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Abstract

In this paper, we consider the permutation representation of
genetic algorithms, and more generally, local search algo-
rithms. We use a variety of permutation distance measures
to profile the behavior of the most commonly used muta-
tion operators for permutation-based genetic algorithms. Our
operator profiles are also applicable to other local search al-
gorithms, such as simulated annealing, as the most common
permutation mutation operators are also commonly found as
neighborhood operators for other metaheuristics in a search
of the space of permutations. In addition to using several ex-
isting distance measures, we introduce two specific instances
of the edit distance measure. Our aim is to offer the GA, and
local search practitioner, guidance in the selection of muta-
tion and neighborhood operators.

1 Introduction
Genetic algorithms are among a broad class of problem
solving algorithm, known as evolutionary computation, that
are motivated by concepts from natural genetics and evo-
lution (Mitchell 1998). A genetic algorithm (GA) evolves
a population of candidate solutions to the problem through
operations that mimic natural selection, mutation, and
crossover. GAs have been applied successfully to a wide va-
riety of problems from diverse domains such as engineering,
the sciences, entertainment, robotics, software engineering,
and many others (Soule 2012; Krasnogor 2011).

GAs rely on problem independent operators that ran-
domly perturb candidate solutions (mutation operators) and
that recombine parts of multiple parents to produce offspring
for subsequent generations (crossover operators). Aside
from the unusual case of a specialized problem-dependent
operator, the most common bitstring-based GA has a limited
set of mutation and crossover operators. This is part of the
basis for the GA’s claimed power as a problem-independent
problem solver—regardless of the problem, the operators re-
main the same. In the so-called Simple GA, as well as its
most common variations, the candidate solutions in the pop-
ulation are represented as bitstrings. Knowledge of the spe-
cific problem is limited to the fitness function which inter-
prets a bitstring as a candidate solution to the problem and
provides an evaluation of the quality of that solution. This
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mapping of bitstring to its problem dependent meaning is
similar to the mapping of a genotype to a phenotype. For
the common bitstring representation, mutation typically in-
volves random “flipping” of one or more bits. For crossover
(the breeding of a pair of offspring from a pair of parents),
there are a variety of commonly employed operators that ex-
change subsets of the bitstrings between the parents.

We do not concern ourselves here with the bitstring rep-
resentation of a GA; rather, we examine the operators of
the permutation-based GA. For some problems, the bitstring
representation does not lend itself well to solution represen-
tation; and thus, other representations have been developed.
One such representation is the permutation, which enables
a more natural representation to problems that involve se-
quencing or ordering. In the permutation representation, a
candidate solution to the problem is represented as a per-
mutation over the elements of a set—e.g., for the Travel-
ing Salesperson Problem, an individual member of the GA
population is represented as a permutation of the cities. Al-
though this seems to move away from the problem indepen-
dent nature of a GA, the operators that are employed by a
permutation-based GA do not rely on any problem-specific
knowledge for mutation and recombination—the operators
do not care what the permutation itself represents.

The biggest challenge with applying a permutation-based
GA to a problem is choosing mutation and crossover opera-
tors. The operators of the Simple GA do not have direct cor-
responding operators for permutations as the obvious adap-
tations would create invalid permutations. Instead, a cata-
log of mutation and crossover operators has been develop-
ing over the years by the practitioners of permutation-based
GAs. Some of these operators are claimed as good choices
for problems where the important aspect of the permutation
is an element’s absolute position within the permutation in-
dependent of other elements, others when the relative order-
ing of the elements is critical. One issue, however, is that not
all problems are easily categorized into one or the other cat-
egory (Martı́, Laguna, and Campos 2005). Additionally, not
all of the available operators are easily categorized as strictly
appropriate for absolute or relative ordering properties.

In this paper, we focus on delivering to the GA or lo-
cal search practitioner guidance in selecting operators for
permutation-based problems. Specifically, we focus on the
most commonly employed mutation operators. Mutation is
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meant to be a small random perturbation of a member of the
population, relying on the GA assumption (and more gener-
ally, the assumption of local search algorithms) that nearby
solutions are of similar fitness. What is a small random per-
turbation of a permutation? This depends on whether the
problem is what has been termed an “A-permutation prob-
lem” or an “R-permutation problem” (Campos, Laguna, and
Martı́ 2005; Martı́, Laguna, and Campos 2005), depending
on whether absolute or relative positioning is most impor-
tant to the problem. We introduce two distance measures,
Reinsertion Distance and Interchange Distance, for permu-
tations that are instances of the concept of edit distance. Us-
ing our distance measures and a variety of other permutation
distances (Ronald 1998; Sörensen 2007) that are available in
the literature, we have developed profiles of the most com-
mon mutation operators. As these mutation operators are
also often used as the neighborhood function for other local
search algorithms (e.g., simulated annealing), our operator
profiles are relevant more generally to other permutation-
based metaheuristics. Our aim is to offer the GA practitioner
guidance in the design of a permutation-based GA.

Our paper is organized as follows. We begin, in Section 2,
with a discussion of background on fitness landscapes and
existing measures of permutation distance. In Section 3, we
discuss the concept of Edit Distance, and introduce two in-
stances of edit distance that we call Reinsertion Distance and
Interchange Distance. We overview our profiling methodol-
ogy in Section 4. Next, in Section 5, we present our profiles
of the common mutation operators for permutation-based
GAs. Finally, we wrap-up in Section 6.

2 Background
2.1 Fitness Landscapes
We can conceptualize the space of candidate solutions to an
optimization problem as points on a surface where the height
of the point corresponds to the fitness of that solution. This
surface is known as the fitness landscape (Mitchell 1998),
and likely contains a variety of peaks and valleys which rep-
resent local optima. Our optimization problem is to find an
optimal point on that landscape. Local search algorithms
and GAs tend to perform better when fitness landscapes are
smooth with small numbers of local optima; and are espe-
cially challenged when faced with a fitness landscape with
plateaus and large numbers of local optima.

GA mutation operators serve the same purpose as a neigh-
borhood operator for a local search algorithm such as simu-
lated annealing—namely, enabling locally improving modi-
fications to a current candidate solution; whereas crossover
operators serve the purpose of escaping from local optima.

An important characteristic of fitness landscapes is
fitness-distance correlation (Jones and Forrest 1995), which
is an application of the Pearson correlation coefficient, used
to measure the correlation between the fitness of a solution
and its distance from the optimal solution. If fitness (i.e.,
solution quality) improves the nearer you are to the optimal
solution (as distance to the optimal solution decreases), then
searching locally (i.e., via mutation) around the current pop-
ulation of solutions will be effective.

The structure of this conceptual fitness landscape depends
strongly on how we define the neighborhood of a candidate
solution (e.g., (Czogalla and Fink 2009)). What does it mean
for a solution to be “near” another? The shape of the fitness
landscape, therefore, depends upon more than the problem
alone. It also depends upon the operator used for local im-
provement, which in the case of the GA is the mutation oper-
ator. In order to define a relevant fitness landscape that char-
acterizes the problem solving behavior of a GA, one needs
to carefully consider the choice of distance measure.

2.2 Permutation Distance Measures
We need a mechanism for determining if a permutation op-
erator produces small modifications to a permutation. Thus,
we need to have a notion of distance between permutations.
Many distance measures have been proposed (Ronald 1998;
Sörensen 2007; Shapira and Storer 2007). We have chosen
a set of distance measures that capture the essence of the
so-called “A-Permutation” and “R-Permutation” type prob-
lems. In all of the formalization of distance measures that
follow, we use p1 and p2 to refer to permutations, p1(i)
refers to the element in position i of the permutation, and
N is the length of a permutation.

Absolute Position Based Distance Measures: When pro-
filing the mutation operators, we consider the following dis-
tance measures as representative of the characteristics of
problems where “absolute” position within the permutation
is most critical to the permutation’s fitness as a solution:
• Exact Match: The exact match distance (Ronald 1998)

is an extension of the concept of Hamming distance to
permutations. It is the count of the number of positions
containing different elements.

δ(p1, p2) =
∑

i=1...N

{
1 if p1(i) 6= p2(i)
0 otherwise (1)

• Deviation Distance: Deviation distance (Ronald 1998)
is the normalized sum of the positional deviations of the
elements from one permutation to the other, and is for-
malized as follows:

δ(p1, p2) =
1

N − 1

∑
e∈p1

|i−j|,where p1(i) = p2(j) = e.

(2)

Relative Position Based Distance Measures: We con-
sider the following distance measure as representative of the
characteristics of problems where “relative” position among
the elements of the permutation is most critical to its fitness:
• R-Type Distance: “R-Type” distance (Campos, Laguna,

and Martı́ 2005; Martı́, Laguna, and Campos 2005) was
developed for permutation problems where relative order-
ing primarily influences solution fitness, and is the count
of the number of adjacent element pairs of p1 that appear
as adjacent element pairs in p2 and can be defined as:

δ(p1, p2) =
N−1∑
i=1

{
0 if ∃j, p1(i) = p2(j) and

p1(i+ 1) = p2(j + 1)
1 otherwise

(3)
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Table 1: Pearson correlation, R, between pairs of distance
measure for permutations of length 10. Distances between
all 3628800 permutations of length 10 to a reference permu-
tation were used in computing the coefficients, R.

Exact Match Deviation R-Type
Exact Match 1.000 0.515 0.024
Deviation 0.515 1.000 0.020
R-Type 0.024 0.020 1.000

In selecting a set of distance measures to use in our study,
we wanted to include a representative set of distances that
can be used in characterizing a variety of fitness landscapes.
Using all permutations of length 10 (N = 3628800), we
computed the distances to a reference permutation from the
set. We then examined the Pearson correlation coefficient
for pairs of distance measure. The data is summarized in
Table 1. You will discover that although both Exact Match
and Deviation distance are absolute-position distance mea-
sures, they are only moderately correlated (R = 0.515). The
relative position based distance measure, R-Type, is not cor-
related to either of the absolute-position measures.

3 Edit Distance for Permutations
Edit distance between two structures (e.g., permutations) is
the minimum cost of the “edit operations” required to trans-
form one structure into the other. The concept originated
in the string pattern matching community (Wagner and Fis-
cher 1974) and is easily extended to permutations (Sörensen
2007). We consider two “edit distance” measures.

3.1 Reinsertion Distance
We introduce a permutation distance measure that we
call Reinsertion Distance as the minimum number of re-
moval/reinsertion operations needed to transform one per-
mutation into the other. Edit distance for permutations and
strings (Wagner and Fischer 1974; Sörensen 2007), typically
allows three different operations (element removal, element
insertion, and relabeling an element), although variations ex-
ist that include additional operations—e.g., moving or delet-
ing substrings (Shapira and Storer 2007). To apply edit dis-
tance, we need to assign costs for each of the 3 operations.

In our Reinsertion Distance, we allow a single type of op-
eration which removes an element and reinserts it someplace
else in the permutation. To compute the minimum number
of removal/reinsertion operations, we use Wagner and Fis-
cher’s dynamic programming algorithm for string edit dis-
tance (Wagner and Fischer 1974) where we assign costs of
0.5 for removals, 0.5 for insertions, and ∞ for element re-
placements. The latter assures us that the edit distance cal-
culation will not consider relabelings. The costs of 0.5 for
each of removals and reinsertions has the effect of count-
ing the minimum number of removal/reinsertion operations
needed to transform one permutation into the other.

This application of edit distance does not neatly fit into ei-
ther the absolute or relative distance categories. In Table 2,
you will find the correlation coefficient between reinsertion

Table 2: Pearson correlation, R, between the reinsertion and
interchange distances and the other distance measures for
permutations of length 10. For reinsertion distance and in-
terchange distance, R = 0.182.

Reinsertion Interchange
Exact Match 0.301 0.766
Deviation 0.650 0.395
R-Type 0.422 0.009

distance and each of exact match, deviation distance, and R-
type distance. Reinsertion distance is moderately correlated
to all three, with strongest correlation to deviation distance
(R = 0.65), an absolute-position based measure followed
by R-type (0.422), a relative-position based measure. A sin-
gle removal/reinsert operation could potentially change the
absolute locations of a large number of elements (all ele-
ments in the most extreme case) while retaining their rela-
tive ordering, but the resulting permutation would be a dis-
tance of only 1 away from its parent. This seems to imply
that this is a relative ordering distance measure. Yet, it is
also possible to create a pair of permutations with almost
identical relative positions, for which this application of edit
distance will give a rather large distance. Consider the per-
mutations: p1 = {1, 2, . . . N/2, N/2 + 1, N/2 + 2, . . . , N}
and p2 = {N/2 + 1, N/2 + 2, . . . , N, 1, 2, . . . N/2}. These
2 permutations are a reinsertion distance apart of N/2, yet
all but one adjacent pair of elements are held in common.

3.2 Interchange Distance
We introduce another edit distance for permutations. The
interchange distance is the minimum number of element by
element interchanges (or swaps) needed to transform one
permutation into the other—by “swap” we refer to gen-
eral swaps and not strictly adjacent element exchanges. In
Table 2, we demonstrate this to be an absolute-position
based distance measure, correlating most strongly with exact
match (R = 0.766) and moderately correlating with devia-
tion distance (R = 0.395). This is another edit distance.
However, it does not use Wagner and Fischer’s edit distance
operations. Instead, it considers a single edit distance oper-
ation, general element interchanges–i.e., swapping the loca-
tions of 2 elements within the permutation. This is surpris-
ingly easy to compute. Our algorithm for computing inter-
change distance is inspired by the permutation crossover op-
erator known as cycle crossover (Oliver, Smith, and Holland
1987), namely on its concept of a “cycle.” Each “cycle” of k
elements in length, contributes k− 1 to the number of inter-
changes needed to transform one permutation into the other.
Our algorithm computes Interchange distance by finding all
such “cycles.” Pseudocode can be found in Algorithm 1.

4 Profiling Methodology
4.1 Permutation Mutation Operators
With the more traditional bitstring-based GA, mutation is al-
most always limited to a random bit flip—the most obvious
operation to produce a small random perturbation of a bit-
string. With the permutation representation, the choice of
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Algorithm 1 Interchange Distance
Input: X = {x1, x2, . . . , xN}, Y = {y1, y2, . . . , yN}
Output: δ(X,Y ) = minimum number of swaps to trans-

form permutation X to Y
D ← 0
elements← {e|e ∈ X}
while elements 6= ∅ do

cycle← ∅
current← any member of the set elements
i← IndexOf(current, X)
while current /∈ cycle do

cycle← cycle ∪ {current}
current← Y (i)
i← IndexOf(current, X)

end while
D ← D + |cycle| − 1
elements← elements− cycle

end while
return D . D = δ(X,Y )

operator is not as obvious. Here, we consider the most com-
mon choices of mutation operator for permutation-based
GAs. Our aim is to shed light on when their behavior can
be considered to produce small random perturbations. The
mutation operators that we profile are as follows:
• Insertion: Insertion mutation removes one randomly se-

lected element from the permutation, and reinserts it into
a different randomly selected position.

• Swap: Swap mutation exchanges the positions of 2 ran-
domly selected elements from the permutation. All other
elements remain in their current positions.

• Scramble: Scramble mutation selects 2 different random
indices, and then randomly shuffles all elements between
the 2 indices, inclusive, with all possible reorderings of
the selected region equally likely.

• Reversal: Reversal mutation selects 2 different random
indices, and reverses the selected sub-permutation.

These are the most common permutation mutation operators
and are also widely used as neighborhood operators for other
local search algorithms (Serpell and Smith 2010; Cicirello
2006; 2007; Valenzuela 2001).

4.2 Generating Profiling Data
Our process for generating the data used to profile the mu-
tation operators is as follows. We consider the following
permutation lengths: {16, 32, 64, 128, 256, 512, 1024}. For
each permutation length, and for each combination of mu-
tation operator and distance measure, we generated 10000
random parent permutations and created a child of each via
one random mutation. Therefore, in the profiles that follow,
each point on each graph is the average distance between the
parent and child of 10000 random mutations.

5 Mutation Operator Distance Profiles
We first profile the mutation operators from the perspective
of the absolute distance measures, Exact Match Distance
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Figure 1: Average Exact Match Distance between parent and
child permutations produced by 1 random mutation.

(Figure 1) and Deviation Distance (Figure 2). In Figure 1,
we see that a single swap mutation produces a child that is
a constant exact match distance of 2 from its parent, inde-
pendent of permutation length. All other mutation operators
produce children that are approximately an exact match dis-
tance of N/3 from the parents. In Figure 2, we see that both
Scramble and Reversal are disruptive under deviation dis-
tance, producing children that are unlike the parents, espe-
cially for larger permutations. However, both the Insertion
and Swap operators make very small changes to the parent
permutations. The average deviation distance between par-
ent and child for both of these operators is around 0.67, in-
dependent of permutation length.

For so-called “A-permutation” problems, Swap mutation
should be preferred as it produces small perturbations of the
candidate permutation, independent of which absolute po-
sition based distance measure we consider. However, In-
sertion mutation should not be overlooked as a candidate
operator for these problems as well. The exact match dis-
tance simply fails to recognize the small positional move-
ment made to those elements that are shifted, while devia-
tion distance captures that behavior. The Scramble and the
Reversal operators are very disruptive with respect to “A-
permutation” problems. However, as such, they might be
useful to other local search algorithms to “kick” the search
out of a local optima.

We now profile the operators for relative position based
distances, namely for the R-Type distance measure (see Fig-
ure 3). For the Scramble and Reversal operators, distances
increase linearly with the length of the permutation. Inser-
tion mutation consistently produces children on average a
smaller distance from the parents as compared to swap—
average distances of 3 and 4, respectively, independent of
permutation length. Both operators are reasonable choices
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Figure 2: Average Deviation Distance between parent and
child permutations produced by 1 random mutation.

for “R-permutation” problems, but in terms of consistent
lower distance which implies the smaller random perturba-
tion that mutation operators are meant to provide, insertion
mutation is superior to swap. Again, the scramble and rever-
sal operators may be applicable to local search algorithms to
“kick” the search out of a locally optimal solution.

In Figure 4, we profile the mutation operators for the
Reinsertion Distance. Recall that this edit distance measure
is defined as the minimum number of removal/reinsertion
operations needed to transform (or edit) one permutation to
the other. Thus, the average distance of a child produced
via the reinsertion mutation operator is a constant distance
of 1 from its parent. Thus, reinsertion mutation is an ideal
candidate for permutation problems whose fitness landscape
can be characterized by this distance measure. Swap mu-
tation produces children whose average distance from the
parents approaches 2 with increasing permutation length.
Thus, swap mutation is also a reasonable candidate. The
average distances produced by Scramble and Reversal mu-
tations grow linearly with permutation length, and are thus
too disruptive to serve as an effective GA mutation operator.

In Figure 5, we profile the mutation operators for Inter-
change Distance. Recall that this is another edit distance.
However, unlike Reinsertion Distance, the Interchange Dis-
tance is primarily an absolute position based distance mea-
sure. Like the other absolute position based measures, we
find that the swap operator stands out from the others, con-
sistently producing children a distance of 1 from the parents,
independent of permutation length. Though recall that this
measure is defined as the minimum interchanges needed to
transform one permutation into the other. As the swap mu-
tation randomly exchanges the positions of 2 elements, by
definition only 1 interchange is needed to undo that opera-
tion.
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Figure 3: Average R-Type Distance between parent and
child permutations produced by 1 random mutation.

6 Conclusions
We have profiled the most common mutation operators for
the permutation representation of a GA. These operators are
also commonly used as local neighborhood operators for
other local search algorithms such as simulated annealing
when searching the space of permutations. Thus, our results
are generally applicable to metaheuristics beyond the GA.

We have found that for “A-permutation” problems, where
absolute position within the permutation is most indicative
of solution fitness, that the Swap mutation operator is the
most applicable. Regardless of which absolute distance
measure we consider (Exact Match, Deviation Distance, or
Interchange Distance), the swap operator produces a small
random change to the permutation, which is the essence of
what mutation is meant to be. Depending upon which spe-
cific absolute distance measure leads to the “friendliest” fit-
ness landscape (smoother landscape, less local optimas, etc)
for the problem we are solving, we may also consider Inser-
tion mutation (see analysis of deviation distance).

For “R-permutation” problems where relative positioning
within the permutation has the biggest impact on solution fit-
ness, we have found that Insertion mutation, as well as Swap
mutation, produces the smallest random changes to the can-
didate solutions, and are thus likely to be the most effective
choices as mutation operator. Insertion mutation also has
proven to be the best choice for problems where the edit dis-
tance known as Reinsertion Distance leads to a promising
fitness landscape for local improvement algorithms.

Although Scramble mutation, and in most cases Reversal
mutation, appear too disruptive to be effective mutators, our
profiles can be used to argue that they can be effectively used
within a local search algorithm to “kick” the search out of
local optimas to prevent or mitigate search stagnation.
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Figure 4: Average Reinsertion Distance between parent and
child permutations produced by 1 random mutation.
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