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Abstract 

This work investigates the applicability of several dimensionality 
reduction techniques for large scale solar data analysis. Using the 
first solar domain-specific benchmark dataset that contains images 
of multiple types of phenomena, we investigate linear and non-
linear dimensionality reduction methods in order to reduce our 
storage costs and maintain an accurate representation of our data 
in a new vector space. We present a comparative analysis between 
several dimensionality reduction methods and different numbers 
of target dimensions by utilizing different classifiers in order to 
determine the percentage of dimensionality reduction that can be 
achieved on solar data with said methods, and to discover the 
method that is the most effective for solar images. 

Introduction   
In this work, we present our dimensionality reduction anal-
ysis aimed towards the ambitious goal of building a large-
scale Content Based Image Retrieval (CBIR) system for the 
Solar Dynamics Observatory (SDO) mission [1]. Our moti-
vation for this work comes from the fact that with the large 
amounts of data that the SDO mission started transmitting, 
hand labeling (commonly used by solar physicist in the last 
decades) of these images is simply impossible. There have 
been several successful CBIR systems for medical images 
[2] as well as in other domains [3]; none of them, however, 
have dealt with the volume of data that the SDO mission 
generates. This NASA mission, only with its Atmospheric 
Imaging Assembly (AIA), generates eight 4096 pixels x 
4096 pixels images every 10 seconds. This leads to a data 
transmission rate of approximately 700 gigabytes per day 
only from the AIA component (the entire mission is ex-
pected to be sending about 1.5 terabytes of data per day, for 
a minimum of 5 years).  
      With such a massive pipeline choosing redundant di-
mensions on our data will lead to unnecessary data storage, 
and high search and retrieval costs in our repository. Based 
on these complications, one of the main goals of this work 
is to determine the percentage of dimensionality reduction 
we can achieve using the best methods while maintaining a 
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high quality parameter-based representation of the solar 
images.  
      Dimensionality reduction methods have been shown to 
produce accurate representations of high dimensional data 
in a lower dimensional space with very domain specific 
results in other image retrieval application domains [4-8]. 
In this work we investigate four linear and four non-linear 
dimensionality reduction methods with eight different num-
bers of target dimensions as parameters for each, in order to 
present a comparative analysis.  
      The novelty of our work is to determine which dimen-
sionality reduction methods produce the best and most con-
sistent results and with which classifiers, on our specific 
image parameters selected for solar data [17]. Due to do-
main-specific results, reported by multiple-researchers 
working on dimensionality reduction in the past [4-8], we 
believe our results will be of special interest to researchers 
from the field of medical image analysis, as these images 
seem to be the closest to our dataset [21. We also identify 
some interesting combinations of dimensionality reduction 
methods and classifiers that behave differently across the 
presented datasets. Our research problem in Solar physics is 
of great practical relevance for Earth's climate since solar 
flares endanger the lives of passengers on commercial air-
line routes going over the poles, interrupt radio communica-
tions in bands the military uses, can (and have) knocked 
down power grids. The systematic feature recognition and 
the study of the metadata, is a key component of the ulti-
mate prediction of solar activity (space weather).  
      The rest of the paper is organized in the following way: 
A background overview is presented in the following sec-
tion. After that we present an overview of the steps and 
experiments we performed together with our observations. 
The last includes our conclusions and the future work we 
propose to complete in order to prepare all parts of a solar 
CBIR system for integration. 
 

Background 
 

Most of the current works in solar physics focus on individ-
ual types of solar phenomena. Automatic identification of 
flares, on the SDO mission, is performed by an algorithm 
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created by Christe et al. [10] which works well for noisy 
and background-affected light curves. This approach will 
allow detection of simultaneous flares in different active 
regions. Filament detection for the SDO mission will be 
provided by the “Advanced Automated Filament Detection 
and Characterization Code” [11]. As for the coronal jet de-
tection and parameter determination algorithms, these SDO 
methods are described in detail in [12]. In order to detect 
active regions, the SDO pipeline will use the Spatial Possi-
bilistic Clustering Algorithm (SPoCA). Not until recently 
Lamb et al. [15] discussed creating an example based Image 
Retrieval System for the TRACE repository. This is the 
only attempt, that we are aware of, that involves trying to 
find a variety of phenomena, with expectation of building a 
large-scale CBIR system for solar physicists. 
      Some comparisons between dimensionality reduction 
methods for image retrieval have been performed in the 
past [4-8], these works constantly encounter the fact that 
results are very domain-specific and that performance of the 
non-linear versus linear dimensionality reduction methods 
has been shown to be dependent of the nature of the dataset 
(natural vs. artificial) [16]. We expect to find interesting 
properties of our dataset with the application of different 
types of dimensionality reduction methods. 
 
Benchmark Datasets 
The dataset, first introduced in [17], consists of 1,600 imag-
es divided in 8 equally balanced classes representing 8 
types of different solar phenomena (each having 200 imag-
es). All of our images are grayscale and 1,024 by 1,024 
pixels. The solar phenomenons included in the dataset are: 
Active Region, Coronal Jet, Emerging Flux, Filament, Fil-
ament Activation, Filament Eruption, Flare and Oscillation. 
      The benchmark dataset both in its original and pre-
processed format is freely available to the public via Mon-
tana State University’s server [18]. Because of promising 
results obtained during earlier investigations [15, 19], we 
choose to segment our images using an 8 by 8 grid for our 
image parameter extraction (as seen on fig. 1). 
 

Figure 1. Grid based segmentation applied to our solar da-
taset prior to parameter extraction (a). (b) and (c) show 

samples of images of the other datasets tested. 

      Based on the 8 by 8 grid segmentation and our ten im-
age parameters per each cell, our current benchmark dataset 
has 640 dimensions per image. Since the SDO images are 4 
times bigger, they will produce a total of 10,240 dimensions 
per image and at a cost of 540 kilobytes per dimension (per 
day) this will get very expensive to store and search. 
      For comparative purposes we utilized subsets (matching 
the quantity of 1,600 images in eight equally balanced clas-
ses) of the following datasets: INDECS [44] and Im-
ageCLEFmed [43] 2005. The INDECS dataset provides 
office images that are very dissimilar from each other and 
from our own type of images. On the other hand, the Im-
ageCLEFmed [43] 2005 dataset provides several classes of 
medical images that somehow resemble ours due to the fact 
that both images are greyscale and feature fuzzy objects 
with just a few well defined persistent visual characteristics. 
 
Image parameters (a k.a Image Features) 
Based on our literature review, we decided that we would 
use some of the most popular image parameters (as called 
in the field of Solar physics, but referred to as image fea-
tures in computer vision areas) used in different fields such 
as medical images, text recognition, natural scene images 
and traffic images [2, 13, 20-22]. Since the usefulness of all 
these image parameters has shown to be very domain de-
pendent, we selected these parameters, based on the evalua-
tion published in [11, 17 and 19] that covered both super-
vised and unsupervised attribute evaluation methods and 
techniques. 
      The ten image parameters that we used for this work 
are: Entropy, Fractal dimension, Mean, Skewness, Kurtosis, 
Relative Smoothness, Standard Deviation, Tamura Con-
trast, Tamura Directionality and Uniformity.  
 
Dimensionality Reduction Methods 
Based on our literature review, we decided to utilize four 
different linear and four non-linear dimensionality reduc-
tion methods. As shown by others [5, 8, 16] linear dimen-
sionality reduction methods have proved to perform better 
than non-linear methods in most artificial datasets and some 
natural datasets. However all these results have been very 
domain dependent. Classical methods like PCA and SVD 
are widely used as benchmarks to provide a comparison 
versus the newer non-linear methods. We selected eight 
different methods based on (1) their popularity in the litera-
ture, (2) the availability of a mapping function or method to 
map new unseen data points into the new dimensional 
space, (3) computational expense, and (4) the particular 
properties of some methods such as the preservation of lo-
cal properties between the data and the type of distances 
between the data points (e.g. Euclidean versus geodesic).  
      Due to the limited space available for this publication, 
we omit the full descriptions of these methods, however, 
they can be found here [45] in the extended version of this 
paper. 
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Linear dimensionality reduction methods 
• Principal Component Analysis (PCA) [23] 
• Singular Value Decomposition (SVD) [24] 
• Factor Analysis (FA) [26] 
• Locality Preserving Projections (LPP) [25] 

 

Non-linear dimensionality reduction methods 
• Isomap [28] 
• Kernel PCA [27] 
• Laplacian Eigenmaps (Laplacian) [31] 
• Locally-Linear Embedding (LLE) [30] 

 

Classification algorithms 
In order to help us determine the number of dimensions that 
we can reduce from our benchmark datasets, we decided to 
use classifiers for our comparative analysis of the perfor-
mance of these dimensionality reduction methods on our 
benchmark datasets. 
      We selected Naïve Bayes (NB) as our linear classifier, 
Support Vector Machines (SVM) with a non-linear kernel 
function as our non-linear classifier, and C4.5 as a decision 
tree classifier. We opted to use these classification methods 
based on our literature review and previous research work 
[15, 17, 19 and 21]. As a brief summary, SVM has shown 
results that constantly depend on the nature of the dataset it 
is being applied to. C4.5 is also widely used in different 
applications and on research works, providing domain-
specific results. NB due to its fast training and low compu-
tational cost is very popular and surprisingly accurate in 
many domains. A more detailed explanation behind our 
selection of these classification algorithms is presented in 
[17 and 21]. 
 

Approach and Experiments 
All classification comparisons were performed in Weka 
3.6.1 [32]. We utilized the default settings for all classifiers 
since we are performing a comparative analysis. We select-
ed 67% of our data as the training set and an ‘unseen’ 33% 
test set for evaluation. All dimensionality reduction meth-
ods were investigated using the Matlab Tool box for dimen-
sionality reduction [33] and the standard Matlab functions. 
      For ‘optimal’ dimensionality estimation we decided to 
utilize the number of dimensions returned by standard PCA 
as presented in [41] and SVD’s setting up a variance 
threshold between 96 and 99%. Tab. 1 presents these num-
bers of dimensions for all three datasets utilized. 

 
 

Dataset 
PCA Variance SVD Variance 

96
% 

97% 98% 99% 96% 97% 98% 99% 

Solar [18] 42 46 51 58 58 74 99 143 

INDECS [44] 94 106 121 143 215 239 270 319 
ImageCLEF

med [43] 79 89 103 126 193 218 253 307 

Experiment 
Label 1 2 3 4 5 6 7 8 

 

Table 1. Number of dimensions selected for each dataset 

 

      For the non-linear methods that utilize neighborhood 
graphs we used between 6 and 12 as the number of nearest 
neighbors, and presented the best results since they varied 
by less than 0.001% of classification accuracy we decided 
to omit them from our presentation in this paper. 
 

Mapping functions 
Since we are planning on applying the best dimensionality 
reduction method on new data we will be receiving for the 
next five to ten years, we decided to simulate this scenario 
with our benchmark dataset.  
      In our experiments we performed the dimensionality 
reduction methods on 67% of our data and then map ‘new’ 
data points (the remaining 33% of our data) into the result-
ing low-dimensional representation that each dimensionali-
ty reduction method produces. We then feed these dimen-
sionality reduced data points respectively as training and 
test sets to our classification algorithms. 
      For linear dimensionality reduction methods, the map-
ping of new data points is very straight forward since, for 
example for PCA and SVD you only have to multiply the 
new data points with the linear mapping matrix V. 
      As for non-linear dimensionality reduction methods, the 
mapping of new data points is not as straight forward. For 
Kernel PCA it is somewhat similar to the original PCA, but 
requires some additional kernel function computations as 
presented in [34]. For Isomaps, LLE, and LE we used ker-
nel methods that have been presented in [35] and alternative 
approaches as shown in [36-40]  
 

Conclusions and Future Work 
Fig. 2 shows classification accuracy of our three selected 
classifiers on the original non-reduced data sets and the 64 
dimensionally reduced experiments (from Tab. 1, it can be 
seen that we investigated 8 sets of dimensions for each of 
the 8 dimensionality reduction methods). Figure 2 presents 
the original data (first row), then the 4 linear dimensionality 
reduction methods followed by the 4 non-linear. 
     The first observation we can make is that our image pa-
rameters produced very bad results for a dataset (INDECS) 
that contains images very different from our own dataset 
(Solar [18]) and the other that contains images similar to 
ours (ImageCLEFMed). This clearly shows that using the 
right image parameters for a specific type of images is very 
important. We can also observe that SVM’s produced most 
of the higher classification percentages for our Solar dataset 
and the ImageCLEFMed. To better show these occurrences 
we included bold dotted lines across fig. 2 for the highest 
classification results (SVM’s) of the original datasets. An 
interesting observation is that some combinations of classi-
fiers and dimensionality reduction methods (e.g. LLE and 
C4.5) actually produced better results than our original non-
reduced dataset (for C4.5). We can also see a few of these 
combinations that produced very bad results (C4.5 and Fac-
tor Analysis) and others that dramatically drop in accuracy 
(KernelPCA for all classifiers), 
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Figure 2. Classification accuracy of all dimensionality reduction methods for all 8 experiments per method for all datasets tested 

 
      The tree-based classifier performs very poorly with the 
Factor Analysis (FA) generated space by making very bad 
splitting decisions. Since C4.5 is a greedy algorithm (it 

never re-evaluates choice of attributes) it results in the ac-
curacy dropping to 12%, which is equal to random labeling 
assignment. We can conclude that if you are using FA for 
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your dimensionality reduction, it might be a good idea to 
stay away from decision tree based classifiers.       
      After looking at the drops in figure 2, KernelPCA 
showed very dramatic decrease in accuracy for a higher 
number of components. We attribute this drop to the parti-
tioned space by kernel PCA, in a low number of dimensions 
this method achieves very good representation of our origi-
nal data space, however when more dimensions are used, 
the method just produces more noise for the classifiers and 
damages their performance considerably.  
      Laplacian Eigenmaps (Laplacian) offer the most con-
sistent results we have seen when applied to our Solar da-
taset. For all classifiers this dimensionality reduction meth-
od provides over 80% accuracy and for SVM it stays over 
90% for the most part of fig. 2. The difference between the 
accuracy of each method is on average less than 10%, this 
supports the claim of how consistent this data representa-
tion is.  
      As we have mentioned in this paper, we are focusing on 
achieving dimensionality reduction in order to reduce stor-
age costs, and if we have to sacrifice less than 3% in accu-
racy (especially at the 90% level) for more than 30% in 
storage, we are willing to take the hit in accuracy. 
      As we can see from the first half of fig. 2, the linear 
methods performed very consistently when the number of 
components increases. We can say that SVM is the most 
consistent and best performing classification method we 
utilized. Most of the non-linear dimensionality methods 
allow the classifiers to perform more consistently between 
them (bottom half of fig. 2). Even when doing badly, the 
classifiers accuracy stays on average within 10% of each 
other. Making these new dimensional spaces better suited 
for classification (on average) than the linear ones. We also 
show that our way of selecting the number of components, 
provides results on both sides of the fence for non-linear 
methods. 
      Out of all of the non-linear dimensionality reduction 
methods presented on figure 2, Laplacian and LLE are the 
only ones to show consistent classification accuracy im-
provement when compared to linear methods (with the ex-
ception of LPP). We theorize that since Laplacian preserves 
the properties of small neighborhoods around the data 
points; our benchmark dataset is benefited since many of 
our data points are highly correlated to each other, allowing 
Laplacian to preserve their local properties better. We find 
this very interesting considering that other works have 
shown that local dimensionality reduction techniques (i.e 
Laplacian, LLE), suffer from the intrinsic high dimension-
ality of the data [40, 44] and these type of methods perform 
poorly on certain datasets.  
      In general, as we have seen from our experiments and 
other works [16] that the applicability of dimensionality 
reduction methods is very dependent on the dataset used. 
For our purposes we think that the number of dimensions 
for our Solar dataset are safely determined by PCA and 
SVD with a variance between 96% and 99%, we see that 

we manage to approach both sides of the peak in classifica-
tion accuracy in most cases, indicating that PCA ap-
proached the peak (highest accuracy) from the left side (low 
to high) and SVD’s behaves the opposite way. The com-
plexity of estimating dimensions this way in a much larger 
dataset might render these two techniques highly expensive 
since they rely on the calculation of Eigen vectors, but they 
seem to be accurate enough versus running experiments for 
all possible number of dimensions. The best performing 
methods for the solar data (in terms of higher percentage of 
accuracy) are PCA, LPP with 143 dimensions and Laplaci-
an with 74 dimensions (table 2). 
 

NB C45 SVM 

ORGINAL 83 86% Laplacian 6 88 56% ORIGINAL 92 12% 

PCA 7 83 49% Laplacian 3 87 43% LPP 8 91 74% 

PCA 8 82 18% Laplacian 7 87 43% PCA 8 91 18% 

Table 2. Top 3 results for each classifier and the solar dataset 

 
      Selecting anywhere between 42 and 74 dimensions pro-
vided very stable results for our dataset with all the methods 
presented in this paper, see figure 2. We conclude that for 
our current benchmark dataset we will be able to reduce our 
dimensionality around 90% from the originally proposed 
640 dimensions. Considering that for the SDO mission we 
will have to store around 5.27 Gigabytes of data per day 
and 10,240 dimensions, a 90% reduction would imply sav-
ings of up to 4.74 Gigabytes per day.  
      Now that we have determined how many dimensions 
we can save by utilizing dimensionality reduction methods 
and which method to use, we can proceed along our path of 
building a CBIR system for the SDO mission.We can now 
focus on finding an indexing technique that can better suit 
retrieval of our data. Many works utilize some form of di-
mensionality reduction techniques in order to generate in-
dexes and this will be our intended next step.  
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