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Abstract

Comparative preference statements are the basic ingre-
dients of conditional logics for representing users’ pref-
erences in a compact way. These statements may be
strict or not and obey different semantics. Algorithms
have been developed in the literature to compute a pref-
erence relation over outcomes given a set of compar-
ative preference statements and one or several seman-
tics. These algorithms are based on insights from non-
monotonic reasoning (more specifically, minimal and
maximal specificity principles) enforcing the preference
relations to be a complete preorder. The main limita-
tion of these logics however relies in preference queries
when comparing two outcomes. Indeed given two out-
comes having the same preference w.r.t. the preference
relation, there is no indication whether this equality re-
sults from an equality between two preference state-
ments or the outcomes are in fact incomparable and
equality has been enforced by specificity principles. On
the other hand, comparative preference statements and
their associated semantics can be translated into quali-
tative constraint satisfaction problems in which one can
have a precise ordering over two outcomes. In this pa-
per we investigate this bridge and provide a compilation
of conditional logics-based preference queries in quali-
tative constraint problems.

Introduction
Preferences are useful in many real-life problems, guiding
human decision making from early childhood up to complex
professional and organizational decisions. It is commonly
acknowledged that rank-ordering the whole set of outcomes
is simply infeasible. This is because generally this set is
too large. Fortunately, in practice, we have at hand prefer-
ences over partial descriptions of outcomes. These prefer-
ences may be given in different formats. However the latter
implicitly or explicitly refer to comparative preference state-
ments of the form “prefer X to Y”. We may also encounter
conditional comparative preference statements of the form
“if Z then prefer X to Y”.

Conditional logics are preference representation lan-
guages which support such preferences. They use differ-
ent completion principles in order to compute a preference
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relation induced by a set of preference statements. They
use insights from non-monotonic reasoning, namely mini-
mal and maximal specificity principles, to compute a prefer-
ence relation (which is a complete preorder) over outcomes
given a set of preference statements. Conditional logics have
been extended to deal with non-strict comparative prefer-
ence statements. More precisely, one can state that X is at
least as preferred as Y (conditionally or unconditionally).
Therefore preference statements of the form “X and Y are
equally preferred” can also be expressed in these logics. As
preferences are expressed over partial descriptions of out-
comes, each comparative preference statement leads to the
comparison of two sets of outcomes. Different ways are pos-
sible to perform such a comparison. They are called prefer-
ence semantics. They express more or less strong require-
ments on the preference relation associated to the set of com-
parative preference statements at hand.

In the original proposal of conditional logics, i.e. only
strict preference statements are considered, two outcomes
having equal preference w.r.t. the preference relation associ-
ated with a given set of preference statements is interpreted
as the two outcomes are originally incomparable. Specificity
principles enforce their equality because they are preferred
to all outcomes with a lower rank in the preorder and less
preferred to all outcomes with a higher rank w.r.t. these prin-
ciples. However this assertion is no longer possible with
extended conditional logics, i.e. when non-strict preference
statements are present. In fact, the reason of an equality be-
tween two outcomes is lost. We do not know whether they
are incomparable or equally preferred w.r.t. some non-strict
preference statements. This information is important in rec-
ommendation systems in particular.

On the other hand, comparative preference statements and
their associated semantics can be translated into qualitative
constraint satisfaction problems in which one can have a pre-
cise ordering over two outcomes. In this paper we investigate
this bridge and present a compilation of conditional logics-
based preference queries in qualitative constraint problems.

After necessary background, we present conditional log-
ics. Then we give an example to highlight the limitations of
these logics. After that we provide an encoding of condi-
tional logics and preference queries in qualitative constraint
problems to solve these limitations. Lastly, we conclude.
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Background
Let V = {V1, . . . , Vh} be a set of h variables, each takes
its values in a domain Dom(Vi). A possible outcome, de-
noted by ω, is the result of assigning a value in Dom(Vi) to
each variable Vi in V . Ω denotes the set of all possible out-
comes. We suppose that this set is fixed and finite. Let L be a
language based on V . Mod(α) denotes the set of outcomes
that make the formula α (built on L) true. It is also called α-
outcomes. A preference relation � on X= {x, y, z, . . .} is a
binary relation on X × X such that x � y stands for “x is
at least as preferred as y”. x ≈ y means that both x � y and
y � x hold i.e., x and y are equally preferred. Lastly x ∼ y
means that neither x � y nor y � x holds, i.e., x and y are
incomparable. The notation x � y means that x is strictly
preferred to y. We have x � y if x � y holds but y � x
does not. � is a preorder on X iff � is reflexive and transi-
tive, i.e., ∀x ∈ X , x � x holds and ∀x, y, z ∈ X , if x � y
and y � z then x � z. We suppose that a preference relation
is a preorder. � is complete iff ∀x, y ∈ X , either x � y or
y � x holds. � is cyclic if and only if ∃x, y ∈ X such that
both x � y and y � x hold. Otherwise it is acyclic. Given
a preference relation � and a formula α, the set of the max-
imally (resp. minimally) preferred α-outcomes is denoted
by max(α,�) (resp. min(α,�)) and defined as max(α,�
) = {ω|ω ∈ Mod(α),@ω′ ∈ Mod(α), ω′ � ω} (resp.
min(α,�) = {ω|ω ∈Mod(α),@ω′ ∈Mod(α), ω � ω′}).

For convenience, a complete preorder� can also be repre-
sented by a well ordered partition of Ω. A sequence of sets of
outcomes of the form (E1, . . . , En) is a partition of Ω iff (i)
∀i,Ei 6= ∅, (ii)E1∪. . .∪En = Ω, and (iii) ∀i, j,Ei∩Ej = ∅
for i 6= j. A partition of Ω is ordered if and only if it is as-
sociated with a preorder � on Ω such that (∀ω, ω′ ∈ Ω with
ω ∈ Ei, ω

′ ∈ Ej we have i ≤ j iff ω � ω′).
Definition 1 (Yager 1983) Let � and �′ be two com-
plete preorders on Ω represented by (E1, . . . , En) and
(E′1, . . . , E

′
n′) respectively. We say that � is less specific

than �′, written as �v�′, iff ∀ω ∈ Ω, if ω ∈ Ei and
ω ∈ E′j then i ≤ j. � belongs to the set of minimally (resp.
maximally) specific preorders, among a set of complete pre-
orders, if and only if there is no preorder in the set that is
strictly less (resp. more) specific than �. If � is the unique
minimally (resp. maximally) specific complete preorder then
it is called the least (resp. most) specific preorder.

Conditional logics
The basic ingredient of conditional logics are qualitative
comparative preference statements of the form “prefer α
to β”. Handling such a preference statement is easy when
both α and β refer to an outcome. However this task be-
comes complex when α and β refer to sets of outcomes,
in particular when they share some outcomes. In order to
prevent this situation von Wright (1963) interprets the state-
ment “prefer α to β” as a choice problem between α ∧ ¬β
and β∧¬α. Therefore the statement “prefer α to β” leads to
prefer α ∧ ¬β-outcomes over β ∧ ¬α-outcomes. Particular
situations are those when α ∧ ¬β (resp. β ∧ ¬α) is a con-
tradiction or is not feasible in which case it is replaced with
α (resp. β). For simplicity we suppose that both α∧¬β and

β ∧ ¬α are consistent and feasible.
Let us mention that comparative preference statements may
be expressed w.r.t. some context. They are of the form “if
γ, prefer α to β” which stands for “prefer α to β when γ is
true”. This also means that we compare γ∧α∧¬β-outcomes
and γ∧β∧¬α-outcomes which corresponds to “prefer γ∧α
to γ ∧ β”. Indeed without loss of generality, we focus on
statements of the form “prefer α to β”.
Lastly, conditional logics have been extended to deal with
non-strict comparative preference statements of the form “α
is at least as preferred as β”. Whatever the preference of
α over β being strict or not, we have to compare α ∧ ¬β-
outcomes and β ∧ ¬α-outcomes.
Different ways were proposed in the literature to compare
two sets of objects. They are called preference semantics.

Preference semantics
We denote by αB β (resp. αD β) a comparative preference
statement “prefer α to β” (α is at least as preferred as β).
A preference semantics refers to the way α ∧ ¬β-outcomes
and β ∧ ¬α-outcomes are rank-ordered w.r.t. a preference
relation� (to be constructed). More precisely, it expresses a
constraint on � in order to get αB β (resp. αD β) satisfied
by �. Different ways have been studied for comparing two
sets of objects leading to different preference semantics. We
recall the most used semantics (Boutilier 1994; Benferhat et
al. 2002; van der Torre and Weydert 2001).

Definition 2 Let� be a preference relation. Consider αBβ
(resp. αD β).

• Strong semantics � satisfies α B β (resp. α D β) ,
denoted by �|=st α B β (resp. �|=st α D β), iff
∀ω ∈ min(α ∧ ¬β,�), ∀ω′ ∈ max(β ∧ ¬α,�), ω � ω′

(resp. ω � ω′).
• Optimistic semantics � satisfies α B β (resp. α D β)

, denoted by �|=opt α B β (resp. �|=opt α D β), iff
∀ω ∈ max(α ∧ ¬β,�), ∀ω′ ∈ max(β ∧ ¬α,�), ω � ω′

(resp. ω � ω′).
• Pessimistic semantics � satisfies α B β (resp. α D β)

, denoted by �|=pes α B β (resp. �|=pes α D β), iff
∀ω ∈ min(α ∧ ¬β,�), ∀ω′ ∈ min(β ∧ ¬α,�), ω � ω′

(resp. ω � ω′).
• Opportunistic semantics � satisfies α B β (resp. α D
β) , denoted by �|=opp α B β (resp. �|=opp α D β), iff
∀ω ∈ max(α ∧ ¬β,�), ∀ω′ ∈ min(β ∧ ¬α,�), ω � ω′

(resp. ω � ω′).
We shall abuse notation and write αB∗β (resp. αD∗β), with
∗ ∈ {st, opt, pes, opp}, to say that α B β (resp. α D β) is
interpreted following the corresponding semantics, namely
∗. Therefore we say that� satisfies αB∗ β (resp. αD∗ β) to
mean that �|=∗ αB β (resp. �|=∗ αD β).

Definition 3 A preference set of type ∗, denoted by P∗, is
a set of preferences of the form {pi B∗ qi, pi D∗ qi|i =
1, . . . , n}, with ∗ ∈ {st, opt, pes, opp}. An acyclic prefer-
ence relation � is a model of P∗ if and only if � satisfies
each preference pi B∗ qi (resp. pi D∗ qi) in P∗. A preference
set P∗ is consistent if it has a model.
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From preference sets to preference relations
Generally we have to deal with several comparative pref-
erence statements expressed by an individual. There are
mainly two kinds of queries in preference representation: ei-
ther one looks for the maximally preferred outcomes or com-
pares two outcomes. In many applications (for e.g. database
queries), individuals are more concerned with the preferred
outcomes. In the case where these outcomes are not satisfac-
tory (e.g. preferred menus are too expensive), then we need
to compute the preferred outcomes among remaining ones,
and so on. In order to accommodate these considerations, we
associate a complete preorder to a preference set. Different
complete preorders may satisfy (i.e., are models of) a pref-
erence set given a semantics. However it is widely acknowl-
edged that, for decision purposes, it is more convenient to
characterize a unique complete preorder (Boutilier 1994).
Specificity principle has been commonly used to character-
ize such a preorder. Proposition 1 summarizes existing re-
sults about the uniqueness of models (which are complete
preorders) for each semantics.
Proposition 1 (Kaci and van der Torre 2008) (1) The least
specific model of PBopt

∪ PDopt
(resp. PBst

∪ PDst
) ex-

ists. (2) The most specific model of PBpes
∪ PDpes

(resp.
PBst

∪PDst
) exists. (3) The most (resp. least) specific model

ofPBopt
∪PDopt

(resp.PBpes
∪PDpes

) does not exist. (4) The
least/most specific models do not exist for PBopp

∪ PDopp
.

For non-strict comparative preference statements only both
the least and most specific models exist, and they are the
trivial preference relation in which all outcomes are equiv-
alent. Thus, the notion of maximal and minimal specificity
for preference sets consisting of non-strict comparative pref-
erence statements only is not very useful. Besides, the au-
thors of (Kaci and van der Torre 2008) have shown that
some semantics can be used together while preserving the
uniqueness of the models. More precisely, the least (resp.
most) specific model of PBst ∪PDst ∪PBopt ∪PDopt (resp.
PBst ∪ PDst ∪ PBpes ∪ PDpes ) exists.

In this paper we are looking for unique models so we will
no longer consider opportunistic semantics. Due to space
limitation we do not give algorithms to compute the unique
models and refer the reader to (Kaci and van der Torre 2008).

Example & Problem
Example 1 Suppose an individual is planning a holi-
day. She/he expresses her/his preferences on the basis
of three variables: P (for period) which is either W or
S (Winter and Summer resp.), D (for destination) which
is either M or B (Mountain and Beach resp.) and L
(for location) which is either H or A (Hotel and Apart-
ment resp.). Therefore we have Dom(P ) = {W,S},
Dom(D) = {M,B}, Dom(L) = {H,A} and
Ω = {ω0 : HMW,ω1 : HMS,ω2 : HBW,ω3 : HBS,
ω4 : AMW,ω5 : AMS,ω6 : ABW,ω7 : ABS}. The indi-
vidual expresses five preference statements: (i) she/he would
prefer travel in summer than in winter, (ii) if destination is
mountain then she/he would prefer travel in winter than in
summer, (iii) if she/he travels in winter than she/he would
prefer rent an apartment than a hotel, (iv) if she/he goes

to a hotel then she/he would prefer beach to mountain and
(v) if she/he goes to a hotel then summer and winter have
equal preference. Formally we write P = {s1 : S B∗ W,
s2 : M ∧ W B∗ M ∧ S, s3 : W ∧ A B∗ W ∧ H,
s4 : H ∧ B B∗ H ∧ M, s5 : H ∧ S D∗ H ∧ W,
s6 : H ∧ W D∗ H ∧ S} (si stands for “statement”). We
have L(P∗) = {C1 = ({ω1, ω3, ω5, ω7}, {ω0, ω2, ω4, ω6}),
C2 = ({ω0, ω4}, {ω1, ω5}),C3 = ({ω4, ω6}, {ω0, ω2}),
C4 = ({ω2, ω3}, {ω0, ω1}),C5 = ({ω1, ω3}, {ω0, ω2}),
C6 = ({ω0, ω2}, {ω1, ω3})}.
Let *=opt. The associated preference relation is
�= ({ω7}, {ω4, ω6}, {ω2, ω3, ω5}, {ω0, ω1}). There-
fore we have that ω4 and ω6 (resp. ω2, ω3, ω5 and ω0, ω1)
are equally preferred. However only ω2 and ω3 are equally
preferred due to s5 and s6. All other equalities are incom-
parability turned into equality due to specificity principle.
This information may be important in recommender systems
explaining whether the preferred outcomes (or any two
outcomes) are in fact equally preferred or incomparable.

Qualitative Constraint Satisfaction Problems
on Partially Ordered Sets

In this section, we introduce particular qualitative constraint
satisfaction problems which will allow to reason about pref-
erence statements. For this purpose, let us first introduce the
relations of the Point Algebra and the min/max relations.

The Point Algebra (Broxvall and Jonsson 2003), PA for
short, is a qualitative formalism for representing and reason-
ing about qualitative temporal constraints (Ligozat and Renz
2004). Given a partial preorder ≥ over a set T , denoted by
(T,≥), PA considers four basic relations:

• ∀x, y ∈ T, x > y iff x ≥ y and not(y ≥ x);

• ∀x, y ∈ T, x < y iff y ≥ x and not(x ≥ y);

• ∀x, y ∈ T, x = y iff x ≥ y and y ≥ x;

• ∀x, y ∈ T, x‖y iff neither x ≥ y nor y ≥ x.

The set of these basic relations will be denoted by BPA in
the sequel. Note that these relations are jointly exhaustive
and pairwise disjoint (i.e. any pair of elements x and y be-
longing to T satisfies exactly one relation of BPA). Making
the parallel with a preference relation �, the above basic re-
lations are strict preference, equality and incomparability.

A (complex) relation of PA corresponds to a subset of ba-
sic relations of BPA. It is represented by this subset. For ex-
ample, the set {‖,=} corresponds to the relation ‖ ∪ =. It
is satisfied by two elements x and y if and only if x‖y or
x = y. 2BPA will denote the set of the 16 relations of PA.

We now need to translate Definition 2 in the setting of
constraint satisfaction problems. Given a preorder (T,≥)
and a subset X ⊆ T , we define min(X) and max(X)
in the following way: min(X) = {x ∈ X : 6 ∃y ∈
X such that x ≥ y and not(y ≥ x)} and max(X) = {x ∈
X : 6 ∃y ∈ X such that y ≥ x and not(x ≥ y)}. We now
define 8 binary relations between subsets of T which we
call min/max basic relations. Each is denoted by relop1op2 with
rel ∈ {≥, >} and op1, op2 ∈ {min,max}. They are defined
as follows:

605



• for op1, op2 ∈ {min,max}, ∀X,Y ∈ 2T , X >op1
op2 Y iff ∀x ∈

op1(X) and ∀y ∈ op2(Y ), x ≥ y and not(y ≥ x);

• for op1, op2 ∈ {min,max}, ∀X,Y ∈ 2T , X ≥op1
op2 Y iff ∀x ∈

op1(X) and ∀y ∈ op2(Y ), x ≥ y.

In the sequel we will denote by Bmin/max the set composed
of these 8 basic relations, namely Bmin/max = {>min

min, >
min
max

, >max
min , >

max
max,≥min

min,≥min
max,≥max

min ,≥max
max}.

We are now ready to define qualitative constraint sat-
isfaction problems which we call Qualitative Constraint
Problems on Partially Ordered Sets (QCPPOS for short). A
QCPPOS Q allows to specify possible configurations of par-
tially ordered elements represented by a set of variables V .
It is composed of two types of qualitative constraints. The
first type is represented by a map c allowing to specify the
relative ordering of each pair of elements of V by means of
a relation of PA. The second type is collected in a set C and
apply to subsets of V . More precisely, each constraint of C
constrains the relative ordering between the minima and the
maxima of two subsets of elements. It is of the form V R V ′

with V, V ′ ∈ 2V and R ⊆ Bmin/max. In the sequel, such
constraints will be called min/max constraints over V and
will correspond to a set denoted by CVmin/max. Formally, a
QCPPOS is defined as follows:
Definition 4 A QCPPOS is a triple Q = (V, c, C) where:
• V is a non-empty finite set of variables;
• c is a mapping that associates a relation c(v, v′) ∈ 2BPA

with each pair (v, v′) of V × V . c is such that c(v, v) ⊆
{=} and c(v, v′) = (c(v′, v))−1 for every v, v′ ∈ V
(where −1 denotes the inverse operation of PA);

• C is a finite subset of CVmin/max. We will suppose that for
each min/max constraint V R V ′ ∈ C, V and V ′ are
non-empty sets.
We say that a QCPPOS Q = (V, c, C) is atomic iff for

all v, v′ ∈ V , the relation c(v, v′) is defined by a single-
ton relation of PA. Moreover, a QCPPOS Q′ = (V ′, c′, C′)
is a sub-QCPPOS of Q when V = V ′, for all v, v′ ∈ V
c′(v, v′) ⊆ c(v, v′), |C| = |C′| and for each min/max con-
straint X R′ Y ∈ C′ there exists X R Y ∈ C with R′ ⊆ R.

Definition 5 Let QCPPOS Q = (V, c, C). An interpretation
π of Q is a pair (f, (T,≥)) where f is a bijection from V
to T and (T,≥) a partial preorder. An interpretation π =
(f, (T,≥)) of Q is a solution of Q iff :
• for each pair of variables v, v′ ∈ V , f(v) c(v, v′) f(v′),

i.e. the pair (f(v), f(v′)) satisfies a basic relation of BPA

belonging to c(v, v′);
• for each constraint V R V ′ ∈ C, f(V ) and f(V ′) satisfy

at least one min/max basic relation of the set R.

On the other hand, two QCPPOS defined on a same set
of variables are equivalent iff they admit the same solutions.
Given a QCPPOS Q = (V, c, C), the pair (V, c) corresponds
to a constraint problem of the PA. Hence, a QCPPOS can
be seen as a particular generalization of a qualitative prob-
lem of the Point Algebra. Moreover, we can note that the
constraints of c can be expressed by means of constraints
belonging to CVmin/max and constraining singleton sets. For

example, the constraint v {>,=} v′ can be equivalently for-
mulated by the min/max constraint {v} ≥min

min {v′}. As an-
other example, consider the PA constraint v {=} v′. This
constraint can be expressed by the conjunction of the two
min/max constraints {v} ≥min

min {v′} and {v′} ≥min
min {v}.

Therefore, each QCPPOS Q = (V, c, C) can be equiva-
lently expressed by a QCPPOS Q′ = (V, c′, C′) such that
c′(v, v′) = BPA for each pair of distinct variables (v, v′).
Nevertheless, c allows to express possible ordering rela-
tions between every pair of variables of V . Given a QCPPOS

Q = (V, c, C), different problems may arise:

• The consistency problem: decide whether Q is consistent
or not, i.e. does Q admit at least one solution? Note that
given that QCPPOSs generalize constraint problems de-
fined on PA, we can establish the NP-completeness of the
consistency problem of QCPPOSs.

• The problem of finding a solution of Q. This problem
means characterizing an equivalent sub-QCPPOS Q′ of
Q such that Q′ is consistent and atomic. From such a
QCPPOS Q′ we can easily deduce a solution of Q.

• The minimal labeling problem: find for every pair of vari-
ables (v, v′) ∈ V ×V and every constraint of X R Y ∈ C
the set of feasible basic relations of c(v, v′) and R, i.e.
the set of basic relations of c(v, v′) and R involved in at
least a solution. This problem consists in computing the
minimal QCPPOS of Q, i.e. the unique sub-QCPPOS of
Q equivalent to Q and having the property of minimality
(every basic relation of each of its constraints is feasible).

A method for finding a consistent and atomic sub-
QCPPOS of a QCPPOS Q = (V, c, C) in case it exists con-
sists of a backtrack search on the PA part of Q (i.e. the con-
straint problem of PA defined by N = (V, c)). At each step
of the search, a non-singleton constraint c(v, v′) is selected
and defined by a relation composed of one of its basic rela-
tions. Moreover, path-consistency method is applied to filter
the search space and to ensure the consistency of the built
partial atomic qualitative constraint network of PA. Note that
in the context of qualitative formalisms, path-consistency
method is a polynomial method which is usually used to re-
move unfeasible basic relations from the operation of com-
position, see (Anger, Mitra, and Rodrı́guez 1999) for exam-
ple. During the search, to ensure that the built consistent
atomic qualitative constraint network of PA can be extended
to a consistent atomic sub-QCPPOS of Q we must remove
unfeasible basic relations of each constraint belonging to C.

From Preferences to Qualitative Constraints
In this section, we are going to show that QCPPOS can be
used in a natural way to represent and reason about pref-
erence statements. Consider a set of outcomes Ω and a set
of preference statements P = {s0, . . . , sk}. We will de-
note by ∗(si), with i ∈ {0, . . . , k}, the semantics associ-
ated with the statement si (∗(si) ∈ {st, opt, pes, opp}) and
by rel(si) the strict/non-strict preference relation used in si
(rel(si) ∈ {B,D}). We define QCPPOS(Ω,P) by QCPPOS

(V, c, C) such that:
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v3
HMS

v1
AMS

v5
ABS

v7

HMW

v0
HBW

v2
ABW

v6
AMW

v4

HBS

(a)

HMS ABW

ABS AMW

HBW

HBS

HMW

f(v2)
AMS

f(v0) f(v5)

f(v6)f(v1)f(v3)

f(v4)f(v7)

(b)

Figure 1: (a) The constraints C of the QCPPOS Q =
(V, c, C) = QCPPOS(Ω,P) with P the preference state-
ments over Ω of Example 1, (b) a solution (f,≥) of Q.

• With each wi ∈ Ω is associated a variable vi ∈ V .
Hence, for Ω = {w0, . . . , wk}, V is defined by the set
{v1, . . . , vk}.
• For each variable v, v′ ∈ V with v 6= v′, c(v, v′) is defined

by the total relation of PA, i.e. the relation BPA. For each
v ∈ V , c(v, v) is the relation {=}.
• For each preference statement si ∈ P is defined a

min/max constraint Vi Ri V
′
i ∈ C. Vi and V ′i correspond

to the two subsets of variables of V representing the two
subsets of outcomes linked by si. Ri is a set composed of
a unique basic relation of Bmin/max. This relation depends
on the semantics ∗(si) and the strict/non-strict preference
relation rel(si). More precisely, for ∗(si) = st (resp.
∗(si) = opt, ∗(si) = pes, ∗(si) = opp), in case rel(si)
is B, Ri is defined by {>min

max} (resp. {>max
max}, {>min

min},
{>max

min }). In case rel(si) is D, Ri is defined by {≥min
max}

(resp. {≥max
max}, {≥min

min}, {≥max
min }) .

Example 2 (Example 1 continued) Consider again Ω and
P . Define QCPPOS Q = (V, c, C) by Q = QCPPOS(Ω,P).
In Figure 1.a are represented the min/max constraints of the
set C. A solid arrow corresponds to the set {>max

max}whereas a
dotted arrow corresponds to {≥max

max}. For example, we have
the two min/max constraints {v2, v3}{>max

max}{v0, v1} and
{v0, v2}{≥max

max}{v1, v3} belonging to the set C.

Now, we are going to study how to reason about a
set of preference statements from its representation into a
QCPPOS. First of all, we can clearly establish that the consis-
tency (or non consistency) of a set of preference statements

can be decided from the consistency of its corresponding
QCPPOS. Indeed, we have the following property:

Proposition 2 Let Ω be a set of outcomes and P be a
set of preference statements. P is consistent if and only if
QCPPOS(Ω,P) is consistent.

Proofs are omitted due to space limitation.
For illustration, a solution (f, (T,≥)) of QCPPOS(Ω,P),
with P the set of preference statements given in Example 1,
is represented by an oriented graph in Figure 1.b. An ori-
ented edge (f(v), f(v′)) means f(v) ≥ f(v′). f(v) ≥ f(v′)
is not represented in case where v and v′ are identical vari-
ables or when it can be deduced by transitivity from oriented
edges already represented. From the previous proposition,
we can assert that P is a consistent set of preference state-
ments. Note also that from the solution (f, (T,≥)) we can
easily define a model of P .

As previously noticed, for some preference semantics we
can characterize unique models following specificity princi-
ples. Now, we are going to show how these models can be
characterized from resolutions of QCPPOSs. More specifi-
cally, we provide an algorithm allowing to compute the least
specific model (resp. the most specific model) of a set of
preference statements given strong semantics or optimistic
semantics (resp. pessimistic semantics) in case it exists, i.e.
the set of preference statements is consistent.

Algorithm 1: specificModel(Ω,P ,kind)
In : A set of outcomes Ω, a set P of preference

statements, the kind of the unique model with
kind ∈ {leastSpecific,mostSpecific}.

Out : A unique model represented by a sequence
(E0, . . . , En) or Inconsistent.

1 begin
2 if kind = leastSpecific then
3 rel← {>,=} ;
4 else
5 rel← {<,=};
6 Q = (V, c, C)← QCPPOS(Ω,P); k ← 0; V ′ ← ∅ ;
7 while V 6= V ′ do
8 Ek ← ∅ ;
9 for vi ∈ V \ V ′ do

10 for v ∈ V \ (V ′ ∪ {vi}) do
11 c(vi, v)← rel; c(v, vi)← rel−1;

12 if consistent(Q) then
13 Ek ← Ek ∪ {wi}; V ′ ← V ′ ∪ {vi};
14 else
15 for v ∈ V \ (V ′ ∪ {vi}) do
16 c(vi, v)← BPA; c(v, vi)← BPA;

17 if Ek = ∅ then
18 return Inconsistent;
19 k ← k + 1;

20 if kind = leastSpecific then
21 return (E0, . . . , Ek−1) ;
22 else
23 return (Ek−1, . . . , E0) ;
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Consider the function specificModel which takes as pa-
rameters a set of outcomes Ω, a set of preference state-
mentsP and the kind of the unique model we want. Roughly
speaking, by considering Q = QCPPOS(Ω,P) this function
builds the partition of Ω corresponding to this model. For the
least (resp. most) specific model, the strata of lower (resp.
greater) ranks are considered first. For a given outcome ωi,
its membership to a given stratum is decided by testing the
consistency of a sub-QCPPOS of P constraining the posi-
tion of ωi in the stratum. This is done by adding precedence
constraints on vi defined by {<,=} (resp. {>,=}). We can
formally prove the following property:

Proposition 3 Let Ω be a set of outcomes. Let P be a set of
preference statements interpreted following a given seman-
tics ∗. The call of the function specificModel with Ω,P and
leastSpecific (resp. mostSpecific) as parameters returns for
the semantics ∗ ∈ {st, opt} (resp. ∗ ∈ {st, pes}) the least
specific model (resp. most specific model) in case it exists.

Usually, for decision purposes it is more convenient to con-
sider a unique model. Nevertheless, due to the fact such
a model is a complete preorder on Ω we cannot distin-
guish between situations of equality and situations of in-
comparability over two outcomes belonging to the same
partition (i.e. two outcomes ω, ω′ ∈ Ω equal w.r.t. the
least/most specific model). A way to remedy this short-
coming is to see the least/most specific model as a set
of particular models and to consider it as complementary
constraints. This leads us to consider a new translation of
a set of preference statements into QCPPOS which takes
into account the least/most specific model. We will de-
note it by QCP′POS. Let P a set of preference statements
and a sequence �= (E0, . . . , En) corresponding to the
least/most specific model ofP . QCP′POS(Ω,P,�) is defined
by the QCPPOS (V, c, C) where V and C are respectively
the set of variables and the set of min/max constraints of
QCPPOS(Ω,P) and c is defined for each vi, vj ∈ V by:

• in case i = j, c(vi, vi) is the relation {=};

• in case i 6= j and vi, vj ∈ Ek with k ∈ {0, . . . , n},
c(vi, vj) is the relation {=, ‖};

• in case i 6= j, vi ∈ Ek, vj ∈ El with k, l ∈ {0, . . . , n}
and k < l (resp. l > k), c(vi, vj) is {>} (resp. {<}).

Considering Q = QCP′POS(Ω,P,�) allows us for example
to determine outcomes put together in a same stratum in �
because they are equally preferred due to an equal prefer-
ence statement.

Example 3 Let Q the QCPPOS defined by Q =
QCP′POS(Ω,P,�) with Ω, P and � respectively corre-
sponding to the set of outcomes, the set of preference state-
ments and the least specific model given in Example 1. The
resolution of the minimal labeling problem of Q provides
the minimal QCPPOS Qmin = (V, c, C) with the map c rep-
resented by the following table:

c(v, v′) v7 v4 v6 v2 v3 v5 v0 v1
v7 {=} {>} {>} {>} {>} {>} {>} {>}
v4 {<} {=} {=, ‖} {>} {>} {>} {>} {>}
v6 {<} {=, ‖} {=} {>} {>} {>} {>} {>}
v2 {<} {<} {<} {=} {=} {=, ‖} {>} {>}
v3 {<} {<} {<} {=} {=} {=, ‖} {>} {>}
v5 {<} {<} {<} {=, ‖} {=, ‖} {=} {>} {>}
v0 {<} {<} {<} {<} {<} {<} {=} {=, ‖}
v1 {<} {<} {<} {<} {<} {<} {=, ‖} {=}

The relation c(v, v′) is given by the entry whose row corre-
sponds to v and column corresponds to v′. We can for exam-
ple note that whatever the models satisfying P the outcomes
ω2 and ω3 cannot be incomparable (c(v2, v3) = {=}).

Conclusion and Perspectives
Preferences are expressed in conditional logics with strict or
non-strict comparative preference statements. They can be
interpreted following different semantics. Specificity princi-
ples are used to characterize a unique model given a set of
preference statements and a semantics. The main limitation
of these logics is preference queries. More precisely, two
outcomes equally preferred w.r.t. this unique model are not
distinguishable. We do not know whether they are equally
preferred due to non-strict preference statements or incom-
parable. In this paper, we solved this problem by encod-
ing preference logics and their associated algorithms in the
framework of constraint satisfaction problems.

An analysis of our encoding tells us that min/max con-
straints resulting from the translation of a set of preference
statements into a QCPPOS are defined on the basis of sin-
gleton sets of Bmin/max. This is due to the fact that prefer-
ence statements use a unique comparison operator (B or D).
Given the expressiveness power of QCPPOS we are now able
to extend conditional logics and consider preference state-
ments expressing for example a choice between B or D (i.e.,
αBβ or βBα). This type of preference can be then expressed
by means of non-singleton relations of Bmin/max.
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