
Reasoning with Annotations of Texts

Yue Ma and François Lévy and Sudeep Ghimire
LIPN - UMR 7030, University Paris 13 - CNRS, France

email: {firstname.name@lipn.univ-paris13.fr}

Abstract

Linguistic and semantic annotations are important fea-
tures for text-based applications. However, achieving
and maintaining a good quality of a set of annotations is
known to be a complex task. Many ad hoc approaches
have been developed to produce various types of anno-
tations, while comparing those annotations to improve
their quality is still rare. In this paper, we propose a
framework in which both linguistic and domain infor-
mation can cooperate to reason with annotations. The
underlying knowledge representation issues are care-
fully analyzed and solved by studying a higher order
logic, which accounts for the cooperation of differ-
ent sorts of knowledge. Our prototype implements this
logic based on a reduction to classical description log-
ics by preserving the semantics, allowing us to benefit
from cutting-edge Semantic Web reasoners. An applica-
tion scenario shows interesting merits of this framework
on reasoning with annotations of texts.

1 Introduction

In Natural Language Understanding (N.L.U.), several kinds
of tools have been tuned for certain particular usages - mor-
phological analysis, chunking and tagging, syntactic analy-
sis, etc.. Meanwhile, a trend grows toward platforms allow-
ing to use different tools on the same text (see e.g. (Enjalbert,
Habert, and Bontcheva. 2008) for some descriptions, Stan-
ford CoreNLP1 suite for an implementation and the UIMA
norm2 for a framework). The interaction of different levels
of analysis is well known by linguists, but the cooperation
of different tools has been rarely equipped with formal de-
scription or reasoning mechanisms. Relying on a standard
representation of different typed annotations attached to text
fragments, we propose a logical framework that is able to
cope with the results of different tools in a common formal-
ism, to express logical relations linking them and, on this
basis, to detect incoherences or to add inferred annotations.
An example and a prototype implementation sketch the op-
erationalization of our formalism.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://nlp.stanford.edu/software/corenlp.
shtml

2http://uima.apache.org/

Annotation is a powerful and flexible device to assign di-
verse kinds of information to text fragments (e.g. words,
sentences, paragraphs). In this paper, we mainly consider
two categories viz. syntactic and semantic. Syntactic anno-
tation is traditionally used in the field of N.L.U. for in-
formation extraction (henceforth I.E.), while semantic an-
notation is required to make semantic analysis of texts and
therefore largely emerges in cutting-edge texts oriented ap-
plications. For syntactic annotation, annotation types are de-
fined according to linguistic functions of a text fragment in
the sentence: their hierarchy is rather flat and inference does
not matter so much. Contrarily, semantic annotations are in-
tended to represent meaning of texts and generally rely on a
formal reasonable ontology that has a deep structure with
complex inference mechanisms. Note that a series of on-
tology reasoning tasks, such as OWL3 (ontology web lan-
guage) reasoning4, have been widely studied and shown use-
ful for exploring implicit data in the field of Semantic Web.

As explained in section 3, describing several types of an-
notations in the same classical formalism may cause mod-
eling errors or block the expected inferences. To provide
a proper modeling of annotations of texts, the new formal-
ism proposed in this paper is equipped with a non-classical
semantics to cope with various types of text annotations.
Moreover, the computation of this formalism is shown able
to be reduced to classical OWL reasoning, so that opera-
tions over annotations can be done by reusing cutting-edge
Semantic Web techniques.

The paper is structured as follows. Related work is firstly
discussed in Section 2 and then building blocks of our plat-
form are described in section 3. The knowledge representa-
tion issue and solution are given afterwards as the theoretical
support of this framework in section 4. Finally, a specific ap-
plication and its implementation are studied in section 5.

2 Related Work

Knowledge acquisition or information extraction systems
aim to acquire knowledge from texts, such as event extrac-
tion, named entity recognition, ontology construction. The
acquired results are usually stored separately and used as se-
mantic resources for other applications. Different from these

3http://www.w3.org/TR/owl-ref/
4Refer to http://www.cs.man.ac.uk/˜sattler/

reasoners.html for a list of reasoners.

192

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference

systems, our work coincides with semantic annotation ap-
proaches (e.g. KIM5 and Semantic Turkey6) with a focus on
revealing the meaning of texts explicitly, by marking texts
with suitable annotations from some ontological vocabular-
ies. Naturally, to automate the semantic annotation process,
I.E. techniques are beneficial and have been explored (Uren
et al. 2006; Ma, Nazarenko, and Audibert 2010). Refer to
(Uren et al. 2006) for a significant review of this field and
interesting scenarios on using ontology for annotating texts.

Note that most existing semantic annotation systems only
consider a part of ontological elements: individuals and their
conceptual categories (Fallucchi et al. 2008; Kiryakov et al.
2004). However, our application is to annotate domain spe-
cialized regulatory texts which differ from them in scale –
each corpus is incomparably smaller – and in scope – the
annotations have to cover a larger part of the content. In our
case, annotation labels are from domain ontologies built by
experts and thus extend far beyond general labels like Per-
son, Location, Organization. Additionally, concept or role
occurrences in these texts are much more frequent than that
of individuals. This need for varied fine-grained annotations
leads to knowledge modeling problems. Therefore, while
many specific semantic annotation systems have been ex-
tensively studied, this paper is to study the knowledge repre-
sentation issue underlying ontology-based multi-layer anno-
tation systems, and to provide a sound way to take advantage
of different kinds of annotations.

A problem highlighted in (Uren et al. 2006) and left for
ongoing research is about keeping annotations consistent
with evolving resources, particularly in combination with
evolving ontologies. Our formalism provides a step in this
direction by studying a way to detect conflicts in annotations
with regard to domain ontologies, which is not supported by
trivial representations of annotations as shown in Section 3.

Last, (logic-based) declarative I.E. systems (Poon and
Domingos 2007; Shen et al. 2007; Reiss et al. 2008;
Suchanek, Sozio, and Weikum 2008) have been developed
to encode annotation process in logics, possibly with some
predefined predicates for linguistic annotation patterns (e.g.
patternOcc, disambPrior, express). Different from them, our
framework aims to be part of an annotation platform on
which users can uniformly analyze various linguistic and se-
mantic annotations and their interactions.

3 Building Blocks

An annotation witnesses a link between a text fragment
and some knowledge, so it relies on several models: a text
model on one side to describe annotated fragments, a knowl-
edge model on the other to describe annotations (Lévy et al.
2010). To cope with several sorts of knowledge, indepen-
dent knowledge models are needed. In this paper, we deal
with a syntactic and a semantic model. They are described
as OWL ontologies, which has a good compromise between
expressive power and computability.

A naive modeling could cause loss of information or
representational mistakes. For instance, suppose we use a
binary relation hasSemAnno(tf, C) to represent that a

5http://www.ontotext.com/kim/
6http://semanticturkey.uniroma2.it/

text fragment tf is semantically annotated by concept C.
Then two annotations, such as hasSemAnno(tf, C1) and
hasSemAnno(tf, C2), are consistent even if disjointness
of C1 and C2 results from a domain ontology. Suppose now
that the same annotation is plainly represented as tf is a C,
i.e. C(tf). Although the previous inconsistency can be com-
puted, due to multiple ontologies we may have to write both
City(tf) and Noun(tf), which together entail that the con-
cept City and the grammatical category Noun have over-
laps — it is not intended either. Note that although the “pun-
ning” feature7 of OWL 2 relaxes the separation between the
names of e.g., classes and individuals, it is not enough to
solve the above representation problems.

To solve the problem, semantic annotations are consid-
ered apart, and annotation assertions are used to account
of them. Globally, annotation assertions allow to perform
standard OWL inferences over annotations as given in Sec-
tion 4, and, as described in section 5, to bridge inferences
about constraints between semantic and linguistic levels by
SWRL8 (Semantic Web Rule Language) rules. Before any
formalization, this section explains the underlying ideas of
our formalism and its preconditions.

3.1 Semantic annotation types

Ontological knowledge is built from different kinds of enti-
ties, all of which can be used for annotation. Therefore, we
need to differentiate the distinct relations between an anno-
tation label and a text span. Listed below are four annotation
types mainly considered in our formalism, with their formal
names given in brackets. Figure 1 illustrates this idea by an
example where all these types are involved:

Figure 1: Ontology-based Semantic Annotation on texts “...the
minimum mileage guarantee will be discontinued for any non-elite
status member....This change applies to travels on X Airline,...”.

Concept Annotation (sa:Concept) : Some text fragments
denote ontological concepts by themselves (e.g. “non-elite
status member”). Such text fragments are usually referred as
elements of a domain terminology. This is the most frequent
case in our working corpus.

Role Annotation (sa:Role) : Similarly, text fragments may
also denote conceptual roles if the underlying notions have
been encoded as roles rather than as concepts in the ontology
(e.g. “applies to”, “be discontinued for” or “reservation”).

7http://www.w3.org/TR/owl2-new-features/
8http://www.w3.org/Submission/SWRL/

193

Individual Annotation (sa:Individual) : Some text frag-
ments directly denote ontological individuals. They are tra-
ditionally referred to as named entities, such as “X Airline”
which refers to a specific airline company, or “the minimum
mileage guarantee”, a special policy name. In this case, the
semantic annotation is the ontological individual itself.

Individual-Concept Annotation (sa:Ind-Con) : Other text
fragments refer to individuals but their annotations indicate
the concept they belong to. This is the often case when using
concept City as a label of “Paris” or when labeling “the
minimum mileage guarantee” by concept Policy.

Note that when a concept from a reference ontology is
used to annotate a text fragment, two cases are possible:
either the text fragment talks about a special instance of
this concept (sa:Ind-Con), or it is about the concept itself
(sa:Concept) instead of any specific individual.

3.2 Ontologies

Besides a domain ontology, a language ontology is required.
The former is to provide semantic labels for semantic an-
notation, and represents domain knowledge, while the latter
embeds text model and linguistic knowledge.

The upper part of Figure 1 is a domain ontology exam-
ple. More details of the domain ontology used for annotat-
ing our corpus is described in Section 5. For our formalism,
it accepts any OWL ontology as the semantic one. The lan-
guage ontology first describes textual level information. As
a basis, it has a concept name TextFragment, whose in-
dividuals are annotatable segments of texts. As two or three
text fragments can be grouped to form a new one, role names
contains, contains2, and contain3 are also included. They
satisfy the following conditions (OWL axioms are written
using OWL functional syntax9):

(1) ObjectPropertyDomain(R TextFragment),

(2) ObjectPropertyRange(R TextFragment),

where R ∈ {contains, contains2, contains3};
(3) TextFragment � (≤ 2)contains2. T extFragment;

(4) TextFragment � (≤ 3)contains3. T extFragment.

(5) SubObjectProperty(contains2, contains)

(6) SubObjectProperty(contains3, contains)

The first (resp. second) OWL axiom says that the Domain
(resp. Range) of all three roles is TextFragment. The
third (resp. fourth) puts a constraint on contains2 (resp.
contains3): any given TextFragment instance can only
be related with at most two (resp. three) TextFragment
instances. The fifth and the sixth state that contains2 and
contains3 are sub-roles of contains. A usage scenario of
this textual ontology is given in Section 5.

In this same language ontology, we can have various lin-
guistic annotation types. In this paper, we take the noun com-
pound modifier (nn for short, (Marneffe, Maccartney, and
Manning 2006; Séaghdha 2008)) as an example. But other
linguistic annotation types can be represented, e.g. any set
of binary syntactic relations with the help of as many roles,

9//http://www.w3.org/TR/2008/
WD-owl11-syntax-20080108/. For writing simplicity,
we ignore ontology prefixes before ontological elements.

or POS tagging with the help of relation hasPos and POS
constants, as in hasPos(tf, Verb).

3.3 Interpreting Semantic Annotations

Annotating is attaching a label to a text fragment, but does
not decide precisely how this attachment must be inter-
preted: this depends on the intention supporting the attach-
ment. Below is an informal description of our interpretation,
while the formal one is given in section 4.

For the sa:Concept (resp. sa:Role) annotation type, if a
text fragment tf is annotated by a concept or a role, the in-
tention is to state that the meaning of tf is covered by its an-
notation — but not necessarily equal to it (the exact meaning
can be a subtype of the annotation). In practice, it often hap-
pens that a concept which is not the exact meaning is cho-
sen to annotate a text fragment. This happens either because
sometimes the most refined annotations are not necessary
for applications, or because they are hard to be discovered
or lack in the given semantic ontology. For annotations of
type sa:Individual, the meaning of the text fragment is sup-
posed to be the instance in the semantic ontology. Finally,
for annotation type sa:Ind-Con, it states that the meaning of
the text fragment is a special instance of the annotation con-
cept, and the choice of the concept is a matter of relevance.

4 Formalism for Reasoning with Annotations

This section provides a formalism for reasoning with anno-
tations of texts. Syntactically, it considers a domain ontol-
ogy, a language ontology, and annotation assertions using
four possible annotation types. To allow inferences on anno-
tations, the interpretation is higher-order. Then reasoning is
done by a reduction to classical OWL semantics, which en-
ables us to invoke highly optimized OWL reasoners to infer
from syntactic and semantic annotations taking into account
the domain and language ontologies. Due to space limita-
tion, examples are found in Section 5 and proofs are left out.

4.1 Syntax

Description logic (DL) languages, the logics underlying
OWL, are the syntactic base of our formalism. We as-
sume that readers are familiar with basic description logics;
(Baader et al. 2003) provides a comprehensive background.

Each classical DL language L assumes a vocabulary NL

composed by three pairwise disjoint parts: a set of concept
names (or atomic concepts) Nc, a set of role names Nr, and
a set of individuals Ni. Then, complex concepts are built
from NL by a set of concept construction operators of L. In
this paper, we use the DL language ALCH whose complex
concepts can be defined inductively as follows, where A ∈
Nc, R, S ∈ Nr:

C → A | C1 � C2 | C1 � C2 | ¬C | ∀R.C | ∃R.C

Axioms in ALCH can be in the form of C � D,R �
S,A(a), and R(a, b) with a, b ∈ Ni. More expressive do-
main and language ontologies, not required for our current
application scenario, can be treated similarly if necessary.

In the formalism, we are given three pairwise disjoint sets
of names Ntype, Ndomn, Nlang , where Ntype={sa:Concept,
sa:Role, sa:Individual, sa:Ind-Con}, Ndomn and Nlang are

194

vocabularies of a domain ontology Odomn and a language
ontology10 Olang , respectively. The set of concepts (resp.
roles, individuals) names of an ontology O is denoted as
Concept(O) (resp. Role(O), Individual(O)), or, abusing the
notation, Concept(NO) (resp. Role(NO), Individual(NO)).

Definition 1 (Semantic annotation assertion) A semantic
annotation assertion is a triple in the form of 〈tf, ot, at〉 sat-
isfying tf ∈ TextFragment and the following conditions:

• If at ∈ {sa:Concept, sa:Ind-Con}, then ot ∈
Concept(Odomn);

• If at ∈ {sa :Role}, then ot ∈ Role(Odomn);
• If at ∈ {sa:Individual}, then ot ∈ Individual(Odomn);

Finally, a text annotation knowledge base is defined below:

Definition 2 A text annotation knowledge base is TaKb =
Odomn ∪ Olang ∪ AnnoAsserSet, where AnnoAsserSet
is a set of semantic annotation assertions.

4.2 Semantics

As illustrated in Section 3, semantic concepts or roles need
to be dealt with as individuals when annotating text frag-
ments, and as concepts or roles to perform reasoning on an-
notations. All the same, different text fragments may be in-
terpreted one as concept, another as role or individual. We
now extend classical model-theory semantics of description
logics with the ability of interpreting annotation assertions,
which is inspired by the higher-order semantics of descrip-
tion logics (Giacomo, Lenzerini, and Rosati 2009). An in-
terpretation I is first defined, which interprets the semantic
elements and the text fragment individuals in a higher-order
way, leaving other elements of the language ontology and
the four annotation types interpreted classically.

Definition 3 For a text annotation knowledge base TaKb,
an interpretation I is a 4-tuple (Δ, Ii, Ic, Ir), where the
set Δ is called the domain of I , and where the mappings
Ii, Ic, Ir satisfy:

1. Ii : Ndomn ∪ Individual(Nlang) → Δ;
2. Ic : Δ ∪ Concept(Nlang) → 2Δ ;
3. Ir : Δ ∪ Role(Nlang) ∪Ntype → 2Δ×Δ;

An interpretation I = (Δ, Ii, Ic, Ir) is called extensible if
and only if Ii can be extended to a mapping of complex con-
cepts of the domain ontology into Δ such that:
- Ic(Ii(¬C)) = Δ \ Ic(Ii(C));

- Ic(Ii(C ∧ C ′)) = Ic(Ii(C)) ∩ Ic(Ii(C
′));

- Ic(Ii(C ∨ C ′)) = Ic(Ii(C)) ∪ Ic(Ii(C
′));

- Ic(Ii(∀R.C)) = {x | ∀y.(x, y) ∈ Ir(Ii(R)) implies y ∈
Ic(Ii(C))};

- Ic(Ii(∃R.C)) = {x | ∃y.(x, y) ∈ Ir(Ii(R)) and y ∈
Ic(Ii(C))}.

Definition 4 Given an extensible interpretation I ,

10Nlang contains at least {TextFragment, contains,
contains2, contains3}. Other concepts in Nlang can be the con-
cept POS with instances Verb, Noun, Adj, Adv, etc. Other roles can
be nn as discussed in Section 5 and hasPos in Section 3.2.

• I satisfies C � D if and only if Ic(Ii(C)) ⊆ Ic(Ii(D))
for C,D in Odomn, Ic(C) ⊆ Ic(D) otherwise;

• I satisfies R � S if and only if Ir(Ii(R)) ⊆ Ir(Ii(S)) for
R,S in Odomn, Ir(R) ⊆ Ir(S) otherwise;

• I satisfies C(a) if and only if Ii(a) ∈ Ic(C) for C ∈
Concept(Nlang) and Ii(a) ∈ Ic(Ii(C)) otherwise;

• I satisfies S(a, b) if and only if (Ii(a), Ii(b)) ∈ Ir(S) for
S ∈ Role(Nlang) ∪Ntype and (Ii(a), Ii(b)) ∈ Ir(Ii(S))
otherwise.

Definition 5 (Satisfiability of Semantic annotations) An
interpretation I satisfies a semantic annotation assertion
TA = 〈tf, ot, at〉, written I |=e TA, if and only if I is
extensible and satisfies:

• (tf, Ii(ot)) ∈ Ir(at)

• Ii(tf) = Ii(ot) if at = sa:Individual;
Ic(Ii(tf)) ⊆ Ic(Ii(ot)) if at = sa:Concept;
Ii(tf) ∈ Ic(Ii(ot)) if at = sa:Ind-Con;
Ir(Ii(tf)) ⊆ Ir(Ii(ot)) if at = sa:Role.

Given a text annotation knowledge base TaKb =
Odomn ∪Olang ∪ AnnoSet, an interpretation I satisfies (is
a model of) TaKb, written I |=e TaKb, if and only if I
is extensible and satisfies Odomn, Olang , and AnnoSet, as
defined above. TaKb is said satisfiable if it has a model.

For the computation of the satisfiability of text annota-
tions as defined above, it can be achieved by adopting the
reduction method given in (Giacomo, Lenzerini, and Rosati
2009) such that the satisfiability checking of TaKb can be
reduced to the classical satisfiability checking of a trans-
formed DL ontology. Due to the space limitation, we omit
details here.

4.3 SWRL Rules for Reasoning with Annotations

Reasoning with annotations can include different aspects,
among which is the inconsistency checking of a set of se-
mantic annotations regarding to a domain ontology as dis-
cussed above (see A in Figure 2). Another aspect is to use
SWRL rules to produce more conclusions on semantic and
syntactic annotations. This can be illustrated by the B part in
Figure 2 and is further detailed in Section 5.

Semantic
Annotations

Syntactic
Annotations

Domain
Ontology

SWRL
Rules

(In)consistent?

(B)

(B)(A)

Figure 2: Reasoning with Annotations

Note that the B part of Figure 2 does not consider domain
ontology. In this way, higher-order semantics of SWRL rules
is avoided, since the plain set of semantic and syntactic an-
notations together with the SWRL rules (see Section 5) only
form a classical SWRL rule base.

195

5 Application and Implementation

In this section, to show benefits of providing a platform for
reasoning with various kinds of annotations of texts, we ex-
tend the language ontology Olang with the extra syntactic
annotation type nn (noun compound modifier).

Focusing on noun compound is a good choice to exem-
plify the cooperation because, compared to roles, concept
names are dominant in the given domain ontology11 (211
classes vs. 37 roles). In consequence, noun phrases are more
often semantically annotated by concepts. Quantitatively,
among 808 semantic annotations we have on the corpus,
53% contain text fragments with at least one nn annotation.
Whilst, among 660 syntactic annotation nn on the corpus,
64% have at least one semantic annotation associated to their
text fragments. Considering that there are 48 syntactic de-
pendency types defined by Stanford Parser12, these numbers
mean that the overlap between semantic annotations and nn
annotations is remarkable. Indeed, in recent years there has
been significant ongoing interest in noun compound in NLP
(Séaghdha 2008; Kim and Baldwin 2006), mainly concerned
with using suitable paraphrasing verbs or prepositions to in-
terpret relations between noun components13. Applications
include machine translation, page ranking and query re-
finement. Contrarily, our work aims to detect missing and
erroneous (syntactic/semantic) annotations for noun com-
pounds.

In the following, four SWRL rules are introduced with
examples to show the benefits of analyzing annotations
together, including propagating new semantic annotations
(Rules 1 and 2), reporting missing semantic annotations
(Rule 3), and detecting incoherence between syntactic and
semantic annotations (Rule 4). Generated semantic annota-
tions are checked for consistency with respect to domain on-
tology in our platform, which is necessary to assure their
soundness. Table 1 gives the statistics about the coverage of
the rules for our annotated corpus. These rules cover most
of nn instances in our corpus except 235, either by the lim-
itation of logical rule language or the lack of semantic an-
notations. This is reasonable since not every sentence in the
corpus is semantically related to domain ontology.

Adopting Stanford Parser notations, nn(tf1, tf2) is used
to say that tf1 (the head) and tf2 (the modifier) have nn
syntactic relation, where tf1, tf2 are text fragments. Since a
semantic annotation is frequently associated with more than
one word, different from Stanford Parser, our formalism al-
lows for multi-word text fragments. Text fragments are gen-
erated as follows: 1. Each word is a text fragment; 2. A group
of two (resp. three) consecutive words is a text fragment,
which has contains2 (resp. contains3) relation with the in-
ner smaller text fragments. For example, if tf1 and tf2 are
the first and second words in a sentence, they are 1-word
text fragments and tf12 (the 1st and 2nd words together)
is a 2-word text fragment. Moreover, contains2(tf12, tf1),

11available on http://ontorule-project.eu/
outcomes?func=fileinfo&id=32

12http://nlp.stanford.edu/software/
lex-parser.shtml

13https://docs.google.com/View?docid=
dfvxd49s_35hkprbcpt

Type of nn Number Appl. rule
head 186 Rule 1
modifiers only but no head 134 Rule 3
two modifiers together 49 Rule 4
head and one modifier together 10 Rule 2
none 235 none

Table 1: Coverage of Rules on the Annotated Corpus, where “type
of nn” is divided based on whether its head or its modifiers are
semantically annotated. For example, the type “head but not modi-
fiers” means that its head has semantic annotation but not any mod-
ifier. The “Appl. rule” is the rule that can be applied directly without
considering recursive reasoning.

contains2(tf12, tf2) are in Olang . Similarly for 3-word text
fragments.

Rule 1 (Recognizing semantic annotations)
nn(tf2, tf1)∧contains2(tf3, tf1)∧contains2(tf3, tf2)∧
〈tf2, A, sa:Concept〉 → 〈tf3, A, sa:Concept〉
That is, if the head of nn is semantically annotated by con-
cept A, the whole text fragment containing the head and
modifier should have the same semantic annotation A.

For the sentence in the corpus “Your summary includes
participant mileage”, its syntactic and semantic annotation
are nn(tf4, tf5) and 〈tf5, AA Mileage, sa :Concept〉,
where tf4 (“participant”) and tf5 (“mileage”) are 1-word
text fragments. By Rule 1, a new semantic annotation 〈tf45,
AA Mileage, sa :Concept〉 can be recognized for the 2-
word text fragment tf45 (“participant mileage”).

Rule 2 (Recognizing semantic annotations)
nn(tf3, tf1) ∧ nn(tf3, tf2) ∧
〈tf23, B, sa:Concept〉 ∧ ∧

i=2,3 contains2(tf23, tfi) ∧
∧

i=1,2,3 contains3(tf123, tfi) → 〈tf123, B, sa:Concept〉.
This is a 3-word text fragment case extension of Rule 1. That
is, for a text fragment tf123 = tf1tf2tf3 with syntactical
structure nn(tf3, tf1) and nn(tf3, tf2), if its sub-text frag-
ment tf2tf3 has a concept semantic annotation, tf should
have the same semantic annotation. This is the case of the
sentence: “AAdavantage flight mileage credit is determined
on the basis of nonstop distances...” with a semantic annota-
tion 〈tf2tf3 , Mileage Credit, sa:Concept〉 for 2-word one
tf2tf3 (“mileage credit”). By nn relations among 1-word
text fragments tf1 (“flight”), tf2 (“mileage”), tf3 (“credit”),
this rule says that the 3-word text fragment “flight mileage
credit” should have a semantic annotation Mileage Credit.

Rule 3 (Reporting missing semantic annotations)
nn(tf2, tf1) ∧ 〈tf1, A, sa:Concept〉 →
〈tf2, U∗, sa:Concept), where U∗ is a new concept name.

That is, if the modifier of nn has some semantic annotation
concept, the head should be semantically annotated, but by
which concept is unknown. Intuitively, if a modifier carries
some meaningful semantic information, so should its head.
An example sentence is “AAdvantage flight awards may not
be combined with other AAdvantage flight awards” with
annotations nn(AAdvantage, awards) and 〈AAdvantage,
AA Program, sa :Concept〉 hold but leaving no semantic

196

annotation for the text fragment “awards”. For this, Rule 3
reports that semantic annotation for “awards” is missing (in-
dicated by the semantic label U∗).

Rule 4 (Conflicting syntactic & semantic annotations)
nn(tf3, tf1) ∧ nn(tf3, tf2) ∧ 〈tf12, A, sa:Concept〉 ∧
contains2(tf12, tf1) ∧ contains2(tf12, tf2) ∧ tf1 �=
tf2 → isWrongNN(tf3, tf1) ∧ addNN(tf2, tf1), where
isWrongNN and addNN are two new roles to report a wrong
nn relation and to suggest a new nn relation between two
text fragments, respectively.

That is, for a text fragment like tf1tf2tf3 if tf3 is the nn
head of tf1, tf2, but tf12 = tf1tf2 is a text fragment with
some semantics, then it is highly potential that nn(tf3, tf1)
is wrong but nn(tf2, tf1) holds. An example is “Only in-
dividual persons eligible for AAdavantage program mem-
bership” with annotations nn(tf3, tf1), nn(tf3, tf2), and
〈tf12, AA Program,sa:Concept〉 with 1-word text frag-
ments tf1 (“AAdvantage”) and tf2 (“program”), and 2-word
text fragment tf12 (“AAdavantage program”).

The reasoning formalism in Section 4 and this use case
has been implemented in our system prototype in Java. Text
corpus stored as RDF is processed using Jena to extract
text fragments and the relationship between consecutive text
fragments. Semantic annotations (RDF format) and Syntac-
tic annotations (XML format) are input for the system and
the SWRL reasoning service is implemented by using Pel-
let14. In whole, various kinds of annotations of texts can be
reasoned with by invoking highly-optimized reasoners.

6 Conclusion and Perspectives

We have motivated and formally defined an approach for
reasoning with annotations of texts with respect to various
kinds of background knowledge. Our approach is based on
an extended higher-order description logic. An application
scenario has illustrated that linguistic and semantic annota-
tions are mutually beneficial for deducing extra annotations
or detecting problematic ones. A tool has been developed
and implemented via a reduction to classical entailment such
that state-of-the-art ontology reasoners can be reused for
reasoning with text annotations.

The approach opens two perspectives for future work.
First we shall study in detail more linguistic and semantic
annotation types to discover new rules and gain more knowl-
edge. Second, the added annotations can also in principle
improve results of other tools. Richer treatment architectures
become possible if new or problematic annotations can be
re-injected in some tools, possibly interactive ones. We shall
define and experiment some re-injection architectures.

7 Acknowledgments

This work was realized as part of the Quaero Programme
(funded by OSEO, French State agency for innovation) and
of the FP7 231875 ONTORULE project. We are thankful to
American Airline who is the owner of the corpus that has
been used as a working example within the ONTORULE
project.

14http://clarkparsia.com/pellet

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press,.
Enjalbert, P.; Habert, B.; and Bontcheva., K., eds. 2008.
Platforms for Natural Language Processing, volume 49-2
of TAL. Atala.
Fallucchi, F.; Pazienza, M. T.; Scarpato, N.; and Stellato, A.
2008. Semantic turkey - a new web experience in between
ontology editing and semantic annotation. In Cordeiro, J.;
Filipe, J.; and Hammoudi, S., eds., WEBIST (2), 90–97.
Giacomo, G. D.; Lenzerini, M.; and Rosati, R. 2009. On
higher-order description logics. In Grau, B. C.; Horrocks,
I.; Motikand, B.; and Sattler, U., eds., Description Logics,
volume Vol. 477. Oxford: CEUR Workshop Proceedings.
Kim, S. N., and Baldwin, T. 2006. Interpreting semantic
relations in noun compounds via verb semantics. In Pro-
ceedings of the COLING/ACL on Main conference poster
sessions, 491–498. Morristown, NJ, USA: Association for
Computational Linguistics.
Kiryakov, A.; Popov, B.; Ognyanoff, D.; Manov, D.; and
Goranov, K. M. 2004. Semantic annotation, indexing, and
retrieval. Journal of Web Semantics 2:49–79.
Lévy, F.; Nazarenko, A.; Guissé, A.; Omrane, N.; and Szul-
man, S. 2010. An environment for the joint management
of written policies and business rules. In Gregoire, E., ed.,
22th IEEE International Conference on Tools with Artificial
Intelligence, volume 2, 142–149.
Ma, Y.; Nazarenko, A.; and Audibert, L. 2010. Formal de-
scription of resources for ontology-based semantic annota-
tion. In LREC 2010.
Marneffe, M.-C. D.; Maccartney, B.; and Manning, C. D.
2006. Generating typed dependency parses from phrase
structure parses. In LREC 2006.
Poon, H., and Domingos, P. 2007. Joint inference in infor-
mation extraction. In AAAI 2007, 913–918. AAAI Press.
Reiss, F.; Raghavan, S.; Krishnamurthy, R.; Zhu, H.; and
Vaithyanathan, S. 2008. An algebraic approach to rule-
based information extraction. In Proceedings of the 2008
IEEE 24th International Conference on Data Engineering,
933–942. Washington, DC, USA: IEEE Computer Society.
Séaghdha, D. O. 2008. Learning compound noun semantics.
Technical Report 735, Computer Laboratory, University of
Cambridge.
Shen, W.; Doan, A.; Naughton, J. F.; and Ramakrishnan, R.
2007. Declarative information extraction using datalog with
embedded extraction predicates. In Proceedings of the 33rd
international conference on Very large data bases, VLDB
2007, 1033–1044. VLDB Endowment.
Suchanek, F. M.; Sozio, M.; and Weikum, G. 2008. Sofie: A
self-organizing framework for information extraction. Tech-
nical Report 5-004, Max Planck Institute, Saarbrcken.
Uren, V.; Cimiano, P.; Iria, J.; Handschuh, S.; Vargas-Vera,
M.; Motta, E.; and Ciravegna, F. 2006. Semantic annotation
for knowledge management: Requirements and a survey of
the state of the art. Journal of Web Semantics 4(1):14–28.

197

