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Abstract 
In informational terms, a module dedicated to process 
information always has specific inputs and outputs. It 
describes a particular process constrained by specific rules. 
A processing chain can be a serial combination and/or a 
parallel combination of such modules. Thus, in an 
architecture of language engineering, each processing chain 
becomes a particular instantiation of all possible paths. A 
processing chain is built from a choice of modules 
underlying tasks that an engineer wants to apply to the text. 
In our paper we will present our theoretical model of logical 
representation of the processing chains, based on 
combinatory logic and a formal approach based on 
categorial grammars and applicative grammar, along with 
many cases of modules configurations. 

Introduction   
Language engineering, and by extension, information and 
knowledge engineering, has become a major and essential 
theme due to the critical need to assist human users to 
access information and extract knowledge from it. 

Many methods, approaches and technologies have been 
proposed during the past four decades. Some exploit 
linguistic models whereas others are predicated on 
numerical and empirical approaches. Despite the high 
scientific value of these different models, they have yet to 
answer the various needs expressed by the scientific 
researcher community as well as the user community.  The 
current and proposed technologies offer one or many from 
simple to complex functionalities, such as stemming, 
lemmatisation, classification, categorization, syntactic 
analysis, semantic analysis, morphological analysis, etc. 
However, these functionalities respond to very specific 
objectives and do not allow to adapt to initially unforeseen 
objectives gradually identified during the discovery 
process. This is, of course, a flexibility issue. Besides, the 
proposed technologies are often closed and thus cannot 
easily modify, replace or integrate new functionalities. 
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Therefore, updating these tools requires a major 
computational investment. Consequently, the scientist 
researcher or the user feels unable to use them in a way 
that would allow him to integrate his own processing 
chains according to his own objectives.  

Despite the high level of computational modeling 
offered by the programming paradigms such as object-
oriented, and open source approaches, these limits remain 
persistent.  

This kind of problems starts to find some echoes among 
scientists. It is in this way that an inclusive vision is being 
developed. Therefore we find in literature projects on : (i) 
the creation of complex processing chains (Hallab & al. 
2000; Moscarola & al., 2002) that offers assembling of 
many functions and operations, and (ii) the creation of 
software platforms for language engineering which 
integrate statistical analysis, such as Aladin (Seffah & al, 
1995), D2K/T2K (Downie & al., 2005) and Knime (Warr, 
2007), or linguistic analysis, such as Context (Crispino & 
al, 1999) and Gate (Cunningham et Al., 2002)). These 
platforms are supposed to facilitates the fast prototyping of 
text mining and text analysis experiments. 

From these new platforms emerge new interests on 
processing chains about their coherence, their flexibility, 
their adaptability, etc. Some of these platforms have been 
used in several projects in which researchers collaborate as 
NORA, TAPoR, etc. 

Despite this progress, certain limits remain. In particular, 
the addition of new modules to the platform requires 
knowing the platform and the programming language used 
to implement it. 

In our paper we will present our theoretical model of 
logical representation of the processing chains, based on 
combinatory logic and a formal approach based on 
categorial grammars and applicative grammar, along with 
many cases of modules configurations. 
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Combinatory Logic 
Before introducing the formal model itself, let us first 
present combinatory logic. The origins of combinatory 
logic bring us back to the works of Schönfinkel who 
defined the notion of combinators in 1924, and also, 
sometime later, those of Curry and Feys (1958). This 
notion was introduced with the objective to bring a logical 
solution to some paradoxes, like the Russell’s Paradox, but 
also to eliminate the need for variables in mathematics. 
Combinators are abstract operators that use other operators 
to build more complex operators. They act as functions 
over arguments, within an operator-operands structure. 
Each specific action is represented by a unique rule that 
defines the equivalence between a logical expression with 
a combinator versus one without a combinator, which is 
called a -reduction rule. Although many more 
combinators exist, we show in the table opposite the 
combinators we used in our works and their corresponding 

-reduction rule. 
 

Combinator Role -Reduction rule 
B Composition B x y z  x (y z) 
C Permutation C x z y  x y z 
S Distributive 

Composition 
S x y u  x u (y u) 

W Duplication W x y  x y y 
 

The composition combinator B combines two operators 
x and y together in order to form the complex operator B x 
y that acts on an operand z according to the -reduction 
rule. The permutation combinator C uses an operator x in 
order to build the complex operator C x such as if x acts on 
the operands y and z, C x will act on those operands in the 
reverse order, that is to say z and y. Given the two 
operators x and y, and the operand u, the general 
composition combinator S distributes the operand u with 
the two precedent operators x and y. (y u) becomes the 
operand of the complex operator (x u). Finally, given the 
binary operators x, and the operand y, the combinator W 
duplicates y so that the operator x will have two identical 
arguments.  

We can also combine recursively many elementary 
combinators together to form an infinitely range of 
complex combinators. For example we could have 
combinatory expressions such as “B C x y z u” or “S B C x 
y z u v”. Its global action is determined by the successive 
application of its elementary combinators, from left to 
right. If we have the combinatory expression “B B C x y z 
u v”, the reduction order would be B, B, then C. The 
resulting expression without combinator is the normal 
form, which is, according to Church-Rosser, unique. 

(i) B B C x y z u v 
(ii) B (C x) y z u v 
(iii) C x (y z) u v 
(iv) x u (y z) v 

There exist two more cases of complex combinators: 
combinators with “power combinators” and “distance 
combinators”. In the first case, a power value of n 
reiterates n times the action of the combinator , such as 1 
=  and n =  B  n-1. Thereby, the action of the expression 
B2 a b c d e would be B B B a b c d e  …  a (b c d) e.  

In the latter case, an index value of n postpones the 
action of a combinator  of n steps, such as 0 =  and n = 
Bn-1 .  If we consider the combinatory expression C2 a b c 
d e, the action of the complex combinator would be given 
by  B C a b c d e  …   a b c e d. 

The Formal Model 
The main goal behind modular approaches is to reuse one 
or many already existing programs instead of having to 
write them from scratch again, which cost time and money, 
especially when the size of the programs are quite 
substantial. 

Our model refers programs as modules and concerns 
systems for which the modules are processed serially only, 
that is, the so-called processing chains. We are particularly 
interested into natural language processing systems, for 
which it could be very useful to simply have to switch a 
module by another one with compatible inputs and outputs. 

A module acts like a mathematic function that takes 
arguments, processes one specific action and gives a result. 
Each module is independent and can be seen like a black 
box: we are only interested to the general function it 
accomplished and not how it is programmed internally.   

The modules must also have the capacity to 
communicate together with the help of a protocol. 

A processing chain is a layout of modules. It is governed 
by three mains rules: (i) the chain must contain at least one 
module; (ii) the chain must be syntactically correct; (iii) 
the semantic aspects of the chain are the responsibility of 
the language engineer (we call language engineer any 
researcher or developer who has some interests into 
language engineering. The former can be a computer 
scientist as well as a linguist, a terminologist, a 
philosopher, etc.) to assure that the chosen modules serve 
the goals of the processing chain. 

From a formal point of view, a processing chain is an 
integrated sequence of computational modules dedicated to 
specific processings, put together in a (pertinent) order 
according to a process goal determined by the language 
engineer. A processing chain will have to allow the 
composition of the modules. Therefore, it is essential to 
answer to two fundamental questions: 

(1) Given a set of modules, what are the allowable 
arrangements which lead to coherent processing chains 
(the syntactic correctness)? 
(2) Given a coherent processing chain, how can we 
automate (as much as possible) its assessment (in the 
sense of its calculability). 
In order to do so, a formal system is needed. Such a 

system will be at the center of our theoretical model.  
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The model chosen is based on applicative and 
combinatory categorical grammar (Biskri & Desclés, 
1997), a model we widely used in natural language 
processing. 

Applicative and combinatory categorial grammar has 
won its spurs in syntactics and semantics. It proposes a 
dichotomous view on the linguistic units. Some of these 
linguistic units work as operators and others as operands. 
This is translated by an assignment of categories to the 
linguistic units in a way to reflect their nature. This view 
is, of course, applicative. 

According to this view, a module accomplishes an 
operation which applies to one or many objectal entities 
from a given type and returns other objectal entities from 
another type. We therefore assign to each module a 
categorial type to reflect how it acts on its operands.  

Categorial types are developed from basic types and 
from one constructive operators “F” as follow:  

(i) Basic types are types.  
(ii) If x and y are types then Fxy is a type.  
 
We note a module (Figure 1) as follows: [M1: Fxy] in 

which M1 is the identifier of the module and Fxy is the 
type of M1. M1 is then considered as a function whose the 
operand is of type x and the result of the application of M1 
on X is of type y. We note the module M2 (figure 2) by 
[M2: Fx1Fx2y]. M2 is a function with two operands: X1 
and X2. M2 applies on X1 in order to construct a new 
function (M2 X1) whose operand is X2. The application of 
(M2 X1) on X2 gives Y. That is the meaning of the type 
Fx1Fx2y. 
 

 
 

Figure 1: A graphical representation of a module with one 
input 

 
 
 

 
Figure 2: A graphical representation of a module with two 

inputs 
 

Within this approach, the processing chains become 
applicative “combinations” of typed functions. This view is 
in sum natural for computational modules given the fact 
that they are functions (in its general meaning, not the 
computational one) from the set of inputs to the set of 
outputs. Such combinations will be interpreted, like in 
some works in metaprogramming (Coquery, Fages, 2001), 
for the functional semantic interpretation of textual 
sentences (Steedman, 2000) or in artificial intelligence for 
scheduling issues, with the help of lambda-calculus (and 
unification) or using combinatory logic if we want to avoid 
a telescoping of variables (Curry, Feys, 1958; Hindley, 
Seldin, 2008). The interpretation of a processing chain will 
constitute the outcome of its underlying primitive 

operations and the way that these operations are organized 
accordingly to the principle of compositionality. The set of 
composed processing chains becomes a set of theorems for 
the proposed formal system. The system in itself is 
inferential. It proceeds by successive reductions of 
applicative categories assigned to operations concerned by 
the composition.  

Let us, now, show the rules of our model1 : 
 

[X : x] + [M1 : Fxy] 
Applicative rule      ---------------------------- 

[Y : y] 
 

[M1 : Fxy] + [M2 : Fyz]  
Composition rule   (a)   -----------------------------B 
             [(B M2 M1) : Fxz]  
 

[M1 : FxFty] + [M2 : Fyz]  
         (b)  -------------------------------B2 
             [(B2 M2 M1) : FxFtz]  
 

[M1 : Fxy] + [M2 : FxFyz]  
Distributive composition rule --------------------------------S  
             [(S M2 M1) : Fxz]  
 

[M1 : FxFyz]  
Permutation rule   (a)   ---------------------C  
             [(C M1) : FyFxz]  
 

[M1 : FxFyFtz]  
         (b)  -----------------------------C#  
             [(C (C2 M1)) : FtFxFyz]  
 

[M1 : FxFxy]  
Duplication rule      ----------------------W  
             [(W M1) : Fxy]  
 

The premises in each rule are typed “connected 
modules”, and the results are typed applicative expressions 
(of modules) with an eventual introduction of one 
combinator. These applicative expressions allow the 
interpretation of the processing chains. Types of modules 
in the premises will allow us to validate the application of 
the rules, and therefore to accept or reject the connection of 
the modules. In other words, an inferential calculation on 
types will allow verifying the syntactic correctness of 
processing chains. Combinatory logic fills two major 
goals: (i) it gives an interoperable and formal 
representation of the solution and (ii) it gives the direct 
execution order of the modules which form the processing 
chain.  

Within this formal system, in order to build a processing 
chain, we need specific data: (i) the list of the modules and 
(ii) the list of their inputs and outputs. 

 

                                                 
1 Due to space limitations, we show here only the rules we use in this 
paper. In fact these rules suppose that modules have a maximum of two 
inputs. 

X2 

M1 X Y 

X1 Y 
M2 
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Let us consider connection of two modules (Figure 3).  
 

  
Figure 3: Accepted connection of two modules 

 
The first module M1 is of type Fxy. M1 applies on the 

input X of type x in order to yield the output Y of type y. 
The second module M2 is of type Fyz. M2 applies on the 
input Y of type y in order to yield the output Z of type z. 
The graphical notation in Figure 3 will be expressed by the 
following expression: [M1 : Fxy] + [M2 : Fyz]. The first 
composition rule given above returns the complex module 
(B M2 M1) of type Fxz. In other words, the composition of 
M2 and M1 is possible, and the new module applies on one 
input of type x in order to yield one output of type y. In the 
case of the example given in Figure 4, graphical notation 
will be expressed by the following expression: [M1 : Fxy] 
+ [M2 : Fza]. The first composition rule previously 
described does not allow the composition of M2 and M1 
since the type z of the input of M2 given in the type Fza is 
not similar to the type y of the output of M1 given in the 
type Fxy. The connection of M1 and M2 is rejected. 
 

 
 

Figure 4: Rejected connection of two modules  
 

Examples given in Figures 3 and 4 concern the 
connection of two modules. But what about if we have 
three modules (Figure 5)? 
 
  

Figure 5: Accepted connection of three modules 
 

The analysis begins by connecting modules M2 (with 
the type is Fyz) and M1 (with the type is Fxy). By using 
the first composition rule, the analysis yields the complex 
module (B M2 M1) whose type is Fxz. This module is then 
composed with M3. The resulting module is: (B M3 (B M2 
M1)) whose type is Fxa (in other words the input of the 
obtained complex module in this case must be of type x 
whereas the output must be of type a).   

Overall, when we have several modules connected in a 
linear chain processing, analysis iterates the application of 
the first composition rule to modules from left to right. 

The first composition rule can also be used in the case of 
the example presented in Figure 6 in which two modules 
are connected to a third one. M1 is of type Fxy. M2 is of 
type Fza. M3 is of type FyFau. 

Since M1 is of type Fxy and M3 of type FyFau, the first 
composition rule allows the construction of the complex 
module (B M3 M1) with the type FxFau. The processing 
chain given in Figure 6 will thus be equivalent to the 
processing chain given in Figure 7. In fact, the processing 
chain in Figure 7 corresponds to the following applicative 
expression: (B M3 M1) X (M2 Z), in which X is the first 
operand of the complex module (B M3 M1), and (M2 Z) 
the second. However, we need to have all inputs at the 

most right of our expressions. To do this, we apply the first 
permutation rule on the category [(B M3 M1) : FxFau]. It 
yields the equivalent category [(C (B M3 M1)) : FaFxu] 
that corresponds to the processing chain in Figure 8. We 
then carry on with the use of the first composition rule, 
given the types Fza for M2 and FaFxu for (C (B M3 M1)). 
We finally obtain the complex module (B (C (B M3 M1)) 
M2) whose type is FzFxu (Figure 9). 

M1 Y X M2 Z Y 

 
 
 

 
Figure 6: Two modules connected to a third module 

 

 
 

Figure 7: Module connected on the first input 
 

 
 

 
Figure 8: Permutation of the first input 

 
 

 
Figure 9: Complex module with two inputs 

 
 
 

 
Figure 10: Two modules with the same input connected to 

a third module 
 
 

 
Figure 11: Complex module with the same input repeated 

 
 

 
Figure 12: Complex module with one input 

 
We encounter the case of Figure 10 often in the domain 

of text mining. The same input is required for one or more 
modules whose outputs are used as inputs to another 
module. This processing chain is similar to the one given 
in Figure 6, even if the inputs of M1 and M2 are the same. 
The analysis will be also identical to the previous one 
applied to the processing chain described by Figure 6. The 
obtained complex module will be (B (C (B M3 M1)) M2) 
with the type FxFxu (Figure 11). For practical reasons, we 
must eliminate the duplication of input X. To do this, the 
application of the duplication rule to the category [(B (C 
(B M3 M1)) M2) : FxFxu] provides a module (W (B (C (B 
M3 M1)) M2)) that requires a single input (Figure 12) from 
a module that requires two inputs. The type of the new 
complex module is Fxu. 

In the case of the processing chain given in Figure 13, 
the use of the distributive composition rule is crucial. Here 

U X (W (B (C (B M3 M1)) M2)) 

U 
X 
X (B (C (B M3 M1)) M2) 

M1 

M2 

Y 

A 

X 

X A 

Y 
M3 U 

U 
X 
Z (B (C (B M3 M1)) M2) 

M2 A Z 
U 

X 
A (C (B M3 M1)) 

M2 A Z U 
X 
A (B M3 M1) 

M1 

M2 

Y X Y 
U M3 

Z A A 

M1 Y X M2 Z Y M3 A Z 

M1 X Y M2 Z A 
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we have three parallel modules (M1, M2, and M3) 
connected to a fourth one (M4). M1 is of type Fxy, M2 of 
type Fxa, M3 of type Fxz, and M4 of type FyFaFzu. Since 
the types of M1 and M4 are respectively Fxy and FyFaFzu, 
the analyzer triggers the first composition rule. It yields the 
category [(B M4 M1): FxFaFzu]. At this stage, our 
processing chain takes the form shown in Figure 14. Since 
the obtained complex module (B M4 M1) is of type 
FxFaFzu and M2 of type Fxa, the analyzer applies the 
distributive composition rule. We obtain the complex 
module expressed by the category [(S (B M4 M1) M2) : 
FxFzu] (Figure 15). This last complex module is composed 
with M3 by using the distributive composition rule again 
since they respectively have types FxFzu and Fxz. The 
processing chain given in Figure 13 is then expressed by 
the complex module (S (S (B M4 M1) M2) M3) whose 
type is Fxu. The case of the processing chain given in 
Figure 13 can be generalized to more than three modules 
connected to a fourth one. It can be done by using 
iteratively the distributive composition rule. 

 
 
 
 
 

 
Figure 13: Three modules with the same input connected to 

a fourth module 
 
 
 
 

 
Figure 14: Two modules with the same input connected to 

a complex module 
 
 
 
 

 
Figure 15: Complex module connected on the first input 

Construction of a Processing Chain 
We have presented some cases of basic processing chains 
and showed how to apply the rules of the formal model to 
verify the syntactic correctness and to construct their 
applicative representation, which will allow their 
interpretation and their execution. All cases, we have 
shown, have either arrangements of modules in series or 
parallel arrangements. A serial processing chain is 
composed of many modules connected together. When a 
processing chain contains at least one module with more 
than one input, we call it a parallel processing chain. 

We tested many more particular arrangements of serials, 
parallels and output-distributed modules as well as very 
complex processing chains that we cannot show due to 

space limitation. However, we are willing to give the 
reader a glimpse of what an analysis based on a typed 
combinatory approach of a somewhat complex processing 
chain can look like. The processing chain given in Figure 
16 is a combination of seven modules. M1 is of type Fx1y1. 
M2 is of type Fx2z1. M3 is of type Fy1z2. M4 is of type 
Fx3y2. M5 is of type Fz1Fz2t1. M6 is of type Fy2z3. M7 is of 
type Ft1Fz3u. 

The first step is to combine M3 and M1. Since M3 and 
M1 are respectively of type Fy1z2 and Fx1y1, the first 
composition rule is applied and the complex module (B 
M3 M1) is constructed. Its type is Fx1z2. The processing 
chain in Figure 16 is reduced to the one in Figure 17.  
 
 

 
 
 

 
Figure 16: A complex processing chain 

 
 
 
 
 
 

 
Figure 17: First step of the analysis 

 
The second step is to combine M2, M5 and (B M3 M1). 

We will not show the details of this combination. Simply 
refer to the above analysis of the processing chain given in 
Figure 6. The analysis yields the complex module (B (C (B 
M5 M2)) (B M3M1)) whose type is Fx1Fx2t1 (Figure 18). 

The third step is to combine M4 and M6. Since M4 and 
M6 are of types respectively Fx3y2 and Fy2z3, the first 
composition rule is applied and the complex module (B 
M6 M4) is constructed. Its type is Fx3z3. The processing 
chain in Figure 18 is reduced to the one in Figure 19. 

 
 
 
 
 

 
Figure 18: Second step of the analysis 

 
 
 
 

 
Figure 19: Third step of the analysis 

 
 
 
 

 
Figure 20: Fourth step of the analysis 

(B M6 M4) Z3 

(B2 M7 (B (C (B M5 M2)) (B M3 M1)) U 

X3

X1

X2

Z3 

(B M6 M4) Z3 

(B (C (B M5 M2)) (B M3 M1)) T1 

Z3

T1
M7 U 

X3

X1

X2

M6 Z3 X3 M4 Y2

(B (C (B M5 M2)) (B M3M1)) T1 

Z3

T1
M7 U 

Y2 

X1

X2

(B M3 M1) 

M6 

Z2

Z3 X3 M4 Y2

M5 T1 

Z3

T1
M7 U 

M2 Z1X2

X1

Y2 

Z2 

Z1 

M3 

M6 

Z2 

Z3 X3 M4 Y2 

M5 T1

Z3

T1
M7 U 

M2 Z1 X2

M1 Y1X1 Y1

Y2 

Z1 

Z2 

X 
(S (B M4 M1) M2) U 

M3 Z Z X 

M2 A 

X 

X A 
(B M4 M1) U 

M3 Z Z X 

M1 

M2 

Y X Y 
U M4 

A X A 

M3 Z Z X 
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The fourth step is the application of the second 
composition rule to M7 and (B (C (B M5 M2)) (B M3 
M1)) since their respective types are Ft1Fz3u and Fx1Fx2t1. 
We obtain the complex module (B2 M7 (B (C (B M5 M2)) 
(B M3 M1))) whose type is Fx1Fx2Fz3u (Figure 20). 
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At this last step the processing chain given in Figure 16 
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