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Abstract

In this article, we study the notion of similarity within the
context of cluster analysis. We begin by studying different
distances commonly used for this task and highlight certain
important properties that they might have, such as the use of
data distribution or reduced sensitivity to the curse of dimen-
sionality. Then we study inter- and intra-cluster similarities.
We identify how the choices made can influence the nature of
the clusters.

1 Introduction
Data clustering is an important part of data mining. This
technique is used in many fields such as biological data anal-
ysis or image segmentation. The aim is to identify groups of
data known as clusters, in which the data are similar.

Effective clustering maximizes intra-cluster similarities
and minimizes inter-cluster similarities (Chen, Han, and Yu
1996). Before defining inter- and intra-cluster similarities,
first we must define the similarity between a data pair. There
are many different ways of defining these similarities and
depending on the chosen method, the results of the cluster
analysis may strongly differ.

So how can we reliably choose one definition over an-
other? The aim of this article is to provide clues in order to
answer this question by studying different definitions of sim-
ilarity. We will study the following elements separately: dis-
tance between two pieces of data and inter-and intra-cluster
distances.

In section 2, we will discuss the notion of distance be-
tween two pieces of data. We shall examine different dis-
tances which can be used in the majority of clustering al-
gorithms and their relevance depending on the problem at
hand. We shall see in section 3 how the use of different
inter/intra-cluster distances can dote the resulting clusters
with certain properties. Finally, we will discuss how our
study might be of merit for unresolved issues.

2 Data Similarity
Generally speaking, data similarity is evaluated using the no-
tion of distance. In this section, we will define the notion of
distance. First, we shall identify the mathematical properties
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required in clustering. Then we will turn to the way in which
the distances can exploit the distribution of the data to be
clustered. We will also see that certain metrics are more ap-
propriate in high-dimensional spaces. We shall also see that
it is possible to better separate data by expressing the data
within another space, thus increasing the contrast between
the distances.

2.1 Mathematical Properties
Formally, a distance on a set E (in our case, E will be a
vector space) is defined as an application:
d : E× E→ R+ with the following properties:
• Symmetry: ∀x,y ∈ E, d(x,y) = d(y,x)

• Separation: ∀x,y ∈ E, d(x,y) = 0⇔ x = y

• Triangular inequality: ∀x,y, z ∈ E, d(x, z) ≤ d(x,y) +
d(y, z)

Examples of distances along with their definitions are pre-
sented in Table 1.

Distances which correspond to this definition alone are
not necessarily the best solution for accurately clustering the
data. Indeed, such a distance may not necessarily be stable
by translation, for example (d(x+a,y+a) 6= d(x,y)). For
this reason, most of the distances used stem from the notion
of the norm (the distance is thus expressed by d(x,y) =
‖x− y‖), with the addition of the property of homogeneity
(‖ku‖ = |k| ∗ ‖u‖). Moreover, certain norms derive from a
scalar product (by ‖x‖ =

√
x · x). and therefore have other

additional properties. For instance, it is possible to show that
the barycenter of N points is the point which minimizes the
squares of the distances to these points. This is a very use-
ful property in the field of cluster analysis. The Euclidean
distance stems from the L2 norm, itself defined by the usual
scalar product. They thus possess all of these properties.

It is nonetheless possible to use functions which do not
even meet the criteria of distance definition. This is true for
example in the case of Minkowski distances when p < 1,
which do not satisfy for triangular inequality. It is there-
fore necessary to check that the chosen algorithm converges
without this property.

2.2 Data Distribution
Distances such as Euclidean distance or Minkowski dis-
tances are independent of the data they are used to compare.
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Manhattan d(x,y) =
∑n
i=1 |xi − yi|

Euclidean d(x,y) = (
∑n
i=1(xi − yi)2)

1
2

Euclidean, Stan-
dardized

d(x,y) = (
∑n
i=1

(xi−yi)2
σ2
i

)
1
2

Minkowski d(x,y) = (
∑n
i=1 |xi − yi|p)

1
p , p ≥

1

Chebyshev d(x,y) = lim
p→∞

(
∑n
i=1 |xi − yi|p)

1
p

Mahalanobis
d(x,y) = ((x−y)TS−1(x−y))

1
2

where S denotes the covariance matrix
of the dataset.

Table 1: Defining Different Distances

However the scales of the dimensions are not necessarily
comparable. Therefore, when dealing with data relating to
a person, for example, the units of age and height are not
commensurate. By using the Euclidean distance, data clus-
tering does not discriminate between people according to
age alone, because an age difference of one year is as big
a difference as a height variation of one meter. The stan-
dardized Euclidean distance is much more suited, as when
considering each dimension it divides its value by its vari-
ance. If we look at this in more detail, using the same ex-
ample, height and age are correlated dimensions. This cor-
relation carries additional information which can be taken
into account. The Mahalanobis distance uses the covariance
matrix of the data, thus exploiting the correlation and the
variance between the data. However, it is possible for one
of the dimensions to be proportional to another. This dimen-
sion thus becomes redundant. In such cases, the eigenvalues
of the covariance matrix are null, and the Mahalanobis dis-
tance therefore cannot be calculated. It is possible to conduct
a principal component analysis in order to detect these cor-
related data and to ignore them. It is interesting to note that
the standardized Euclidean distance of the data projected in
the eigenspace is equal to the Mahalanobis distance.

Figure 1 depicts image clustering conducted with a ran-
domly initialized k-means algorithm with three centroids by
using various distances. The input data for each pixel is its
coordinates in x and y along with its red, green and blue
color (thus a 5-dimensional vector space). For each distance
function, the algorithm was run three times and the most
convincing result (as chosen by a human) was retained. We
can see the effectiveness of Mahalanobis distance and stan-
dardized Euclidean distance compared with other distances.

2.3 The Curse of Dimensionality
When the data originate from a high-dimensional space,
we face a problem known as the curse of dimensionality.
Dimension reduction is possible by conducting a princi-
pal component analysis and retaining only the most signif-
icant dimensions. However, this method discards some of
the information. A behavioral study of the Minkowski dis-
tances on high-dimensional spaces (Aggarwal, Hinneburg,
and Keim 2001) shows that the p-distances for a high p-
value only exacerbates the problem. As we have already ex-

Figure 1: Illustration of the importance of the distance function on
clustering.
a) Image to be clustered
b) Manhattan Distance,
c) Euclidean Distance,
d) Standardized Euclidean Distance,
e) Minkowski Distance (p=20),
f) Mahalanobis Distance

plained, the fractional p-distances are not distances in the
formal sense; despite this fact, they can be used to accen-
tuate relative contrast between data. Indeed, they tend to
group data together and therefore reduce the curse of dimen-
sionality effect. The Manhattan distance has the advantage
of both having triangular inequality and offering better data
contrast than Euclidean distance. Furthermore, it is interest-
ing to note in Figure 1, that the clustering calculated with
the Manhattan distance does not divide the image into three
equal parts, as in the cases of the Euclidean and Minkowski
distances with p = 20. The clustering seems better than any
regular p-distance (Figure 1: b., c. and e.). Figure 2 shows the
same image clustered using a fractional p-distance (p=0.2).

Figure 2: The flower image clustered using a fractional (0.2) p-
distance

2.4 Data Separation
Although the curse of dimensionality poses serious prob-
lems, processing data with high dimensions also has the ad-
vantage that the data are easier to separate. In the majority
of cases, N+1 data with N dimensions are linearly separable.
In addition, Mercer’s theorem (Mercer 1909) can be used,
with a mathematical trick (the kernel trick), to describe the
data in a potentially infinite dimensional space. This trick is
used especially in classification or regression, particularly
in SVMs (Vapnik, Golowich, and Smola 1996). However
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Cluster 1 Cluster 2 Cluster 3
Iris-virginica 31 0 19
Iris-setosa 0 50 0
Iris-versicolor 9 0 41
Iris-virginica 48 0 2
Iris-setosa 0 50 0
Iris-versicolor 4 0 46

Table 2: Matching matrices for the iris data clustering. Top:
with the Mahalanobis distance; Below: with the standard-
ized Euclidean distance after a kernel PCA

it can also be used to conduct a kernel principal compo-
nent analysis (Schölkopf, Smola, and Müller 1998). This
technique makes it possible to express the data in a higher-
dimensional space, in an orthogonal base. Data which are
not linearly separable in the initial space become so after
being retranscribed in the space created by this technique.
The main drawback is that the diagonalization of a M ×M
matrix needs to be calculated, where M denotes the number
of pieces of data to be clustered. Table 2 presents cluster-
ing conducted by a k-means algorithm on the well-known
database of UCI iris data using the standardized Euclidean
distance of the data as expressed by a linear PCA and a ker-
nel PCA. A k-means algorithm was used and run 3 times,
and the best result is presented in this table.

2.5 Summary
We have discussed certain properties of common distances.
Table 3 presents the properties of these distances. Maha-
lanobis distance seems to be an appropriate choice when the
dimension number remains reasonable.

Distance Property

Manhattan Relatively good data contrast in
high dimensions

Euclidean The barycenter minimizes the
sum of the squares of the dis-
tances

Standardized Euclidean The barycenter minimizes the
sum of squares of the distances,
Uses part of the data distribution

Minkowski p < 1 No triangular inequality, Good
data contrast in high dimensions

Mahalanobis The barycenter minimizes the
sum of squares of the distances,
Uses data correlation

Table 3: Summary of the properties of the most common
distances

3 Cluster Similarity
Once the notion of similarity between the data is defined,
similarity of data in one cluster (intra-cluster similarity) and
similarity between clusters (inter-cluster similarity) must
also be clarified. Tables 4 and 5 present the most com-
monly used inter/intra-cluster distances. Indeed, these met-
rics are used by algorithms such as hierarchical clustering.

Ascending (or agglomerative) hierarchical clustering iter-
atively groups together clusters with the greatest similar-
ity (inter-cluster similarity). The result of the clustering is
strongly influenced by the choice of this metric. But these
metrics also serve to evaluate clustering quality. This eval-
uation can be used as a stopping criteria, or to choose the
parameters of the chosen algorithm (such as the number of
clusters for a k-means algorithm for example). In this sec-
tion, we discuss the impact the choice of metric can have on
clustering.

Single linkage min(d(x, y)), x ∈ A, y ∈ B
Complete linkage max(d(x, y)), x ∈ A, y ∈ B
UPGMA or Aver-
age distance

1
|A|·|B|

∑
x∈A

∑
y∈B d(x, y)

Average linkage
(variation)

d(µA, µB) where µA and µB are the
arithmetic means of the clusters

Table 4: Common inter-cluster distances

Radius max(d(x, µA) where µA is the
arithmetic mean of A

Radius (variation)
1
|A|

∑
x∈A d(x, µA) where µA is

the arithmetic mean of A

Diameter max(d(x, y)), x ∈ A, y ∈ A, x 6=
y

Diameter (varia-
tion)

1
|A|·(|A|−1)

∑
x∈A

∑
y∈A d(x, y)

Table 5: Common intra-cluster distances

3.1 Outlying Data
In most real problems, the dataset includes outliers. They
can be caused by a defective sensor or a typing error for ex-
ample. The presence of such data, even if there are very few,
can greatly influence the inter- and intra-cluster distances.
Figure 3 illustrates these variations, with clustering con-
ducted using SLINK (Sibson 1973), CLINK (Defays 1977)
and UPGMA. The first row shows that defining the distance
by the arithmetic mean of distances between the data of the
two groups is much more robust than using the minimum
distances of the closest data (SLINK) or the furthest data
(CLINK). Indeed, outliers have a tendency to increase intra-
cluster distances and decrease inter-cluster distances.

Figure 3: Comparison of common inter-cluster distance for hier-
archical clustering on a dataset containing outlying data. The first
column corresponds to single linkage, the second to complete link-
age and the third to average linkage
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3.2 Cluster Shapes
Intra- and inter-cluster distances also influence the shapes of
clusters. Of course, the definition of a radius or a diameter
for a cluster implies that the cluster is spherical. This hy-
pothesis can be satisfactory for certain problems but not for
every case. Figure 4 illustrates the influence of inter-cluster
distance of hierarchical data clustering with clusters of vari-
ous shapes. In this example, only SLINK calculates the clus-
ters satisfactorily.

Figure 4: Comparison of common inter-cluster distance for hier-
archical clustering with clusters of various shapes. The first column
corresponds to single linkage, the second to complete linkage and
the third to average linkage

3.3 Size and Density of Heterogeneous Clusters
Figure 5 illustrates the influence of inter-cluster distance of
hierarchical clustering of data with clusters of various sizes.
It can be seen that CLINK has difficulty clustering this type
of data.

The CHAMELEON (Karypis, Han, and Kumar 1999) al-
gorithm offers a measurement of cluster similarity which
better accounts for the individuality of the data. It consists
to construct a k-nearest neighbors graph of the data and uses
the notions of relative inter connectivity and relative close-
ness of two clusters. These two aspects are defined as func-
tions of the clusters’s internal connections and connections
between two clusters in the KNN graph. This makes it possi-
ble to account for data size and density, for example in order
not to systematically group together the small low-density
clusters into large, dense clusters.

Figure 5: Comparison of common inter-cluster distance for hier-
archical clustering with clusters of various sizes. The first column
corresponds to single linkage, the second to complete linkage and
the third to average linkage

4 Discussion
In this article, we have discussed the different aspects to be
taken into account when choosing metrics for data cluster-
ing. We have shown how the properties of the most common
distances lead to a better support of many specific problems
such as size, density, shape of the clusters, or the curse of
dimensionality.

These distances are used in most of the clustering al-
gorithms, whether centroids based algorithms as k-means,

neural networks such as self-organizing map (Kohonen
1982), Growing Cells Structure or Growing neural gas
network (Fritzke 1995), density based approach as DB-
SCAN (Ester et al. 1996) or OPTICS (Ankerst et al. 1999),
or agglomerative hierarchical algorithms. Again, the choice
of the best suited algorithm to the problem is not trivial
and a thorough study of the characteristics of these differ-
ent approaches would be helpful. There is indeed no univer-
sal clustering algorithm achieving good quality partitioning
whatever the problem. In addition, these algorithms gener-
ally require parameters to be set correctly. Setting these pa-
rameters is a particularly difficult problem of data partition-
ing, because unlike classification problems, we do not have
labels indicating the “solution” which would allow one to
perform a cross-validation to adjust settings.

Finally, the difficulty to find the main specificities of a
given problem (size, density, linear separation of clusters
etc.) raises the issue already extensively discussed on visu-
alization of high-dimensional data.
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