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Abstract

The state-of-the-art DATA-PEELER algorithm extracts
closed patterns in n-ary relations. Because it refines
both a lower and an upper bound of the pattern space,
DATA-PEELER can, in some circumstances, guarantee
that a region of that space does not contain any closed
n-set satisfying some relevance constraint. Whenever it
happens, such a region is left unexplored and compu-
tation saved. This paper shows that some constraints,
which DATA-PEELER can efficiently enforce, define
useful patterns in the context of a relation with groups
of elements in arbitrary dimensions. For instance, it can
list the so-called straddling biclusters, which cover at
least some given portions of every group. It can dis-
cover, as well, closed n-sets that discriminate a group
from the others, which are the focus of the experimental
section. It shows that DATA-PEELER is highly compet-
itive despite its general enumeration principles and its
expressive class of constraints that opens up new ap-
plicative perspectives.

Introduction
Given a binary relation, i. e., a set of objects described with
Boolean attributes, the complete extraction of the closed
itemsets (Pasquier et al. 1999; Zaki and Hsiao 1999) aims to
discover maximal sets of objects sharing the same maximal
set of attributes. However, not every closed itemset is worth
an interpretation. In practical contexts, the complete collec-
tion of all closed itemsets is so large that it is humanly im-
possible to read them all, if not computationally impossible
to list all of them. That is why, since the pioneering works,
only a relevant subset of all closed itemsets is searched. This
relevance is defined by means of additional constraints every
closed itemset must satisfy. Extracting the relevant closed
itemsets requires less time if the algorithm is able to identify
and prune regions of the pattern space that are guaranteed to
not contain any pattern satisfying the additional constraints.
This ability depends on both the enumeration principles of
the algorithm and the properties of the constraints.

Since the end of the 1990s, several papers have put into
focus such properties, hence classes of constraints. Those
works are particularly interesting because they move pattern
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mining closer to what would be an inductive database system
(Imielinski and Mannila 1996), i. e., a system where the user
can query the patterns she is interested in, instead of relying
on specific algorithms or, worse, instead of post-processing
huge collections of non-specific patterns. This paper defines
some generic constraints having many different applications.
Those constraints deal with covering, to some extent, some
user-defined groups of elements, which can belong to any di-
mensions of the relation. Here, “dimension” not only means
the objects or the attributes of a binary relation but any of
the n dimensions of an n-ary relation. Indeed, the search for
the closed itemsets has recently been generalized to n-ary
relations. For instance, in a ternary relation where a tuple in-
dicates a customer buying a product during a day, a pattern
is a set of customers who bought the same products during
the same days. An analyst can focus the search on those 1)
involving at least five products that cost more than US$ 10
each (minimal cover of this group of expensive products)
and 2) happening at least twice more often during holidays
(minimal ratio between the cover of the holidays and the
other days).

After a formal definition of the problem, this paper shows
that the additional constraints on the patterns are piecewise
(anti)-monotone and allow pruning the n-dimensional pat-
tern search space. An efficient verification of those con-
straints is then described and experiments focusing on the
discovery of some discriminative patterns are reported. The
related work is detailed at the end of the paper.

Problem Statement
Given n ∈ N dimensions of analysis (i. e., n finite sets)
(Di)i=1..n, the dataset is a relation R ⊆ ×ni=1Di, i. e., a
set of n-tuples. Table 1 represents such a relation RE ⊆
{α, β, γ} × {1, 2, 3, 4} × {A,B,C}, hence a ternary rela-
tion. In this table, every ’1’ (resp. ’0’) at the intersection of
three elements stands for the presence (resp. absence) of the
related triple inRE .

A subset of the elements in any of the n dimensions (with-
out loss of generality, they are assumed disjoint) is called
group. More precisely, a group is a subset of ∪ni=1Di. Ta-
ble 2 lists three groups, which are defined from the dimen-
sions of RE . Notice that a group (such as G3) can involve
elements in different dimensions and that two groups can
overlap (such as G1 and G3) or even be included into each
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A B C A B C A B C
1 1 1 1 1 1 1 1 1 0
2 1 1 0 1 0 0 1 1 0
3 0 1 0 0 0 1 1 0 1
4 0 0 1 1 0 1 1 1 1

α β γ

Table 1:RE ⊆ {α, β, γ} × {1, 2, 3, 4} × {A,B,C}.

⊆ {α, β, γ} ⊆ {1, 2, 3, 4} ⊆ {A,B,C}
G1 ∅ ∪ {1, 2} ∪ ∅
G2 ∅ ∪ {3, 4} ∪ ∅
G3 {α, β} ∪ {2, 3, 4} ∪ {A,B}

Table 2: Three groups defined from the dimensions ofRE .

other (such asG2 andG3). This paper deals with the discov-
ery of the closed n-sets involving at least, or at most, certain
user-defined quantities of elements in the groups, as well as
defined by the user. More interestingly, it presents a third
constraint forcing the ratio of two group covers to be above
a given threshold. After recalling the definition of a closed
n-set, those three constraints are formally defined.

The closed n-set (Cerf et al. 2009) straightforwardly gen-
eralizes the famous closed itemset (Pasquier et al. 1999;
Zaki and Hsiao 1999) to relations defined on (possibly) more
than two dimensions:

Definition 1 (Closed n-set) Given n dimensions of analy-
sis (Di)i=1..n and a relation R ⊆ ×ni=1Di, the pattern
(X1, . . . , Xn) ∈ ×ni=12

Di is a closed n-set inR if and only
if:

Connectedness ×ni=1Xi ⊆ R;
Closedness ∀(X ′1, . . . , X ′n) ∈ ×ni=1Di,{
∀i = 1..n,Xi ⊆ X ′i
×ni=1X

′
i ⊆ R

⇒ ∀i = 1..n,Xi = X ′i .

Example 1 In RE (see Table 1), ({α, γ}, {1, 2}, {A,B})
is a closed 3-set. ({α, β}, {1, 2}, {A,B}) is not a closed
3-set because it is not connected ((β, 2, B) /∈ RE).
({α, γ}, {1, 2}, {A}) is not a closed 3-set because it is
not closed (({α, γ}, {1, 2}, {A,B}) is a strict super-pattern
that is connected).

Given a group G ⊆ ∪ni=1Di, the constraint “covering at
least µ ∈ N elements in G” is defined as follows:

Definition 2 (Minimal group cover) (X1, . . . , Xn) ∈
×ni=12

Di covers at least µ ∈ N elements in G, denoted
CG,≥,µ(X1, . . . , Xn), if and only if |(∪ni=1Xi) ∩G| ≥ µ.

“Covering at most µ ∈ N elements in G” is defined in a
similar way:

Definition 3 (Maximal group cover) (X1, . . . , Xn) ∈
×ni=12

Di covers at most µ ∈ N elements in G, denoted
CG,≤,µ(X1, . . . , Xn), if and only if |(∪ni=1Xi) ∩G| ≤ µ.

Example 2 Given the groups in Table 2, the pattern
({α, γ}, {1, 2}, {A,B}) covers both elements in G1, does
not cover any element in G2 and covers four elements — α,
2, A and B — in G3. As a consequence, it minimally (resp.
maximally) covers these three groups if and only if the re-
lated minimal (resp. maximal) thresholds are lesser (resp.
greater) or equal to, respectively, 0, 2 and 4.

Finally, a minimal ratio ρ ∈ R between the covers of two
groups G and G′ is enforced by the following constraint:

Definition 4 (Minimal cover ratio) The group cover of
(X1, . . . , Xn) ∈ ×ni=12

Di exceeds the minimal ratio ρ ∈ R
between G and G′, denoted CG,G′,ρ(X1, . . . , Xn), if and
only if |(∪

n
i=1Xi)∩G|

|(∪ni=1Xi)∩G′|
≥ ρ.

By swapping the two groups, this constraint can enforce a
maximal ratio between their covers.

Example 3 In our running example, the group cover of the
pattern ({α, γ}, {1, 2}, {A,B}) has a ratio 0

2 = 0 between
G1 and G2, a ratio 2

0 = +∞ between G2 and G1 and a
ratio 2

4 = 0.5 between G2 and G3. As a consequence, the
related minimal ratio constraints are satisfied if and only if
the respective thresholds are, at most, those numbers.

Given an n-ary relation R ⊆ ×ni=1Di, a finite set
Tmin /max of triples in 2∪

n
i=1Di×{≥,≤}×N (i. e., a finite set

of groups associated with minimal or maximal cover thresh-
olds to respect) and a finite set Tratio of triples in 2∪

n
i=1Di ×

2∪
n
i=1Di × R (i. e., a finite set of pairs of groups associ-

ated with cover ratios to exceed), the problem solved in this
paper is the computation of {(X1, . . . , Xn) ∈ ×ni=12

Di |{
(X1, . . . , Xn) is a closed n-set
∧t∈Tmin /max∪TratioCt(X1, . . . , Xn)

}.

For the case n = 2, specific instantiations of this problem
are found in the literature. The straddling biclusters (Owens
III 2009) are closed patterns significantly straddling across
user-defined subsets of one dimension Di, i. e., every group
is a subset of Di and it is always associated with a minimal
cover threshold (Tratio = ∅ and the domain of Tmin /max is
restricted to 2Di × {≥} × N). In the context of associative
classification, popular relevance criteria, for the selection of
the patterns, may be expressed with CG,G′,ρ, where G and
G′ are well chosen subsets of the learning objects Dobjects:

• the classification rules leading to a class c with a minimal
confidence (Agrawal, Imielinski, and Swami 1993) ρ ∈
R are those satisfying CGc,Dobjects,ρ, where Gc ⊆ Dobjects
designates the objects in the class c;

• the classification rules leading to a class c with a minimal
lift (also called interest or correlation) (Brin, Motwani,
and Ullman 1997) ρ ∈ R satisfy C

Gc,Dobjects,
ρ×|Gc|
|Dobjects|

;

• the patterns emerging in a class c, with a minimal growth
rate (Dong and Li 1999) ρ ∈ R, satisfy CGc,Dobjects\Gc,ρ.

This list is not exhaustive and the constraints CG,≥,µ and
CG,≤,µ can complement or substitute CG,G′,ρ. For instance,
the patterns that are jumping emerging (Li, Dong, and Ra-
mamohanarao 2000) in the class c satisfy CDobjects\Gc,≤,0 and,
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in Cerf et al. (2008), the patterns satisfying ∧j 6=iCGcj ,≤,µj ∧
CGci ,≥,µi discriminate a class ci from every other class cj .

Guided Traversal of the Pattern Space
The problem stated in the previous section can be solved
by first extracting all closed n-sets and then filtering those
satisfying the constraints. That solution is intractable un-
less the relation R is very small. Indeed, there are, in the
worst case, 2

∑
i6=j |Di| closed n-sets to be extracted from R

(where j is the index of the largest dimension). To lower the
time requirements, the constraints must be enforced during
the closed n-set extraction. More precisely, they must guide
the search for the valid patterns, i. e., allow to prune regions
of the pattern space that need not be traversed because they
do not contain any valid closed n-set. Fortunately, the three
constraints happen to be piecewise (anti)-monotone.

Piecewise (Anti)-Monotonicity
The definition of piecewise (anti)-monotonicity relies on the
notion of (anti)-monotonicity per argument:
Definition 5 Given n dimensions of analysis (Di)i=1..n

and i = 1..n, a constraint C is (anti)-monotone w.r.t. the ith
argument if and only if ∀(X1, . . . , Xn) ∈ ×i=1..n2

Di ,

(monotonicity) ∀Yi ∈ Di, Xi ⊆ Yi ⇒
(C(X1, . . . , Xn)⇒ C(X1, . . . , Xi−1, Yi, Xi+1, . . . , Xn))

or
(anti-monotonicity) ∀Yi ∈ Di, Xi ⊆ Yi ⇒
(C(X1, . . . , Xi−1, Yi, Xi+1, . . . , Xn)⇒ C(X1, . . . , Xn))

Intuitively, a constraint is (anti)-monotone w.r.t. the ith ar-
gument if and only if a pattern satisfying the constraint keeps
on satisfying it either its ith argument is enlarged or if it is
shrunk. A constraint that is (anti)-monotone w.r.t. each oc-
currence of each of its arguments is said piecewise (anti)-
monotone:
Definition 6 A constraint is piecewise (anti)-monotone if
and only if rewriting it by attributing a separate argument to
every occurrence of its variables provides a new constraint
that is (anti)-monotone w.r.t. each of its arguments.

Neither CG,≥,µ nor CG,≤,µ need to be rewritten to be
proven piecewise (anti)-monotone. Indeed, each of their
variables occurs only once in their expressions (see Defi-
nition 2 and 3). CG,≥,µ is monotone w.r.t. all its n argu-
ments. CG,≤,µ is anti-monotone w.r.t. all its n arguments.
On the contrary, proving CG,G′,ρ piecewise (anti)-monotone
requires rewriting its expression (see Definition 4) with one
separate argument per occurrence of its variables (Xi)i=1..n:

C′G,G′,ρ(X1, . . . , Xn, X
′
1, . . . , X

′
n) ≡

|(∪ni=1Xi) ∩G|
|(∪ni=1X

′
i) ∩G′|

≥ ρ

This rewritten constraint C′G,G′,ρ is (anti)-monotone w.r.t.
each of its arguments because, assuming it is satisfied, it
keeps on being satisfied when any:
• Xi is enlarged (monotonicity w.r.t. the n first arguments);
• X ′i is shrunk (anti-monotonicity w.r.t. the n last argu-

ments).

Pruning the Pattern Space
DATA-PEELER is the state-of-the-art closed n-set extrac-
tor. It explores the pattern space by traversing a binary
tree whose nodes are associated with two patterns, namely
(L1, . . . , Ln) and (U1, . . . , Un). Please refer to Cerf et al.
(2009) for a detailed presentation of this traversal and why
it supports a correct and complete discovery of the closed
n-sets. For this paper, the only relevant property is that
any closed n-set (X1, . . . , Xn) that may be discovered by
traversing an enumeration sub-tree is such that ∀i = 1..n,
Li ⊆ Xi ⊆ Ui, where (L1, . . . , Ln) and (U1, . . . , Un) are
the patterns associated with the root of the sub-tree. In other
terms, (L1, . . . , Ln) and (U1, . . . , Un) are a lower and an
upper bound of the pattern space that would be explored
“below” the current node. The conditional tense applies be-
cause, thanks to those bounds, DATA-PEELER efficiently
verifies whether that pattern space can possibly contain a
closed n-set satisfying chosen piecewise (anti)-monotone
constraints and, if it does not, this pattern space is not ex-
plored, i. e., the binary tree is pruned at the current node.

In the context of this paper, here is the predicate that
DATA-PEELER evaluates to decide whether it is safe to
prune the binary tree at the current node:

(∃(G,≥, µ) ∈ Tmin /max | ¬CG,≥,µ(U1, . . . , Un))

∨(∃(G,≤, µ) ∈ Tmin /max | ¬CG,≤,µ(L1, . . . , Ln))

∨(∃(G,G′, ρ) ∈ Tratio | ¬C′G,G′,ρ(U1, . . . , Un, L1, . . . , Ln))

In this predicate, Ui replaces the monotone occurrences of
the variable Xi and Li replaces the anti-monotone occur-
rences of this same variable. If the predicate is satisfied then,
the piecewise (anti)-monotonicity of the constraints guaran-
tees that for all pattern (X1, . . . , Xn) ∈ ×ni=12

Di such that
∀i = 1..n, Li ⊆ Xi ⊆ Ui, we have:

(∃(G,≥, µ) ∈ Tmin /max | ¬CG,≥,µ(X1, . . . , Xn))

∨(∃(G,≤, µ) ∈ Tmin /max | ¬CG,≤,µ(X1, . . . , Xn))

∨(∃(G,G′, ρ) ∈ Tratio | ¬CG,G′,ρ(X1, . . . , Xn))

In other terms, any pattern, which would be considered in
the sub-tree rooted by the current node, is violating at least
one constraint and there is no need to traverse this sub-tree.

Implementation
The predicate, stated at the end of the previous section, is
evaluated after the construction of every enumeration node
to decide whether the sub-tree it roots is safely pruned. A
naive evaluation of the predicate would simply stick to the
Definitions 2, 3 and 4, i. e., would intersect the elements in
each group with those in the (lower or upper) bound. As-
suming the elements are maintained ordered, the time com-
plexity of this naive evaluation would be linear in the total
number of elements (in all groups and in the two bounds).
However, by simply understanding that DATA-PEELER re-
fines a lower and an upper bound of the pattern space, one
can easily implement a faster evaluation of the predicate.

Indeed, from an enumeration node to one of its two chil-
dren, DATA-PEELER adds some elements to the lower bound

416



Dataset |Dobjects| |Gmin| |Dattributes| |R| |R|/|D1 ×D2|
adult 48842 11687 14 97684 0.1428

cylBands 540 228 34 1080 0.0588
letRecog 20000 734 15 40000 0.1333
penDigits 10992 1055 16 21984 0.1250
soybean 683 8 35 1366 0.0571
waveform 5000 1647 21 10000 0.0950

Table 3: Characteristics of the datasets: number of objects, number of objects in the smallest class, number of attributes, number
of tuples and density (in this order).

and removes some elements from the upper bound. This
incremental (resp. decremental) computation of the lower
(resp. upper) bound allows a faster evaluation of the pred-
icate. It is only about maintaining updated, along the pat-
tern space traversal, the quantity lG = | ∪ni=1 Li ∩G| (resp.
uG = | ∪ni=1 Ui ∩ G|) for every group that must be max-
imally (resp. minimally) covered and for every group ap-
pearing at the denominator (resp. numerator) of the cover
ratios. In this way, these cardinalities can be compared, in
constant time, to the maximal (resp. minimal) cover thresh-
olds and the quotients uG

lG′
can be compared, as well in

constant time, to the minimal cover ratio ρ of the con-
straints CG,G′,ρ. Given the set ∪i=1..nL

child
i \ Lparent

i (resp.
∪i=1..nU

parent
i \ U child

i ) of the elements that are added to
(resp. removed from) the lower (resp. upper) bound, when
going from the parent node to the child node, we have
lchild
G = lparent

G + |{e ∈ ∪i=1..nL
child
i \ Lparent

i | e ∈ G}|
and uchild

G = uparent
G − |{e ∈ ∪i=1..nU

parent
i \U child

i | e ∈ G}|.
Testing whether an element e is in a group G requires a

constant time if a bitset represents the group1. Overall, the
time complexity of this evaluation of the predicate is linear
in the number of groups |Tmin /max|+2|Tratio|multiplied by
the number |∪i=1..n (L

child
i \Lparent

i )∪(U parent
i \U child

i )| of el-
ements that were added to the lower bound or removed from
the upper bound. In practice, this complexity is far below
that of the naive evaluation.

Experimental Study
Our C++ code was compiled with GCC 4.5.3 with the O3
optimizations. This section reports experiments performed
on a GNU/Linux

TM
system running on top of a core ca-

denced at 3.4 GHz.

Extracting Confident Classification Rules
This section reports running times for the extraction of
classification rules under the minimal confidence constraint
(Agrawal, Imielinski, and Swami 1993). The most demand-
ing normalized and discretized datasets from Coenen (2003)
(but connect4 whose patterns fill the whole disk in some
of the considered settings) are used. Their characteristics are
listed in Table 3. We focus on the extraction of the rules pre-
dicting the smallest class, which is usually considered the

1The bitsets representing the groups are constructed after the
relationR is read (so that all elements are known and attributed an
id, its index in the bitsets). They are never modified afterward.

hardest to characterize. As a consequence, DATA-PEELER’s
enumeration is constrained by CGmin,Dobjects,ρ, where Gmin is
the smallest class, Dobjects the set of all learning objects (in-
cluding those in the smallest class) and ρ the minimal confi-
dence that varies between 0 and 1. Figure 1 presents DATA-
PEELER’s running times as well as those obtained with the
post-processing approach, which consists in first listing all
closed itemsets (the latest version of LCM (Uno, Kiyomi,
and Arimura 2005) was used) and then filtering those satis-
fying the minimal confidence (with a homemade C++ pro-
gram).

On a given dataset, the running time of LCM and its
post-processing is constant. Such result is expected since the
same closed itemsets are mined and post-processed in all set-
tings. DATA-PEELER’s extractions are faster when the mini-
mal confidence is higher. For instance, with the letRecog
dataset, it is divided by 3.5 between ρ = 0 and ρ = 1. This
reflects the more pruning enabled by a stronger constraint.
DATA-PEELER can run up to 3 orders of magnitude faster
than LCM followed by the post-processing. For instance,
with the soybean dataset and a 1-confidence, LCM and
the post-processing extract the classification rules in 90 sec-
onds, whereas DATA-PEELER requires only 0.1 second.

Extracting Patterns of Influence in Twitter
To the best of our knowledge, DATA-PEELER is the fastest
closed n-set extractor when n ≥ 3. That explains why our
approach was so far compared with LCM + post-processing
in the restricted case n = 2. However, CG,≥,µ, CG,≤,µ and
CG,G′,ρ are useful in the broader context of an n-ary rela-
tion. The dataset, used in this section, is 3-dimensional. It
was constructed from messages published on Twitter, a fa-
mous microblogging platform. Messages about the Brazilian
soccer championship were collected from the 19th week of
2012 to the 30th week of this same year. They were classi-
fied w.r.t. to the mentioned team(s) (supervised classification
method, which is out of the scope of this paper). A user is
considered influential (Kwak et al. 2010) about a given team
during a given week if at least one message she wrote about
the team during this week was retweeted (i. e., other users
“repeated” the message). A ternary relation lists the 790,466
such triples (user,team,week). Overall, they involve 307,707
users, all 20 teams in the Série A and 12 weeks.

Let us assume the analyst wants to discover famous users
who are frequently influential when they write about the São
Paulo’s teams but not influential w.r.t. teams outside São
Paulo. For that purpose, three groups are defined:
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Figure 1: Running times for the extraction of the confident rules concluding on the smallest class.

G1 contains the six teams from São Paulo;

G2 contains the remaining fourteen teams;

G3 contains the “famous” users defined as the top 10,000
users in numbers of retweets during the studied period of
time (use of the original numerical data).

DATA-PEELER is used to extract patterns involving at least
ten weeks (classical frequency constraint that forces the
users to be retweeted almost every week), 60 users and the
following conjunction of group cover constraints:

CG1,≥,2 ∧ CG2,≤,0 ∧ CG3,≥,60

The conjunction of the first two constraints actually defines a
jumping emerging pattern (Li, Dong, and Ramamohanarao
2000) covering at least two teams from São Paulo. DATA-
PEELER discovers two closed 3-sets after 12 minutes and 53
seconds. In this experiment, the group cover constraints do
not filter any more pattern, i. e., the same two closed 3-sets
are discovered with the sole frequency constraints. How-
ever, because the group cover constraints more finely specify
those patterns, the running time is lowered. Indeed, without
the group cover constraints, the extraction lasts 14 minutes.

The two closed 3-sets, which are discovered, involve the
same two teams: Corinthians and Palmeiras. They are the
two most popular ones from São Paulo. The users involved
in the patterns are indeed “correlated” with Corinthians and
Palmeiras. To reach this conclusion, we simply count the
numbers of unique users whose names include a string that is
characteristic of the 20 teams (e. g., “corin”, “timao”, “fiel”
for Corinthians or “sant”, “sfc”, “peixe” for Santos, another
team from São Paulo). In this way, we find out 29 users sup-
porting Palmeiras, 24 users supporting Corinthians and only

2 users supporting Santos, a third team from São Paulo. The
remaining 161 user names do not relate to any team.

Related Work
Piecewise (anti)-monotone constraints support the definition
of complex patterns. This class of constraints includes (but
is not restricted to) any Boolean expression of monotone
(Grahne, Lakshmanan, and Wang 2000) and anti-monotone
(Ng et al. 1998) constraints. It includes as well constraints
that are neither succinct (Ng et al. 1998) nor convertible (Pei
and Han 2000) nor loose anti-monotone (Bonchi and Luc-
chese 2005). CG,G′,ρ is such a constraint. As mentioned ear-
lier, it supports the definition of various patterns that are the
bases of associative classifiers and have been usually listed
by post-processing huge collections of non-specific patterns,
hence a scalability issue. Thanks to DATA-PEELER’s abil-
ity to prune the pattern space with any piecewise (anti)-
monotone constraint, those discriminative patterns can now
be efficiently discovered in more general contexts (n-ary
relations with groups of objects in any dimensions). This
opens up many perspectives such as the classification of n-
dimensional objects, the rapid development of associative
classifiers relying on new patterns that can be expressed
with CG,≥,µ, CG,≤,µ and CG,G′,ρ, and, with little more ef-
fort, the efficient enforcement of any other piecewise (anti)-
monotone constraint.

Like Cerf et al. (2009), this paper defines the piecewise
(anti)-monotonicity in a “divisive” way (see Definition 5):
they are constraints which are either monotone or anti-
monotone w.r.t. each occurrence of a variable in their ex-
pressions. Soulet and Crémilleux (2005) have independently
proposed a “constructive” definition of the same class of
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constraints: those constraints are recursively defined from
arbitrary primitives that either increase or decrease w.r.t.
each of their arguments. The proposed algorithm is, how-
ever, restricted to binary relations. To the best of our knowl-
edge, Soulet and Crémilleux (2009) have written the most
comprehensive study of the piecewise (anti)-monotone con-
straints and their ability to prune the pattern space.

Guns, Nijssen, and Raedt (2011) rely on constraint pro-
gramming to mine patterns under constraints. This allows
declaring a wide range of constraints. As shown more thor-
oughly by Nijssen, Guns, and Raedt (2009), that includes
constraints that define various discriminative patterns. Nev-
ertheless, the expressiveness of this framework remains un-
clear and all constraints, in those articles, are piecewise
(anti)-monotone. More importantly, general purpose solvers
somehow are too general, i. e., they do not specifically suit
the pattern mining task. As a consequence, scalability be-
comes problematic. In particular, the extraction of the fre-
quent closed itemsets is about 100 times slower than with
LCM (Guns, Nijssen, and Raedt 2011). On the contrary,
DATA-PEELER is competitive even when the relation is bi-
nary and the sole frequency constraint is enforced.

Conclusion
All along the traversal of the n-dimensional pattern space,
DATA-PEELER knows the lower and the upper bound of
the patterns it could recursively enumerate. The conditional
tense applies: if the relevant patterns are to satisfy a piece-
wise (anti)-monotone constraint, the recursive search may
be aborted with the guarantee that no such pattern is missed.
Three simple piecewise (anti)-monotone constraints can be
combined in various ways to define different discriminative
patterns. In this way, DATA-PEELER is a generic yet com-
petitive solution to the discovery of all those patterns.
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