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Abstract

This paper suggests and supports a design idea for improv-
ing dynamical navigation: adding an intermediary, adaptive
obstacle representation level between perception and repeller
representations. We illustrate our idea with our specific ex-
ample of an adaptive obstacle representation level, which
cleanly integrates into multiple existing navigation systems,
treating each perceived obstacle entity as a locally sensi-
tive, obstacle-valued function that returns an obstacle rep-
resentation upon which steering and obstacle avoidance are
based. Moreover, other elements of the navigation systems
remain unaltered, thus preserving and extending original de-
sign virtues such as behavioral flexibility, computational effi-
ciency, and dynamic responsiveness. Extensive simulations,
validated with tests of real robots, demonstrate that our new
representations compare favorably to previously employed
representations on measures of effectiveness within a tested
scenario, robustness over varying scenarios and ranges of pa-
rameter values, and computational efficiency.

Introduction

This paper presents and supports a novel design idea for im-
proving dynamical systems-based robot navigation: adding
an intermediary level of data representation, an adaptive
obstacle representation layer separate from perception and
the repeller representations upon which steering and obsta-
cle avoidance are based. In particular, we present a geo-
metrically sensitive dynamic tangent obstacle representation
that exploits the reactivity inherent in dynamical navigation,
treating perceived obstacle entities as obstacle-valued func-
tions for steering calculations. Although our adaptive ob-
stacle representation does not address all of the difficulties
noted with such force-based navigation (Koren and Boren-
stein 1991), we demonstrate that for a family of dynamical
navigation methods, it can significantly improve the effec-
tiveness of navigation in a given scenario, the robustness of
navigation over varying scenarios and ranges of parameter
values, and computational efficiency. Moreover, it cleanly
integrates into existing systems without requiring additional
changes, thus preserving design strengths such as behavioral
flexibility, computational efficiency, and responsiveness in
dynamic environments.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In conventional dynamical navigation, angular repellers
and attractors steer robots away from obstacles and toward
targets. The underlying mathematics (e.g., in (Schöner,
Dose, and Engels 1995; Large, Christensen, and Bajcsy
1999)), however, requires that the mathematical repeller rep-
resentations be composed only of circles, regardless of the
shapes of actual obstacle entities. (We consider only 2-
dimensional navigation in this paper.) Many environments,
though, contain both circular and non-circular obstacles,
such as the office hallways navigated by a service robot.
Some entities in the hallways (e.g., people, carts) may have
roughly circular xy-projections and thus be naturally repre-
sented by the angular repulsion in conventional dynamical
navigation (Figure 1). Non-circular obstacles such as hall-
way walls, however, can be more difficult to represent.

Some previous approaches to navigation in such environ-
ments have involved careful tuning of parameter values (see
(Schöner, Dose, and Engels 1995; Large, Christensen, and
Bajcsy 1999) for more information) and approximating ob-
stacle entities with circles: walls were covered by small cir-
cles derived from discrete sampling of the walls; polygonal
obstacles were approximated by collections of circles; etc.
With too many small circles in approximations, however,
steering calculations are inefficient. In addition, with circles
of varying sizes or other geometric heterogeneity in the en-
vironment, robustness over parameter settings can fail: The
parameters for effective navigation in one part of a space, for
example, may be ineffective elsewhere, preventing success
on complex tasks.

Our dynamic tangent (DT, for short) representations ad-
dress these difficulties by improving geometric sensitivity,
adding an adaptive layer of abstraction between obstacle
entities and repeller representations: For each robot R, at
each navigation timestep, each obstacle entity is treated as
an obstacle-valued function, which returns a single-circle
obstacle representation (retaining the connection to con-
ventional approaches, in contrast to (Aaron and Mendoza
2011)). As an example, a wall may be represented by a cir-
cle touching the wall at the closest point to R on the wall
(point pm in Figure 2); the size and position of the circle
vary with R during navigation, supporting obstacle avoid-
ance. In this paper, after summarizing the conventional dy-
namical navigation framework that our DT representations
enhance, we describe the construction of DT representa-
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Figure 1: Obstacle avoidance in dynamical navigation, with
robot R, obstacle obsi, and other points, angles, and lines
as labeled. When robot heading angle φ is not outside of
the range delimited by the dotted lines—that is, when some
point on R is not headed outside of every point on obsi—R
is steered outside of that range, avoiding a collision.

tions and summarize our extensive tests of DT navigation
(i.e., steered solely by DT representations), showing that DT
representations compare favorably to other representations
in target-reaching effectiveness, robustness of effectiveness
over varying scenarios and parameter settings, and compu-
tational efficiency. The primary contributions of this paper
are:

• The design approach based on an additional, adaptive ob-
stacle representation layer: Instead of the conventional
design with only perception and repeller representation
levels, we propose a three-level design. This layer leaves
other design elements unaffected, thus preserving previ-
ous design strengths while improving navigation in unpre-
dictable or geometrically heterogeneous environments.

• The particular dynamic tangent-based obstacle-valued
function employed in our examples, which improves nav-
igation in a range of tested environments. Note that other
intermediary levels could also be employed in the gen-
eral three-level design approach noted above; the specific
details of DT navigation are not necessarily general or in-
herent to all possible adaptive obstacle representations.

Our extensive simulations show the kinds of substantial ben-
efits that arise from adaptive DT representations; our tests
with real robots validate these results and illuminate practi-
cal benefits of DT representations in implementation.

Dynamical Navigation

This section summarizes dynamical navigation from (Large,
Christensen, and Bajcsy 1999), which extended (Schöner
and Dose 1992; Schöner, Dose, and Engels 1995) with ad-
ditional behavioral structure. Our adaptive obstacle repre-
sentation layer leaves all of these foundations unchanged,
simply building upon them for more effective navigation.

In dynamical navigation, artificial repulsion and attraction
fields steer robot headings; like related force-based methods
(e.g., (Khatib 1986) and many followers; see also (Koren
and Borenstein 1991)), it is adaptive in dynamic environ-
ments. In this paper, consistent with (Schöner and Dose
1992), we presume constant velocity and discuss only head-
ing angle for obstacle avoidance. To briefly summarize the

T

x

R

cR

r R

φ

vm

r
T

cT

pm
2Δψ

Figure 2: An example dynamic tangent wall representation,
with robot R and obstacle representation T of the wall. By
varying the size and location of T as R navigates—but with
T always centered aroundvm and touching the wall at pm—
T enables the mathematics of avoiding circular obstacles
(Figure 1) to also steer R around the wall.

system, the evolution of heading angle φ during navigation
is determined by angular repellers and attractors in a dynam-
ical system

φ̇ = |wtar |ftar + |wobs|fobs + noise, (1)

where φ̇ is the time derivative of φ, functions ftar and fobs
represent targets and obstacles, respectively—the contribu-
tions of attractors and repellers to steering—and wtar and
wobs are weight functions for each term. (The noise term
prevents undesired fixed points in the dynamics.) A target is
represented by a simple sine function, ftar = −a sin(φ −
ψtar), inducing a clockwise change in heading when φ is
counter-clockwise of the target (and symmetrically, counter-
clockwise when φ is clockwise), thus acting as an attractor.

Obstacle functions are more complicated, encoding win-
dowed repulsion scaled by distance, so that repellers do not
affect collision-free paths and nearby repellers are stronger
than distant ones. For an obstacle obsi, its angular repeller
in DT navigation is the product of three functions:

Ri =
φ− ψi

Δψi

e
1−|

φ−ψi
Δψi

|
(2)

Wi = tanh(h1(cos(φ−ψi)−cos(Δψi+σ)))+1
2 (3)

Di = e
−dm
d0 . (4)

Function Ri is an angular repeller with width Δψi, cen-
tered around heading-angle value ψi (see Figure 1); win-
dowing function Wi limits repulsion to significant effects
only within Δψi (plus safety margin σ) from ψi; and scal-
ing function Di limits overall repulsion strength based on
dm, the minimum distance between the robot and the ob-
stacle. (Designer-chosen constant d0 is a scaling parame-
ter for Di.) Each fobsi = Ri · Wi · Di, then, represents
obsi, and to control steering, individual contributions are
summed to fobs =

∑
i fobsi and then combined with ftar

in the weighted sum in Equation 1. The weights themselves
are determined by a system of competitive dynamics for re-
active behavior selection; full details are available in (Large,
Christensen, and Bajcsy 1999).
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Dynamic Tangent Representations

In this section, we describe our dynamic tangent obstacle
representations, providing a specific example of an adaptive
obstacle representation layer for dynamical navigation.

Our DT approach unconventionally represents a non-
circular wall entity by a conventional single circle T and
repeller Ri ·Wi · Di; each T has an application-dependent
angular range of repulsion and touches the entity at the near-
est point to the robot. For a circular robot R with center
cR, at each timestep in navigation, the DT representation
of a wall W is constructed as follows: Call pm the projec-
tion of R on W—the point on W of minimal distance from
cR (hence from the boundary of R)—with associated vec-
tor vm = pm − cR as the shortest line from cR to the wall;
then, the obstacle representation of W is constructed as a
circle T , oriented symmetrically around vm and tangent to
the perpendicular to vm at point pm (see Figure 3). To con-
struct T , first find pm and vm, which follow from elements
in Figure 3. The remainder of our explanation is separated
into two conceptually similar cases: vm ⊥ W ; or vm �⊥ W .

For the intuition behind the construction, consider the de-
fault, non-boundary case, as in Figure 3a—vm ⊥ W and
pm is not “close” to either endpoint of W (where “close”
will soon be clarified). In this case, the construction of T
continues by identifying wall-endpointWR around which R
is heading (which could be done by comparing cross prod-
ucts). Based onWR, and given an application-specific value
for parameter D—a default value for how much of W is to
be covered by repulsion—T is constructed so that its angu-
lar range of repulsion with respect to R covers the D units of
W from pm toward WR, and symmetrically, the additional
D units from pm toward the other endpoint.

To also cover boundary cases where vm ⊥ W but |WR−
pm| < D—i.e., where pm is “close” to endpoint WR (see
Figure 3b)—employ the value DR = min(D, |WR − pm|)
instead of D. Then, T can be similarly constructed so that
its angular range covers the DR units of the wall from pm
toward WR and the symmetric DR units along the line of
the wall from pm toward the other endpoint. The case where
vm �⊥ W is conceptually similar (see Figure 3c): Here, pm
is always an endpoint of W , and vector vm and endpoint
WR and value DR can again be found.

Demonstrations and Experiments

This section describes the tests and results that demonstrate
the effects of our particular DT representations on dynam-
ical navigation, thus also suggesting the broader value of
adaptive obstacle representations to this family of navigation
methods. To demonstrate the wide applicability of DT nav-
igation, we ran more than a million simulations, along with
hundreds of real robot tests using the iRobot Create plat-
form. Robots were connected to consumer-grade portable
computers, with slightly modified OpenCV image process-
ing routines and a mast-mounted camera behind the robot
to simplify 360-degree perception. For simulations, we cre-
ated a simple Python- and OpenGL-based navigation simu-
lator with straightforward idealized perception that blocked
segments of walls occluded by other walls; simulated robots

were circles of radius 0.1 in a 12× 12 navigation space, and
velocity was a constant distance per navigation step so head-
ing angle φ was the only behavioral variable for navigation,
as in (Schöner and Dose 1992).

In tests, our default value for parameter D was D = 4rR,
chosen after verifying the effect of D on navigation: In
tests, when a robot R reached a path along a wall (Fig-
ure 4), the distance dm from the wall to R is, as expected,
related directly to D and radius rR. The size-dependent
value D = 4rR results in an individualized safety margin
of roughly dm = 1.7rR between walls and robots; in the fu-
ture, it seems this relationship between dm and D could be a
basis for adaptive, dynamical formation control applications
(cf. (Bicho and Monteiro 2003)).

Basic Testing for Effectiveness

Before testing real robots, basic tests in the simulation sce-
narios of Figure 6 established DT effectiveness; most of
these tests are also among the tests in the next subsection
of this paper. In each scenario, robots started at 100 random
positions on the left sides of their worlds, with effectiveness
measured by how many reached all targets for that scenario.

Results: Canyons and Hallways In the Canyon,
Canyon2, and Octagon scenarios, requiring navigation
around and into a convex shape, all 100 simulated DT nav-
igation robots reached the target. In the Hallways sce-
nario, with 3×2-sized office-obstacles (the inner rectangles),
robots navigated to a sequence of five target locations (Fig-
ure 5), requiring extensive navigation and turning. DT per-
formance was again perfect in both the Hallways scenario
and the Hallways2 variant, taking smooth, efficient paths;
additionally, DT performance was perfect in another Hall-
ways variant, with two additional stationary obstacles of ra-
dius 0.3 in hallways. The Polygons scenario was more chal-
lenging, however, testing DT navigation to five target loca-
tions (similar to those in Hallways) around several polygons
and a moving wall, rotating in the center of the space; de-
fault DT navigation was 92% effective, and as noted in the
next subsection of the paper, DT performance was perfect
with some non-default parameter values.

Results: Simulated Inaccurate Sensors As a further test,
in a single-wall scenario similar to Figure 6a, we simulated
DT navigation with randomly inaccurate sensors: every 30
timesteps, a random-length wall segment would disappear,
or the distance to a random wall segment would be mis-
perceived by up to 0.2 units, lasting for 5 timesteps; the
length or endpoints of the wall could also be mis-perceived
by some context-dependent amount. DT navigation perfor-
mance was perfect in these simulations, showing adaptivity
that is also beneficial for real robots with noisy sensors.

Comparing Obstacle Representations

To compare DT representations to other obstacle represen-
tations for dynamical navigation, including ones previously
used in (Schöner and Dose 1992; Large, Christensen, and
Bajcsy 1999), we tested navigation in the Canyon, Canyon2,
Hallways, Hallways2, and Polygons simulation scenarios
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Figure 3: Constructing DT representationT , in different cases of robotR with respect to a wall. Different details are highlighted
in each sub-figure.

(e) Hallways(d) Octagon (f) Hallways2 (g) Polygons(a) SingleWall (b) Canyon (c) Canyon2

Figure 6: Scenarios for simulations, and their names in this paper. In each, only walls (obstacle entities, not obstacle represen-
tations) and a target are shown.

(b)(a)

Figure 4: Two different-sized robots, sizes rR = 0.2 and
0.6, reaching parallel paths along a wall, each from a setting
of D = 4rR. Figures show the trajectory and the DT-circle
representing the wall for each. The lighter circle on the right
of Figure (a) shows the target location for both robots.

from Figure 6, and related scenarios for real robots. In each
scenario, we compared the effectiveness of DT navigation
to navigation based on the conventional, non-adaptive rep-
resentations in Figure 7: a Multi-circle approach (MC), in
which visible portions of walls were represented by cov-
erings of small circles; a Bounded, visible (BV) approach,
representing visible portions of walls by bounding circles; a
Bounded, pre-determined (BP) approach, representing poly-
gons by pre-determined bounding circles; and an Inscribed,
pre-determined (IP) approach, representing polygons by
pre-determined inscribed circles. For meaningful perfor-
mance in the BV, BP, and IP approaches, walls surrounding
a space were represented by large tangent circles. Below, we
present results of tests of real robots and a very brief sum-
mary of Canyon2 and Polygons simulations; other results
were qualitatively similar.

In each simulation scenario, for each obstacle represen-
tation approach, we tested varying settings for four param-

5

3

2

4

1

Figure 5: Target locations in the Hallways scenario. Also
showing is an example trajectory of a robot steered solely
by DT wall representations.

eters: distance scaling d0, sampled at 0.1 over range [0, 2]
units; angular safety margin σ, sampled at 0.1 over range
[0, 1] radians; attractor amplitude a, tested at values 1 and
3; and the radius mcSize of circles employed in the MC ap-
proach, tested at rR

2 , rR, 2rR, and 4rR. (See Equations 2–
4 for d0, σ, and a in context.) In this section, we discuss
only results that illustrate the best performance for each ob-
stacle representation; relatedly, when preliminary tests in-
dicated that some parameter values would not add to our
discussion—for instance, when MC representations were
clearly ineffective for mcSize greater than rR—we did not
exhaustively test those values. Then, for each parameter set-
ting, we simulated 100 robots from random starting posi-
tions to the target locations for a scenario (described in the
previous subsection), recording the number that successfully
reached all targets. We compared obstacle representations
on three measures: effectiveness, measured by how many
of the 100 simulated robots reached their targets; robustness
of navigation effectiveness over different parameter values
and scenarios; and computational efficiency of each obsta-
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(d)(a) (b) (c)

Figure 7: Different approaches to wall representation: (a) Multi-circle (abbreviated MC); (b) Bounding, visible (BV); (c)
Bounding, pre-computed (BP); (d) Inscribed, pre-computed (IP). In each, dark circles are obstacle representations; also shown
is a robot (small, partly filled circle) and a target.
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Figure 8: Results of simulations with DT (left) and MC
(right) representations in the Canyon2 scenario, with a = 1
and mcSize of 0.05. Effectiveness values are between 0 and
100, over a range of σ and d0 values. DT performance was
robustly perfect; MC performance was less robust over pa-
rameter values and had peak effectiveness of 72. This is
qualitatively similar to performances in other scenarios.

cle representation. We compared efficiency only among our
simulations, each with the same general Python code base
and run on a consumer-grade Intel Core 2 Duo computer.

Real robot tests were informed by simulations and run in
different, similarly illustrative scenarios, as described below.

Results: Effectiveness and Robustness Figures 8–9 il-
lustrate our data on effectiveness and robustness, showing
how many robots succeeded for values of d0 and σ in our
scenarios. Figure 8 shows robust, perfect DT performance
in the Canyon2 scenario, compared with less effective MC
representations; in Canyon and both Hallways scenarios, DT
performance was also perfect for a wide range of parameter
values, and in the Polygons scenario (Figure 9), DT was the
only approach to have robust effectiveness of 90 or greater
or perfect performance for any parameter values. In contrast,
BP and BV representations had no success for any parame-
ters in Canyon2, and very little success in Polygons; IP rep-
resentations were better but still significantly less effective
than DT representations (Figure 9). Across scenarios, MC
representations were substantially more effective than BP,
BV, or IP representations—peak MC values were in the 60–
90 range—with frequently inconsistent robustness, becom-

Table 1: Comparisons of computational efficiency, over dif-
ferent wall representations and navigation scenarios.

Milliseconds per Timestep

Scenario DT MC BV BP IP

Hallways 11.21 124.64 7.35 6.87 52.62
Polygons 10.12 126.66 12.48 9.24 39.96
Canyon 4.66 68.12 3.54 3.93 n/a
Canyon2 3.28 44.63 2.64 3.41 n/a

ing ineffective for wide ranges of d0 values. Consistently,
DT representations were the most effective and robust; only
MC representations were meaningfully comparable.

Because of this, we tested real robots with only DT
and MC representations, and both did well in simple en-
vironments. In environments with significant heterogene-
ity, however—e.g., moving from wide, open corridors to
blocked or narrow ones (with parameter D = rR); or nav-
igating around a moving obstacle before making a sharp
turn (with D = 2rR)—DT navigation substantially outper-
formed MC representations: In tests in these environments,
with a small range of d0, σ, a, and mcSize values, DT navi-
gation succeeded in every test, whereas MC representations
succeeded in less than 10% of nearly 150 tests. This is only
a very brief summary, but the results clearly support the ro-
bustness and effectiveness results from our simulations.

The practical benefits of improved effectiveness and ro-
bustness were substantial. In environments with long
walls, for instance, DT navigation frequently succeeded with
greater repulsion (greater d0 value) than MC navigation. Be-
cause of this, DT navigation was less vulnerable to vari-
ations in perception: In MC-based navigation, small diffi-
culties with perception could readily lead to collisions. Re-
latedly, DT navigation succeeded at higher velocities than
MC-based navigation did. Also, the increased robustness of
DT navigation significantly improved procedural aspects of
the testing process: With less sensitivity to small variations
in parameter values, initial locations, or other factors, DT
navigation supported replicable experimental successes far
more than other representations did.

Results: Efficiency To compare computational efficiency
across simulation scenarios and obstacle representations,
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Figure 9: Results of simulations with DT (left) and IP (right)
representations in the Polygons scenario, with a = 1. This
is the only scenario in which DT did not achieve robust, per-
fectly effective performance; the restriction to constant ve-
locity made it difficult for DT navigation to avoid the mov-
ing wall. Nonetheless, DT representations were the only op-
tion to achieve perfect performance for any parameter val-
ues, with robust effectiveness of 90 or greater. IP represen-
tations (with an MC representation of the moving wall) gen-
erally performed well compared to other representations in
this scenario, with peak effectiveness near 60.

we profiled average computation time for navigation per
timestep, over a complete run. Results in Table 1 show
that efficiency correlates to the number of circles used in
representations—more circles entail greater computational
cost; in particular, DT representations are substantially more
efficient than the only other option effective in our scenar-
ios, MC representations. Real robot tests validated this con-
clusion: in MC-based navigation, when mcSize was small
enough to be effective in narrow corridors, robots oscillated
extensively, due to calculation costs; in contrast, DT naviga-
tion was smooth and effective, even in narrow passageways.

Conclusion

This paper suggests and supports a novel design idea for
improving dynamical navigation: Adding an adaptive ob-
stacle representation layer between perception and mathe-
matical repeller representations can substantially improve
performance, extending and preserving the original design
virtues of the navigation system. To illustrate this idea and
provide a specific example that applies to multiple naviga-
tion methods, we present a dynamic tangent-based adaptive
obstacle representation level that treats perceived obstacle
entities as locally sensitive obstacle-valued functions; we
further demonstrate that DT representations improve upon
other representations in measures of target-reaching effec-
tiveness, robustness over varying scenarios and ranges of pa-
rameter settings, and computational efficiency. The greater
robustness over parameter values is especially important for
navigation in unpredictable or heterogeneous environments,
improving the likelihood that parameter settings effective in
one component sub-region of the environment will be effec-
tive in others, as well. The greater effectiveness and com-
putational efficiency suggest that DT navigation might be

especially apt for applications with limitations on available
computing power (e.g., micro-robotics).

In general, adaptive obstacle representations can improve
a variety of navigation methods, beyond the specific exam-
ples in this paper. Our particular DT representations, for in-
stance, immediately fit with other steering-based navigation
approaches, such as (Huang et al. 2006). Furthermore, the
mathematical foundations of (Fajen et al. 2003) (and appli-
cations of it, such as (Hamner et al. 2008)) suggest that sim-
ilar adaptive representations could also have benefits similar
to those described in this paper. Even more broadly, adap-
tive obstacle representations can improve hybrid control or
navigation systems, substantially strengthening the reactive
levels at their foundations.
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