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Abstract 
Psychological measures of concreteness of words are 
generally estimated by having humans provide ratings of 
words on a concreteness scale. Due to the limits of this 
technique, concreteness ratings in current word databases 
(e.g., MRC) are incomplete due to the limited size of the 
word samples. In this study, we use available linguistic 
databases to formulate a computational model to simulate 
human ratings on word concreteness. The computational 
model includes Lexical Type, Latent Semantic Analysis 
Dimensions, Hypernymy Levels, Word Frequency and Word 
Length. Our results indicate that the model accounts for 64% 
variance of human ratings.  

 
Introduction   
A single word in the human language has many complex 
dimensions such as semantics, parts of speech, lexical type, 
imagability, concreteness, familiarity, etc. It is important to 
know the dimensions of words in languages so that we can 
develop a better theoretical understanding of language and 
also to build tools that simulate human intelligence and 
performance. One important dimension of words is their 
level of concreteness. Concrete words such as house, 
poodle, and tiger evoke mental images quickly and easily 
in contrast to less concrete words such as causality, 
evolution and mortal. Words with higher concreteness are 
easier to imagine, comprehend, and memorize (e.g., Paivio, 
1991).  
 Because of the importance of word concreteness to 
comprehension, processing, and memory, word 
concreteness also plays an important role in the fields of 
text and discourse and computational linguistics. Indeed, 
word concreteness is among the most important indices 
provided by Coh-Metrix (e.g., Graesser, McNamara, 
Louwerse, & Cai, 2004; McNamara & Graesser, in press). 
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In several studies, word concreteness values have played 
important roles in distinguishing between types of texts 
and parts of texts. For example, McCarthy, Renner, 
Duncan, Duran, Lightman, and McNamara (2008) included 
word concreteness as one of the indices to identify topic 
sentencehood. Crossley and McNamara (2009) included 
word concreteness to assess lexical differences in writings 
by first and second English language speakers. Graesser, 
Jeon, Cai, and McNamara (2008) used word concreteness 
in genre classification. Most recently, word concreteness 
has emerged in one of eight aspects of language in text that 
characterizes text difficulty (Duran, Bellissens, Taylor, & 
McNamara, 2007; McNamara & Graesser, in press) 
 However, word concreteness is not an attribute that a 
computer can directly compute. One means of assessing 
the characteristics of words is by having humans rate them 
on the dimensions of interest. Humans are proficient in 
categorizing words into linguistic dimensions, but it is 
impractical to have humans rating tens of thousands of 
words that we would need for psycholinguistic research. 
As a consequence, any particular corpus of words will 
comprise a limited number of words. Then, either the word 
concreteness values are not available for certain words, or 
averages over corpora of words can be misleading because 
the average contains an indeterminate number of missing 
values. Thus, as powerful as concreteness values have 
been, they have been imperfect.  
 Our goal in this study is to develop a computational 
model to predict word concreteness to overcome this 
problem. Our approach is to use information about words 
available from other sources to build a computational 
algorithm that will predict word concreteness, even when 
word concreteness human ratings are not available.  
 
Word Databases 

MRC. One widely used source for concreteness ratings 
is the MRC Psycholinguistic database (Paivio, Yuille, & 
Madigan, 1968; Toglia & Battig, 1978; Gilhooly & Logie, 
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1980). MRC is an online service that provides a resource 
for public research purposes. MRC contains 150,837 words 
and provides information on 26 different linguistic 
properties. It differs from other machine usable dictionaries 
in that it not only includes syntactic information but also 
psychological data for the entries. However, it provides 
concreteness ratings for only 8,228 words. Therefore, the 
following databases are used in this study to develop an 
algorithm to predict word concreteness.  
 WordNet. A second word database resource for 
psycholinguistic research is WordNet. WordNet is an 
online lexical database that includes English nouns, verbs, 
adjectives, and adverbs which are organized into sets of 
synonyms, each representing a lexicalized concept, and the 
semantic relations linking these synonym sets (Miller, 
Beckwith, Fellbaum, Gross, & Miller, 1990). WordNet 
contains more than 166,000 word form and sense pairs, 
and incorporates a variety of semantic relations that can be 
defined between word forms and word senses.  
 WordNet categorizes words into 45 lexical types, such 
as food, plant, act, feel, and communication. Because a 
word may have multiple senses, a word can be of multiple 
lexical types. In addition, these different lexical types have 
differences in concreteness. For example, words of food 
type tend to be more concrete than words of feeling type 
because one is a concrete object, whereas the other is an 
abstract human affect.  

WordNet also provides estimates of word hypernymy 
levels. Hypernymy relations estimate the semantic links 
between words taxonomically. For example, animal is 
semantically related to dog, but animal is superordinate 
taxonomically to dog. As such, animal is more abstract, 
whereas dog is more concrete. Hence, words that are lower 
in hypernymy values (superordinate terms) also tend to be 
more abstract (Crossley, Salsbury, & McNamara, 2009; 
Graesser, McNamara, Louwerse, & Cai, 2004; Graesser, 
Jeon, Cai, & McNamara, 2008).  
 Latent Semantic Analysis. Latent Semantic Analysis 
(LSA) is a computational algorithm that uses a statistical 
method to yield a representation comprised of hundreds of 
dimensions (≈ 300) that can be used to perform tasks 
related to human assessments of language. LSA is not a 
complete model of language but it has been highly 
successful in predicting or simulating a number of 
language-related tasks (Landauer, McNamara, Dennis, & 
Kintsch, 2007). For example, it shares an 85%-90% 
overlap with expert human readers in assessing word 
sorting evaluations, word synonymy judgments, 
vocabulary learning (Landauer & Dumais, 1997), and word 
relatedness judgments (Landauer, Foltz, & Laham, 1998). 
LSA has been effectively used in assessing word 
similarities and solving other language problems (Landauer 
et al., 1998). In LSA, each word is represented by an N-
dimensional vector. We hypothesized that some of the 
dimensions would provide information about word 
concreteness. Given a large corpus, an LSA space would 

thus provide dimensional attributes for as many terms as 
there were in the corpus. 
CELEX. Word frequency is another attribute that can be 
obtained for large set of words. The CELEX database from 
the Dutch Centre for Lexical Information contains word 
frequency count for more than 160,000 words (Baayen, 
Piepenbrock, & Gulikers, 1996).  
The Current Study 
 In this study, we compute word attributes from 
WordNet, LSA and CELEX and use these attributes to 
simulate human ratings in the MRC database. Our 
overarching goal is to optimize Coh-Metrix estimations of 
word concreteness, as well as other computational 
linguistic algorithms. Our goal is to develop an algorithm 
that simulates human ratings of word concreteness using a 
variety of freely available, automated lexical features. If 
successful, such an approach will allow us to estimate the 
human concreteness values of words that have not been 
judged by human raters. As such, we can potentially solve 
limitations resulting from relying on using word databases 
for human ratings.  
 

Method 
Human Rating of Concreteness  
For this study, we examined the human ratings of 
concreteness provided in the MRC Psycholinguistic 
database. These concreteness values are based on the 
works of Paivio, Yuille, and Madigan (1968), Toglia and 
Battig (1978), and Gilhooly and Logie (1980), who used 
human subjects to rate large collections of words for 
psychological properties. Specifically, participants in these 
studies were asked to score the concreteness of words 
based on a numerical scale (from 1 to 7). A word that 
refers to an object, material, or person generally received a 
higher concreteness score than an abstract word (Toglia & 
Battig, 1978). Although the MRC database has 150,837 
word entries, only a subset of these words were rated for 
concreteness.  

For this study, we selected 3521 unique nouns from the 
database that had concreteness ratings. For the 3521 nouns, 
the minimum concreteness rating is 195 and the maximum 
is 670. The mean concreteness rating is 459.28 and the 
standard deviation is 116.63. Ten percent of the nouns 
have a concreteness rating below 291 and 10% of the 
nouns have a concreteness rating above 600. The lexical 
features examined were lexical types, LSA dimensions, 
word hypernymy, word frequency, and word length (i.e., 
number of letters). These are each discussed in greater 
detail in the following sections. 
 Lexical Types. WordNet contains data on about 81,000 
nouns that are sub-classified into 26 different lexical types. 
These lexical types are presented in Table 1 (ordered from 
least to most concrete), as well as the mean concreteness 
for each lexical type computed by averaging the 
concreteness ratings for each of the selected 3521 nouns 
that are assigned to that lexical type.  
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 For each lexical type, we created a proportion index. 
The proportion index of a given word w to a given lexical 
type T is defined as the proportion of the number of senses 
of w belonging to the lexical type T divided by the total 
number of senses of w. For instance, the word “line” 
belongs to 10 lexical types (artifact, communication, 
cognition, group, location, shape, act, phenomena, 
possession, and quantity). Each of these lexical types 
contains a variety of senses of the word “line” (i.e., 8 
senses for the lexical type artifact, 5 for communication, 4 
for group, 3 for location, 2 for shape, etc.). Thus, the 
proportion score for the word line in the lexical type 
artifact would be .276 (the 8 senses contained in the lexical 
type artifact divided by the 29 senses).  

  
 LSA Dimension Attributes. We also examined LSA 
dimensions as potential predictors of human scores of 
lexical concreteness. We limited our analysis to the first 
156 dimensions (of the potential ≈300 dimension reported 
in an LSA space). The LSA space we use in this study was 
generated from the Touchstone Applied Science Associates 
(TASA) corpus. The TASA corpus contains about 37,000 
documents comprising 90,000 words. The LSA space for 
this corpus is a 300-dimensional vector representation of 
all the words in the corpus. The 300-dimensional vectors 
were generated by compressing the weighted co-
occurrence word-document matrix using singular value 
decomposition technique. These 300 dimensions 
correspond to the largest singular values of the word-
document matrix. We computed LSA dimensions scores 
because we hypothesized that they store important word 
information and we predicted they could explain a certain 
amount of variance in human judgments of word 
concreteness. 

Hypernymy Level. We examined links between 
concreteness scores and hypernymy scores following the 
hypothesis that word specificity would correlate with word 
concreteness (Crossley, Salsbury, & McNamara, 2009). 
Hypernymic relations are hierarchical associations between 
hypernyms (superordinate words) and hyponyms 
(subordinate words). A hypernym is defined as a word that 
is more general than a related word (animal compared to 
dog) and a hyponym is more specific than a related word 
(dog as compared to animal). Hypernymic relations in 
WordNet form a tree structure. Each sense of a word is 
mapped to a certain node on the tree. For example, the 
sense of the noun “line” as “the trace of a moving point” 
has 5 specific hypernyms (“line” => “shape” => “attribute” 
=> “abstraction” => “abstract entity” => “entity”). When 
computing the hypernymy score, the word “line” would 
receive a score of 5 (for this sense). For each sense of the 
word, a score would be computed. For example, the sense 
of “line” as “a formation of people or things one behind 
another” has the following hypernym chain: “line”=> 
“formation” => “arrangement” => “group” => 
“abstraction” => “abstract entity” => “entity”. This sense 
would receive a hypernymy score of 6. For the final score 
for the word, we computed an average hypernymy score 
for all the senses contained within the word. For some 
senses of a noun, the hypernyms may form a tree of 
multiple branches, instead of a chain. In that case, we 
simply count the hypernymy level of every branch and take 
the average over the branches as the hypernymy score for 
the given sense. We hypothesize that words that receive 
higher scores (and thus are more specific) would be more 
concrete than words that receive lower scores. 

Polysemy. We also investigated links between word 
polysemy and word concreteness. Polysemous words are 
words that have more than one sense. For instance, the 
word “list” has 30 senses and is thus highly polysemous. 

Table 1: Mean Concreteness Values for Each Lexical 
Type in WordNet 

Lexical Type N Mean SD Examples 

feeling 156 323.62 84.35 hate, fear 
motive 13 362.46 103.61 obsession,  

relation 66 371.83 85.45 Causality 

cognition 497 372.26 100.58 Algebra 

state 452 383.85 100.48 measles, sneeze 

attribute 397 387.03 117.57 rigidity, agility 

process 62 394.39 92.64 evolution, 
vapor 

act 847 400.51 99.22 tennis, battle 

time 139 404.47 94.73 Daybreak 

event 295 408.65 93.47 surf, faint 

tops 43 409.02 100.93 animals, mortal 

communication 701 416.35 106.84 movie, medal 

phenomena 120 440.36 102.51 typhoon, sleet 

possession 163 446.85 104.21 coin, money 

group 338 460.94 95.17 bunch, corps 

location 212 466.10 101.11 lair, exterior 

quantity 179 468.17 106.70 quart, volt 

person 657 489.70 96.57 clown, boy 

shape 111 507.13 86.24 Rectangle 

object 198 517.39 87.22 pond, beach 

artifact 1160 526.38 85.61 Necklace 

substance 244 534.82 79.80  Firewood 

body 191 540.17 82.42 Forearm 

animal 277 558.91 73.44 robin, ox 

food 265 560.13 76.27 breakfast, lunch 

plant 182 560.49 78.33 larch, tulip 
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The word “class” has 8 senses. The word “apple” has two 
senses, and is thus not highly polysemous. Highly 
polysemous words are generally more frequent (Zipf, 
1945). Additionally, highly polysemous words also exhibit 
higher degrees of ambiguity (Davies & Widdowson, 1974). 
We computed polysemy scores by calculating the number 
of senses for each word contained in WordNet. We 
hypothesized that words that contained more senses (and 
were potentially more ambiguous) would be less concrete.  

Word Frequency. We computed frequency scores for the 
nouns in the MRC Database using the CELEX Database 
(Baayen, Piepenbrock, & Gulikers, 1996). The CELEX 
Database provides word frequencies for more than 160,000 
word forms. To compute the CELEX frequency score, we 
calculated the logarithm of the CELEX frequency count for 
each selected noun. We hypothesized that more frequent 
words would be more concrete.  
 Word Length. We computed the length of a word as the 
number of letters in the word. Word length is a strong 
proxy for word frequency, with the advantage that it is 
available for all words rather than only a subset of words. 
Typically, more frequent (shorter) words tend to be more 
concrete and thus we expected word length to be 
negatively correlated with concreteness values.  
 
Statistical Analysis 
 We separated the 3521 nouns from the MRC database 
into training and test sets based on a 67/33 split. The 
training set comprised 2348 words and their related 
concreteness scores. The test set comprised 1173 words 
and their related concreteness scores. We then calculated 
correlations to examine what lexical features of the words 
in the training set correlated with the human scores of 
concreteness. A step-wise regression analysis on the 
training set was used to examine which lexical variables 
were most predictive of human scores of word 
concreteness. Lastly, we used the model reported in the 
regression analysis on the held-back test set to examine 
how well the model predicted the variance in concreteness 
scores on words for which it had not been trained. 

Results 

Pearson Correlations Training Set 
Pearson correlations between concreteness and 186 
variables were conducted; these variables included the 26 
lexical types, the 156 LSA dimensions, the hypernym 
scores, number of letters in the word, the logarithm of the 
word frequency and the polysemy scores. 125 insignificant 
variables were excluded from the regression training set 
described below. We selected 61 variables that are 
significantly correlated to concreteness ratings (p<0.05), 
These 61 variables include 21 lexical types, hypernym, 
number of letters, logarithm of word frequency  and 37 
LSA dimensions. The excluded non-significant lexical 

types from the correlation analysis were phenomenon, 
quantity, location, group, and possession.     
The selected LSA dimensions were: 1-4, 6-9, 11,13-15, 17, 
21-22, 24-25, 27, 30-33, 38, 49, 54, 61, 63, 68, 73, 80, 102, 
110, 112, 117, 129, 135, and 139. Interestingly, our results 
suggest that the information about concreteness is mainly 
stored in earlier dimensions.  
Multiple Regression Training Set 

A stepwise regression analysis was conducted with the 
61 variables that demonstrated small effect sizes or greater. 
These 61 variables were regressed onto the human 
concreteness scores for the 2348 words in the training set. 
The variables were checked for multicollinearity. 
Coefficients were checked for variance inflation factors 
(VIF) values. All VIF values were at about 1 which is 
equivalent of tolerance levels well beyond the .2 threshold. 
This model indicates that the model data did not suffer 
from multicollinearity (Field, 2005). 

The linear regression using the 61 variables yielded a 
significant model, F(39, 2353) = 108.850, p < .001, r = 
.802, r2 = .643. Thirty-nine variables were significant 
predictors in the regression. Twenty-two variables were not 
significant predictors. R, r2, ß, B, and Standard Error 
information for each of the included variables is presented 
in Table 2. The results from the linear regression 
demonstrate that the combination of the 39 variables 
accounts for 64% of the variance in the human evaluations 
of word concreteness found in the MRC Psycholinguistic 
database. 
Test Set Model 
 To further support the results from the multiple 
regression conducted on the training set, we used the ß 
weights and the constant from the training set multiple 
regression analysis to estimate how the model would 
function on an independent data set (the 1173 words along 
with their human ratings of concreteness held back in the 
test set). The model produced an estimated concreteness 
value for each word in the test set. We then conducted a 
Pearson Correlation between the estimated concreteness 
score and the concreteness score. This correlation along 
with its r2 is indicative of the strength of the model on an 
independent data set. The model for the test set yielded r = 
.821, r2 = .674. The results from the test set model 
demonstrate that the combination of the 39 variables 
accounted for 67% of the variance in the human scores of 
concreteness for 1173 words comprising the test set. A 
Breush-Pagan test was conducted to check for 
homoscedasticity. The χ² reported a p-value of .229, 
suggesting that the unstandardized residuals are normally 
distributed. 
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Table 2: Linear Regression Model to Predict Human 
Concreteness Ratings 
Variable r r² ß B SE 
Constant     338.723 13.183 
artifact 0.403 0.162  .274  100.201 7.528 
Num of letters 0.482 0.232 -.087 -4.460 0.710 
food 0.538 0.289  .156  133.960 12.253 
animal 0.584 0.341  .136  108.841 12.241 
person 0.619 0.383  .098  41.250 7.777 
substance 0.649 0.421  .158  131.885 12.096 
plant 0.676 0.457  .113  107.407 13.271 
body 0.695 0.483  .093  111.313 16.171 
log word freq. 0.708 0.501  .228  14.863 0.998 
cognition 0.722 0.521 -.205 -150.144 11.120 
object 0.733 0.538  .070  82.252 16.139 
attribute 0.743 0.552 -.184 -130.687 10.569 
feeling 0.751 0.565 -.151 -187.385 16.499 
LSA 4 0.759 0.575 -.121 -1341.564 148.352 
hypernym 0.766 0.587  .139  10.205 1.125 
act 0.770 0.593 -.168 -91.019 9.298 
LSA 1 0.774 0.599 -.135 -1927.644 225.602 
shape 0.776 0.603  .039  83.742 27.368 
LSA 15 0.778 0.606 -.048 -598.881 162.930 
LSA 2 0.780 0.609  .062  752.001 161.152 
state 0.782 0.612 -.100 -78.269 11.486 
comm. 0.784 0.615 -.121 -63.674 8.766 
time 0.787 0.620 -.080 -86.793 14.897 
LSA 38 0.789 0.622 -.049 -568.807 147.478 
LSA 139 0.790 0.624 -.042 -459.569 136.095 
LSA 6 0.791 0.626  .059  649.575 141.753 
LSA 54 0.793 0.628  .049  585.203 151.174 
relation 0.794 0.630 -.042 -116.906 35.124 
event 0.795 0.632 -.047 -49.636 14.321 
LSA 32 0.796 0.633  .034  341.268 127.861 
LSA 17 0.797 0.635 -.039 -475.259 155.894 
LSA 9 0.798 0.636  .050  580.544 153.242 
LSA 31 0.799 0.638  .050  587.464 155.397 
LSA 3 0.799 0.639 -.035 -428.699 161.792 
LSA 22 0.800 0.640 -.037 -420.308 147.305 
motive 0.801 0.641 -.032 -201.791 77.775 
LSA 21 0.801 0.642  .031  362.914 148.854 
LSA 135 0.802 0.643  .028  296.141 132.293 
LSA 30 0.802 0.643 -.026 -289.682 142.576 

 

Discussion 

The results of this study indicate that it is possible to 
formulate a model that predicts human ratings of noun 
concreteness using automated lexical indices. Our model 
consists of 39 attributes that include 19 lexical type 
attributes, 17 LSA dimension attributes, 1 hypernymy level 
attribute, 1 word frequency and 1 word length attribute. 
This model predicts 64% of the variance in human ratings 
of word concreteness 

Our strongest predictors of human ratings of word 
concreteness were lexical types. Our analysis indicated that 
words with higher concreteness ratings were more likely to 

be categorized as artifacts, foods, animals, people, 
substances, plants, or body parts. Less concrete words 
were more likely to be categorized as related to cognition, 
action, shapes, communication, relations, states, events, 
time, or motives.  

Our next strongest predictors of human judgments of 
word concreteness were the number of letters per word and 
word frequency. Word length was negatively correlated to 
human ratings on concreteness, as expected (r = -.324). 
Word frequency also had a positive correlation with word 
concreteness (r = .058).  

One of our goals was to examine the role of LSA 
dimensions in predicting word concreteness. The results of 
this study indicate that a small part of word concreteness 
information is stored in some of the lower dimensions 
within the LSA space. Few studies have drawn upon 
information contained within the particular LSA 
dimensions to predict human performance. Hence, this 
study provides innovative evidence that the LSA 
dimensions provide individual contributions to simulating 
human cognition.  

Another consideration regarded the relationship of 
hypernymy to word specificity and exploiting that 
relationship to predict concreteness. However, the results 
indicated that word hypernymy level explains only a small 
variance of concreteness. Because this result may be biased 
from the way in which hypernymy was assessed, in future 
research we intend to examine different methods of 
calculating hypernymy (i.e., other than counting the 
number of branches). We assumed that a word at the 
bottom of the branch would be more concrete than a word 
at the top of the branch. However, we might also take into 
account the number of levels of each branch. For example, 
if a hypernym branch has 6 levels, and the position of the 
target word is 4, than the word would be 4/6 of a 
relationship to concreteness. Thus, the ratio of the position 
of a word and the number of levels from a hypernym 
branch may also be predictive of concreteness. Future 
studies will explore this and other possible uses of 
hypernymy in predicting word concreteness.  

We were also interested in those indices that were not 
predictive of human judgments of concreteness. For 
instance, we hypothesized that more concrete words would 
be less ambiguous (i.e., less polysemous). This was not the 
case. Within the last decade, there has been an increasing 
development of available digital databases and 
computational algorithms from which to explore the 
language use, language meaning, and language processing, 
as well as automated applications that make use of 
computational information about language. Here, we 
demonstrate how to augment some of those databases 
automatically, in this case for estimations of word 
concreteness. One can suggest, however, using such an 
approach to develop estimations of any number of features 
of language. Indeed, it may be possible to use information 
about a limited number of words to predict characteristics 
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of an infinite set of words. We do not suggest, of course, 
that our model can necessarily replace human ratings, but 
our model proves to be a useful tool in assessing the 
relationships between the given linguistic characteristics of 
words and human judgments of those words. Our future 
research will continue to examine such characteristics.  
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