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Abstract

Developmental agents learn task-nonspecific skills
through environmental interactions. The humanlike
flexibility of such agents isn’t captured by domain-
specific performance metrics. We present a novel
framework that complements traditional metrics by al-
lowing cross-domain comparison. The framework con-
siders four properties of developmental agents: the de-
gree of human involvement in design, the length of the
agent’s developmental period, the architectural support
for acquiring new behaviors, and the tolerated dimen-
sionality of input. This framework is applied to real-
world systems in three case studies. We find that our
framework allows cross-domain comparison that would
not be contributed by traditional quantitative metrics.

Introduction
Alan Turing envisioned the following direction for AI re-
search: “Instead of trying to produce a programme to sim-
ulate the adult mind, why not rather try to produce one
which simulates the child’s? If this were then subjected
to an appropriate course of education one would obtain the
adult brain” (Turing 1950). Turing’s vision finds modern
realization in developmental AI, which emphasizes child-
like agents whose cognitive abilities self-organize through
autonomous environmental interactions (Weng et al. 2001;
Guerin 2011).

Developmental agents are typically measured using
domain-specific metrics. While these metrics quantify mas-
tery of isolated tasks, they do not answer questions about
agents’ developmental potential. Such potential allows hu-
mans to become masters of many domains, not just isolated
tasks. As a goal of artificial intelligence research is to cre-
ate agents with humanlike behavior, developmental potential
informs us of an agent’s potential for general intelligence.

What we need, then, is a framework which allows us to
compare agents’ prospects for development across dissim-
ilar domains. In this paper, we propose such a framework
and show how it can be applied to developmental systems
via three subjective case studies.
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Domain-Specific Metrics
The most popular domain-specific metric is error rate
(Baranes and Oudeyer 2011; Luciw et al. 2011), which mea-
sures the difference between an agent’s behavior and some
optimal behavior. Similar metrics include confusion rate
(Boucenna, Gaussier, and Hafemeister 2011), Euclidean dis-
tance (Clune and Lipson 2011), and sum of squared errors of
prediction (SSE)(Ikle and Goertzel 2011). These metrics all
answer the same question: How well is the agent performing
some task?

Unfortunately, asking this question limits the possible
comparisons we can make; two agents must be designed
to do the same task for the error rate comparison to be
valid. However, developmental agents are task-nonspecific
and warrant a method of comparison with stronger predic-
tive utility. For instance, human development is measured
and predicted using a series of milestones. These mile-
stones incorporate both physical and mental growth, such
as learning to walk or understanding language (Berk 2012).
However, such milestones were derived from observation of
complete human lifespans. We can’t derive a similar set of
developmental milestones for artificial systems because we
haven’t yet come up with any that have achieved approxi-
mately human-level intelligence. What we need to do is ask
bigger questions about our systems - questions that allow
us to assess not only their current level of intelligence, but
also their potential for acquiring complex behaviors over a
lifetime.

Our Qualitative Framework
1. To what extent are humans involved in the design pro-

cess? Humans do not always know the optimal way to
solve some problem. Recent work supports this posi-
tion quantitatively: Bongard varied the ratio of human-
designed components to evolved components in robotic
arms and then evaluating them on multi-objective tasks
(Bongard 2010). The results showed that decreasing hu-
man involvement had two benefits: it increased perfor-
mance on expected tasks and also increased robustness
when facing unexpected, yet related, ones. These bene-
fits were expressed more strongly as task complexity in-
creased.

2. How long is the agent’s developmental period relative
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to its lifespan? Things change all the time. It is not al-
ways easy to predict the ways in which things will change;
changes frequently occur before we can formulate plans
to deal with them. Robustness in the face of such change
requires the capacity to change oneself in response to ex-
ternal conditions. Such change is impossible if an agent’s
behavior becomes fixed after a limited developmental pe-
riod. Thus, the length of an agent’s developmental period
gives insight about the agent’s ability to adapt.

3. To what extent does the system’s architecture allow
the acquisition of new behaviors? Adaptation is criti-
cal to general intelligence, so we must critically analyze
an agent’s structure in order to accurately assess its abil-
ity to innovate. For instance, an agent that chooses from
a fixed set of actions is constrained in the number of new
behaviors it could display. A more flexible architecture,
such as one that utilizes bootstrapping, would be more ef-
fective. This property is difficult to evaluate quantitatively
in a comparative setting, but that it is critical to dynamic
adaptivity (Raibulet and Masciadri 2009).

4. What dimensionality of input is tolerated? It is appar-
ent that complex human behaviors rely on rich internal
representations (Oudeyer 2010; Steels 2003). In order for
these representations to have depth, they must be derived
from detailed sensory data. An artificial developmental
agent should similarly exploit highly dimensional sensory
data. It is not expected that the agent would retain all
of this detail in its mental representations; it is advanta-
geous (and perhaps necessary, for the sake of computa-
tional tractability) for the agent to compress perceptual
observations. However, assessing the dimensionality of
the raw sensory data gives us a feel for the types of repre-
sentations that the agent can create (and thus, its potential
for executing complex behaviors).

Case Studies
Architecture Descriptions
Case Study 1 (CS1) The first system is a curiosity-based
reinforcement learning (RL) agent that learns to navigate an
initially unknown maze (Luciw et al. 2011). The agent has
a noisy birds-eye view of itself and must repeatedly choose
to move one square up, down, left, or right until it reaches
a marked goal. The system architecture (Fig. 1) has three
major components: 1) a manually-parameterized perceptual
system that compresses and encodes sensory observations
as states; 2) a cognitive system that calculates transitions
between perceptual states and potential rewards; and 3) a
value system that uses RL methods to formulate a policy
based on the expected future discounted rewards.

The first RL method is SARSA (Rummery and Niranjan
1994). SARSA is a state-based RL algorithm for learning
a Markov decision process. At each time step, the agent
uses its current state to update its Q-value estimate for its
available state-action pairs. This update is based on a dis-
count factor (γ), which determines the significance of future
rewards, and a manually-specified learning rate (α). The ex-
pression for the SARSA update at time t is as follows:

Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)

−Q(st, at)]

The agent combines SARSA with LSPI (Lagoudakis
and Parr 2003) to construct a Markov decision process
from environmental samples. These samples take the form
(s, a, r, a′), denoting initial state s, executed action a, result-
ing reward r, and successive state s′. Using the model built
from such samples, the agent iteratively improves its behav-
ioral policy until it exceeds some acceptability threshold.

Case Study 2 (CS2) The second system is a robotic head
that develops joint attention and social referencing skills via
interactions with a human caregiver (Boucenna, Gaussier,
and Hafemeister 2011). The human-robot interactions pro-
ceeds in three phases. In the first phase, the robot learns to
recognize and imitate the human’s facial expressions. It ran-
domly selects and displays a pre-programmed expression,
which the caregiver mimics (thus triggering an associative
mechanism within the robot’s neural network). In the sec-
ond phase, the robot learns to recognize what the human
caregiver is looking at and direct its gaze at the same object.
This proceeds in a similar manner as the first phase, with the
robot and human taking turns imitating each other. In the
final phase, the robot combines its newly-acquired skills to
learn to follow the human’s gaze, recognize the subject of
the caregiver’s attention, perceive the caregiver’s displayed
emotion, and associate that emotion with the object of at-
tention. This process is a form of bootstrapping, in which
simple behaviors are used to build more complex ones.

This system is noteworthy because the social referencing
skills emerge from a simple sensorimotor architecture. This
architecture is largely composed of a neural network, which
is further composed of specialized sub-networks.

Case Study 3 (CS3) The third case study examines R-IAC
(Baranes and Oudeyer 2011), an intrinsically motivated de-
velopmental robot that chooses actions to maximize learning
of its sensory and sensorimotor spaces (Fig. 2). That is, it
learns the control parameters for its robotic limbs in order to
effectively explore its task environment.

The R-IAC algorithm proceeds as follows: first, the Ac-
tion Selection Machine probabilistically chooses an action
to execute based on the current sensory context. The Pre-
diction Machine then calculates the expected consequences
of this action. Next, the actual consequences are observed
in the environment. The Prediction Machine takes the dif-
ference between the expected and actual consequences and
thus computes the prediction error. It then updates itself ac-
cording to the sensorimotor context and the actual, measured
consequence. The Split Machine uses the error, the senso-
rimotor context, and the measured consequence in order to
update the internal region tree. Finally, the Prediction Anal-
ysis Machine updates its evaluation of the learning progress
for the regions covering the sensorimotor context and mea-
sured consequence.
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Figure 1: Architecture of Case Study 1, from (Luciw et al. 2011)

Figure 2: Architecture of Case Study 3, from (Baranes and Oudeyer 2011)

Application of Framework
To what extent are humans involved in the design pro-
cess? Though CS1’s behavioral policies are automatically
generated, execution relies on manually-specified parame-
ters, including error averaging rates, initial long-term error,
learning rate lower bound, future reward discount factor, and
number of steps between LSPI planning phases.

Humans are only really involved in the high-level design
of CS2. This is because CS2 relies on neural networks as its
base. While humans may have influence over the structure
of the networks, they are certainly not determining the fine-
grained details such as connection weights.

The design of CS3 allows for different modules to be in-
corporated (i.e., the original authors are agnostic about the
algorithm behind the prediction learning machine). How-
ever, the designers manually specify the three strategies that
the agent uses for exploration, in addition to the probabilities
that the agent will pick each of the strategies.

How long is the agent’s developmental period relative to
its lifespan? The perceptual, cognitive, and value maps in
CS1 update throughout the agent’s lifespan. This causes the
agent to be continually trying to find a new place to explore
and thus satisfy its curiosity drive.

CS2’s skills develop via training periods of interaction
with a human. There are distinct phases during which the
neural network is either learning or not learning. So, though
an arbitrarily large number of training/acting phase pairs
could occur during the lifetime, we cannot count the non-
training time as belonging to a developmental period.

CS3 learns continually as long as it has new sensorimotor
space to explore. Given a sufficiently rich environment, the
developmental period might extend throughout the agent’s
lifetime. There may, however, be a limitation imposed on
the system by its internal region tree (the explored senso-
rimotor space’s representation) when the dimensionality of
the sensorimotor space grows exponentially.
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To what extent does the system’s architecture allow the
acquisition of new behaviors? CS1 is limited; its intrin-
sic motivation system allows it to self-generate new policies,
but, it is incapable of generating new actions. Since the pos-
sible actions are manually specified during the design pro-
cess, a human would have to reprogram the system for it to
acquire new behaviors.

CS2 learns new behaviors via its interactions with its
caregiver using a vision-based mechanism. However, this
mechanism could easily extend beyond vision as it is im-
plemented using a generic neural network. Additionally,
the system’s bootstrapping mechanism allows it to not only
learn new simple behaviors, but to combine its existing be-
haviors into new, more complex ones.

The algorithm underlying CS3 was intentionally written
to generalize. In fact, the reason that the agent learns the
skills that it does in the original experiment is because of the
particular sensory capabilities of the simulated robot. Thus,
the generality of the architecture of the developmental sys-
tem itself lends itself to the acquisition of new behaviors
- however, it must be incorporated into an agent with ade-
quately informative sensors.

What dimensionality of input is tolerated? CS1 toler-
ates high-dimensional visual data and handles noise well
when creating internal representations. Though the de-
scribed implementation was only simulated, the system’s fo-
cus on sensory data compression would allow performance
to scale well with increased dimensionality and noise.

CS2 also tolerates fairly high-dimensional visual input;
its robotic eyes perform online facial recognition and can
follow a human’s gaze. However, the agent doesn’t learn
to recognize faces on its own; the skill is pre-programmed.
Thus, the system’s ability to tolerate one type of raw input
does not necessarily extend to other dimensions.

Like CS1 and CS2, CS3 operates on real-world visual
data. However, its sensory/state channels are designed
to accommodate arbitrary types of input (the creators cite
torque motor values and touch sensor values as examples).
They can also interpret feedback from higher-level cognitive
mechanisms.

Discussion
• Both CS1 and CS3 rely on human-specified parameters

(with CS1 doing so to a greater extent than CS3). CS3 is
better than both of its competitors in this regard because
the relevant parameters are learned over time.

• CS2 has the smallest development-to-lifespan ratio. CS1
and CS3 were approximately equal in this regard, with
CS1 showing slightly greater ability for maintaining the
developmental period over an arbitrarily long lifespan.

• CS1 in its current format does not support novel behav-
iors. CS2 and CS3 rely on fairly general algorithms, and
show more potential for development in this regard.

• Of the three systems, CS3 leads the pack in terms of dis-
played potential for tolerating input with arbitrarily high
dimensions. CS1 comes in second place, followed by
CS2.

No system is comprehensively best; each has strengths
and weaknesses. Future work will consider more case stud-
ies and investigate deeper architectural features.
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