AAAI Publications, Twenty-Fourth International FLAIRS Conference

Font Size: 
Supplemental Case Acquisition Using Mixed-Initiative Control
Michael William Floyd, Babak Esfandiari

Last modified: 2011-03-20


Learning by observation allows a software agent to learn by watching an expert perform a task. This transfers the burden of training from the expert, who would traditionally need to program the agent, to the agent itself. Most existing approaches to learning by observation perform their observation in a purely passive manner. We propose a case-based reasoning agent that is able to observe passively but can also use mixed-initiative control to request assistance from the expert for difficult input problems. Our agent uses mixed-initiative case acquisition in the game of Tetris. We show that the agent is able to obtain cases it would not have been able to with passive observation alone, is able to improve its performance and places less burden on the expert.

Full Text: PDF