but also adds to the complexity of
the output. Moreover, this LA method formulates a strange
phrase in the natural language. Using quantifiers, a more ac-
curate result can be generated but again not a decent natu-
ral language phrase. Hence these two methods may not be
appropriate to be applied in a CW system. Among the suc-
cessful similarity measures in our case study, Bonissone and
VSM are more compels to be implemented, possibly with
some modifications and adjustments. The VSM method uses
Jaccard’s index of shifted fuzzy sets for its first vector ele-
ment and a proximity measure as its second element. Since
VSM is originally designed for interval type-2 fuzzy sets, it
compares the shapes of fuzzy sets as well as their proxim-
ity. Both shape and proximity affect intersection and union

Table 3: Validity of assigning different linguistic terms to the tar-
get fuzzy set insurance premium

Linguistic Term Lukasiewicz Goguen Godel

cheap 0 0 0
average 0.92 0.92 0
expensive 0 0 0
about $850 0.92 0.92 0

of sets, Hence the Jaccard’s index is also influenced by both
shape and proximity. But, VSM doesn’t benefit from this
property of Jaccard’s index since VSM applies it to shifted
sets and uses it only for shape comparison.

So the results lead us to the conclusion that the piecewise
LA and quantified LA algorithms might add invalid terms to
their output and generally result in complex phrases that are
not preferable in natural language. On the other hand, simple
LA algorithms result in valid matches though not a perfect
one.
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