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Abstract 
In this paper we introduce a system that is designed to 
automatically populate a knowledge base from both structured 
and unstructured text given an ontology. Our system is 
designed as a modular end-to-end system that takes structured 
or unstructured data as input, extracts information, maps 
relevant information to an ontology, and finally disambiguates 
entities in the knowledge base. The novelty of our approach is 
that it is domain independent and can easily be adapted to new 
ontologies and domains. Unlike most knowledge base 
population systems, ours includes entity detection. This feature 
allows one to employ very complex ontologies that include 
events and the entities that are involved in the events.  

Introduction
Ontologies are widely used in knowledge management, but 
are seeing resurgence within the NLP community in 
applications such as information extraction and question 
answering.  More specifically, NLP applications are 
running in the context of external knowledge sources (i.e., 
ontologies).  A knowledge base is a stored representation 
of information.  The task of Knowledge Base Population 
(KBP) is  identifying instances of your external knowledge 
source in textual data and storing them in a knowledge 
base.  The incorporation of extracted information into an 
existing knowledge base is such a prevalent problem that it 
has had a special track at the Text Analysis Conference 
since 2008 (McNamee et al., 2010). 

In this paper we present a system designed to extract text 
from both structured and unstructured data sources in order 
to populate a knowledge base based on an existing 
ontology. While others have introduced systems that are 
designed to do the same general task (see Maynard et al., 
2010, who have shown that using a combination of rule-
based approaches and machine learning approaches works 
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well for knowledge base population tasks), our system is 
unique in that it is data type agnostic and it has been built 
in a modular manner that makes easy to generalize to new 
datasets and domains. In addition, our KBP system allows 
for very complex ontologies that include event structures in 
addition to entities and taxonomies.  

System Description 
Our system is an end-to-end process with modular 
components that populates a knowledge base with 
information extracted from structured data sources and 
unstructured natural language text. The process can be 
broken down into three phases: Extraction, mapping and 
entity disambiguation. The system architecture is shown in 
Figure 1. 

Extraction and mapping for structured and unstructured 
data sources are handled separately. Often a single 
ontology is used to populate a knowledge base with 
evidence from both structured and unstructured data types. 
While mapping structured data to an ontology can be fairly 
straightforward, when both data types are present we 
combine them for improved performance.  Structured data 
sources are processed first, as these high-confidence data 
can be used to inform the processing of unstructured data. 

For the structured data sources, we use a rule-based 
system to map field in the data to types in the target 
ontology. These high-confidence data can then be added 
directly to the knowledge base. For unstructured data, we 
use a natural language processing (NLP) pipeline, 
described in the next section, to extract named entities and 
events from the input document and add them to an 
unmapped triple store. In the mapping phase, the extracted 
entities and events are then mapped to a domain-specific 
ontology. 
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Once all input documents have been processed, we 
disambiguate entities across the entire knowledge base. 
This is a cyclical process, where disambiguated entries are 
added back to the knowledge base, and processed again to 
ensure that all duplicate entities are found.  

We have designed the system such that each phase 
occurs in independent modular components that can be 
modified or swapped out entirely. We describe each 
component in the following section. While many of our 
components are standard open source tools, we believe the 
novelty of our system lies in the modular design and 
functionality the combination provides. 

Processing Structured Data 

In addition to unstructured textual data, often 
structured data is available as a source and it needs to 
be mapped to the ontology to augment the population 
of the knowledge base. 

In order to map structured data into the knowledge 
base, a customized rule-based mapping was created 
that reads in the appropriate fields of the structured 
data and maps them to the corresponding 
ontologically valid entries. The resultant triples are 
then added directly into a mapped knowledge base 
that can be combined and de-duplicated with the 
knowledge base obtained from unstructured data 
sources. Figure 5 diagrams the flow of structured and 
unstructured data through our system.  

However, the strength in integrating structured data 
comes from the inherent nature of that data. 
Structured data can be used as high-confidence data 
that helps populate and augment dictionaries for 
named entities, events, and entity disambiguation. 

Entity and Event Extractor 

Unstructured data sources naturally require more 
complex processing to identify, extract, and map 
entities and events. Here we describe the NLP 
pipeline we have created to process free natural 
language text.  

The extractor is designed to take advantage of the 
capabilities of the Apache UIMA Framework; it 
consists of a series of components (annotators) that 
can be added or removed from the pipeline as desired. 
The full text of documents is internally represented in 
a specialized object. These objects allow the 
document to be marked up, by storing start and end 
indices of annotations as well as metadata provided 
by the annotator components. The information stored 
in these objects can be accessed by any component in 
the pipeline. 

The extractor contains four components: two 
named entity extractors, an event finder and a triple 
producer. The first three components are independent 
of each other, and their definitions specify the set of 
annotation data types used by each component. The 
triple producer is an aggregator; it defines which 

Figure 1 – The system consists of three main components, entity 
and event extraction, a mapper, and entity disambiguation. 
Structured data, unstructured data, and an ontology are the 
inputs to the system. 
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components to use and the order in which to run 
them, and combines their results. These components 
are described in more detail in the following sections 
below. A visual overview the extractor’s overview in 
the overall system is shown in Figure 2.  

Figure 2 - The NLP Pipeline. Text is annotated with named 
entities and events. Then, OWL triples are created, mapped to the 
target ontology, and entities are disambiguated. 

Named Entity Extraction 
Our system is designed to extract both events and entities 
from the data. For named entity extraction, we run two 
independent named entity recognizers – one dictionary-
based, and one statistical – and then combine the results.  

Dictionary-based Named Entity Recognition. We built 
our dictionary-based named entity recognizer utilizing 
functionality from LingPipe1. User-created dictionaries are 
stored as text files. We have general purpose dictionaries, 
and domain-specific dictionaries can be added and edited 
easily if desired.  For the most part we use exact dictionary 
matching to identify entities in the input text, but also 
include some heuristics for combining matches from 
dictionaries of common first and last names to identify 
people. Entities identified by this component are annotated 
with their start and end indices and the label defined in the 
dictionary. There are no restrictions on the labels that can 
be used in the dictionaries. 

Statistical Named Entity Recognition. Our second NER 
component is based on the Stanford Named Entity 
Recognizer. We use the pre-trained model available from 
Stanford, which identifies entities and labels them as 
Person, Organization, or Location. These are added as 
annotations similar to the dictionary-based annotations. 

                                                
1 http://alias-i.com/lingpipe 

Combining Results. After both recognizers have run, an 
aggregator combines the results. If an entity is identified by 
one recognizer but not the other, we extract the entity and 
entity type it provided. If the recognizers identify 
overlapping entities, we use the dictionary-based 
recognizer to determine both the entity type and, if 
necessary, the entity boundaries (if the entities identified 
overlap but don’t completely align). 

Event Extraction  
Events provide a representation of complex relationships 
among entities. For example, one event type that is used 
regularly is communicate. This event requires two entities 
related via meeting, calling, reporting, emailing, etc. Event 
extraction is a necessary step in cross-domain knowledge 
base population. The event extraction process can be 
broken down into two steps: detection and argument 
identification. 

Detection. Event detection involves finding event triggers: 
the lexical items in the text that best represent the event.
The lexical items are usually verbs; for our purposes we 
only consider verbs. At this initial stage every verb is 
selected as an event trigger, and if some arguments are 
identified, it is stored as an event in the unmapped 
knowledge base. The selection of the events of interest 
comes later in the mapping step, allowing event extraction 
to remain domain independent.  In this way  

Argument Identification. Event identification involves 
finding arguments for each event trigger, i.e., the 
constituents that have a semantic role in the event. 
Resources such as PropBank and FrameNet define sets of 
argument types for verb or event types. For this stage of 
the process, we use a simple set of arguments across all 
event types, which is later mapped to a more complete set 
of event-specific arguments dependant on the target 
ontogloy: AGENT, the entity doing the event; PATIENT, 
the recipient or them of the event; and ARG, a catch-all for 
other arguments of the event. To identify and type the 
arguments, we use a simple set of rules over typed 
dependency parses from the Stanford Dependency Parser. 
Statistical parsers are not always completely accurate, but 
we find it to be sufficient for our purposes. See below for 
evaluation results. 

Event detection and argument identification are run in a 
single UIMA component. As with the named entity 
extraction, events are annotated with their indices, with 
metadata containing the arguments, any temporal 
expressions modifying the verb, and flag if the verb is 
negated. 
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Triples 
The extracted entities and events are initially stored as 
subject-predicate-object statements, or “triples”, in a 
temporary Sesame RDF repository. This is the unmapped 
knowledge base shown in Figure 1. The triple producer is 
responsible for converting the annotations into triples and 
adding the triples into the unmapped triple store. All 
extracted data such as name, type, temporal information, 
negation and provenance are saved in this repository. 

Mapper  

Since one of the overall goals for our system is to be 
domain-independent, our event detection system uses 
a separate domain mapping component to be as 
flexible as possible. We use rule-based techniques for 
event detection in order to provide a simple 
mechanism for cross-domain application. However, 
we also provide an optional second-stage 
classification using supervised techniques to boost 
precision when labeled data can be created for a 
domain. 

After a knowledge base of extracted entities and 
events has been created, the Mapper maps this data to 
the target ontology. This component enables the 
pipeline to remain domain independent, yet able to 
support applications using specific domain 
ontologies. 

Entities and Events are mapped to the domain 
ontology according to a set of rules. A mapping rule 
consists of: 

1. Target Event Type: the event type from the 
ontology that an event will become if the rule 
fires, e.g. Deployment

2. Triggers: the lexical items that will fire this 
rule if they occur as the event trigger, e.g., 
introduce, upgrade, implement, launch, 
install, deliver, deploy …

3. Argument Mappings: from verb semantic 
arguments to event roles, e.g. agent ->
organization, patient -> technology

Figure 3 shows an example event mapping. 

Figure 3 - An example event is mapped to the target ontology. 
Nodes represent individuals in the knowledge base and are 
labeled with lexical items from the text and a type. Edges connect 
events to entities and are labeled with a role type. 

Mapping rules are created by hand with the help of 
some tools for lexical expansion. Using WordNet 
(Fellbaum,, 1998), each verb can be expanded to 
include synonyms and hypernyms, which will usually 
indicate an event of the same type. Note that the 
system is not dependent on use of handwritten rules, 
and a component for automatically generating 
mapping rules could easily be added. 

If event-labeled data can be created for the target 
domain, a second classification step can be used to 
refine the event mapping. Statistical classification 
based on Naïve Bayes or k-Nearest Neighbors can be 
used to improve results. Feature selection is very 
important in the success of this component. Basic 
features, part of speech based features, and most 
importantly syntactic features (dependency relations 
in the current parse tree, parse tree depth, etc) should 
be included for the best overall performance (Ahn 
2006, Bell 2010) 

The mapped triples are then inserted into a hybrid 
triple store (the mapped knowledge base). This hybrid 
mapped triple store includes a Sesame RDF 
repository paired a SQLite relational database. 
Triples are stored in the RDF repository while 
provenance information associated with each triple is 
stored in the SQLite database. 

Ontology 

We us an OWL ontology to define the target domain. 
This provides a formal definition of the entities and 
events of interest to be used by the mapping rules. 
OWL Classes are used to define entities (e.g. Person, 
Organization, Location) and DatatypeProperties are 
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used to define properties on the entities (e.g. name, 
age, gender). OWL ObjectProperties are used to 
define relationships between entities (e.g. father, 
mother, brother). Events - relationships involving 
more than two entities or additional arguments, such 
as time and location, are represented using subclasses 
of an Event class (e.g. Attack, Deployment). 
ObjectProperties between Events and entities define 
the Event argument types, and restrictions on the 
entity types that can fill them (e.g. Attack has a 
perpetrator, which must be a Person or Organization). 

Entity Disambiguation 

Once the data has been mapped to the domain 
ontology, the entity disambiguation component 
identifies and labels duplicate entries in the 
knowledge base using simple proper name matching. 
This step is performed across the entire 
knowledgebase (i.e. cross-document).  

Only entities with entity type Person, Organization 
and Location are considered to have proper names 
and, as such, de-duped; events are ignored. 
Additionally, abbreviations (e.g. Incorporation and 
Inc.) and equivalents (e.g. United Kingdom and
Britain) are considered when matching the names. 
This list of valid abbreviations and equivalents is 
stored in a reference file that is read in by the 
disambiguator during initialization. 

Duplicate entities are represented in the 
knowledgebase as entities with a sameAs 
relationship; this relationship is added for each 
matching entity to represent bi-directionality. The 
original entities are kept intact so that any incorrectly 
labeled entities can later be corrected. We hope to 
employ more sophisticated features in our entity 
disambiguation module, such as those described by 
Drezde et al. (2009). 

Evaluation 

It is difficult to evaluate our end-to-end system 
because there is no gold standard for evaluating 
knowledge base populations in which the ontology 
includes both entity and event information. For 
instance, the TAC evaluation datasets are largely 
based only on entity and location information. We 
were able, however, to conduct a number of 

evaluations on individual components as it is 
certainly the case that weak performance in the 
individual components will detract from the 
performance of the overall system. Below, we 
provide evaluations of various system components. 

Event Detection. To evaluate the event extraction 
portion of our system, the statistical system for event 
detection was extended in order to run against the 
2005 Automatic Content Extraction (ACE) corpus 
(Walker et al., 2006). The ACE event hierarchy 
describes an inherent ontology consisting of 8 major 
event types and 33 subtypes. The ACE corpus used 
consists of 666 text files.  

Multi-way classification from a single event 
reference to a group of possible class labels was 
performed. In addition to positive references, 
negative occurrences were also used because they 
have been shown to improve classifier performance 
(Ahn, 2006, Bell et al., 2010). The system runs a 
single statistical classifier for all event classes, 
identical to the configuration used in similar 
evaluations (Bell, 2010). The results of running the 
statistical system against the ACE corpus are shown 
in Figure 4. The use of a supervised classifier brings 
performance to levels that rival that of state-of-the-art 
tools in the field. 

Figure 4 - Performance of Event Extraction at identifying 
and classifying events according to the target ontology.  
achieve close to human agreement, but is not feasible for all 
domain types. 

Event Argument Identification. We evaluate using 
PropBank by mapping our AGENT, PATIENT and 
ARG to PropBank types Arg0, Arg1 and all 
remaining argument types respectively. One caveat in 
comparing these results to other PropBank evaluated 
tools is that we do not place the exact bounds 
restriction on ourselves, because we only identify the 
head of the argument. (This argument identification 
could be replaced with a more sophisticated semantic 
role labeling systems trained on PropBank or 
FrameNet such as without requiring any downstream 
code changes, just a different mapping. The 

Rule-based Mapping
Classifier-based 
Mapping

Precision 0.37 0.74
Recall 0.18 0.53
F1-Measure 0.24 0.62
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evaluation of argument identification is shown in 
Figure 5.  

We used a modified propbank evaluation for 
argument detection. It is modified in that we were 
only concerned with two main argument types, agent
and patient, as generally these were the only two 
arguments required by the ontology we were using. 
The rest of the argument types were lumped into a 
generic Arg category. While the results reported here 
are very good for argument identification, it should 
be noted that this modification produces slightly 
inflated results.  

Precision Recall F-measure
Agent .76 .55 .64
Patient .86 .39 .54
Arg .85 .29 .43
Combined .82 .40 .53

Figure 5 - Evaluation of Argument Identification using a modified 
PropBank evaluation. 

Conclusion 

In this paper we have introduced a novel system 
designed to populate a knowledge base from 
structured or unstructured text. Our system is 
designed in a modular format that allows for easy 
adaptation to new domains and ontologies. We have 
reported near state of the art results for the 
components we have built: event extraction, 
argument identification, and mapping.  

We plan on designing a methodology by which we 
can test the entire system. One method might be to 
train annotators on a specific ontology and manually 
populating a knowledge base from unstructured or 
structured documents. This method would be 
laborious and expensive. We are also considering the 
types of evaluations that are more component based, 
such as testing on existing TAC or ACE datasets.  
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