
Active and Interactive Discovery of Goal Selection Knowledge

Jay Powell1, Matthew Molineaux2, and David W. Aha3 

1Computer Science Department; Indiana University; Bloomington, IN 47405
2Knexus Research Corporation; Springfield, VA 22153

3Navy Center for Applied Research in Artificial Intelligence; Naval Research Laboratory (Code 5514); Washington, DC 20375 
jhpowell@cs.indiana.edu | matthew.molineaux@knexusresearch.com | david.aha@nrl.navy.mil

Abstract 
If given manually-crafted goal selection knowledge, goal 
reasoning agents can dynamically determine which goals 
they should achieve in complex environments. These agents 
should instead learn goal selection knowledge through 
expert interaction. We describe T-ARTUE, a goal reasoning 
agent that performs case-based active and interactive 
learning to discover goal selection knowledge. We also 
report tests of its performance in a complex environment. 
We found that, under some conditions, T-ARTUE can 
quickly learn goal selection knowledge. 

1. Introduction   
Modern autonomous agents can plan, learn, reason, and 
solve problems in the context of many diverse tasks set by 
a human. However, they require a human to specify all 
their goals. An important aspect of autonomy is the ability 
to self-select goals. We are studying methods for a new 
generation of goal reasoning agents that can select their 
own goals without human guidance (Ram and Leake 1995; 
Cox 2007). 

Some agent architectures (e.g., Soar (Laird and 
Rosenbloom, 1990)) achieve many goals by recursively 
decomposing top-level goals into all other goals the agent 
might ever pursue. While this can define many interesting 
agents, it is restrictive. Agents that represent the relative 
importance of each goal and explicitly manage their
pending goals (i.e., those they are currently pursuing)
should perform more robustly in dynamic environments.  

In this paper, we extend the Autonomous Response to 
Unexpected Events (ARTUE) agent, which performs goal 
formulation and goal management in the context of a Goal-
Driven Autonomy (GDA) model for continuous planning 
(Molineaux et al. 2010). ARTUE formulates its goals using 
rule-based principles, which describe situations where 
specific goals should be formulated and their relative 
importance. Although ARTUE can formulate and manage 
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new goals to properly respond to developing situations, it 
cannot respond to novel situations (i.e., those for which it 
lacks manually-encoded knowledge for goal selection and 
prioritization). However, if ARTUE could learn this 
knowledge, it would exhibit even greater autonomy.  

We extend ARTUE with the ability to learn goal 
selection knowledge through interaction with an expert. 
We frame this as a case-based supervised learning task that 
employs active learning (AL) (Settles 2009): the agent can 
query a human expert for knowledge rather than be limited 
to consulting its own knowledge sources. We call this 
extension the Trainable Autonomous Response to 
Unexpected Events (T-ARTUE) agent. 

We next describe the GDA model, followed by its 
implementation in ARTUE and related work. We describe 
how goal selection knowledge can be actively and 
interactively learned in §4, T-ARTUE’s learning 
algorithms in §5, and our empirical study in §6. Our results 
indicate that, under some assumptions, T-ARTUE’s 
performance quickly attains the level of ARTUE. 

2. Goal-Driven Autonomy  
GDA is a conceptual model for online planning in 
autonomous agents (Molineaux et al. 2010). It separates 
the planning process from procedures for goal formulation 
and goal management. Special formalisms (e.g., Dal Lago 
et al. 2002) exist for managing goals during planning. 
However, these require a specific planner, whereas the 
GDA model can be paired with an arbitrary planner. In 
Figure 1, we illustrate how GDA extends Nau’s (2007) 
model of online planning: it expands and details the scope 
of the Controller, which interacts with a Planner Π and a 
State Transition System Σ (an execution environment). 

System Σ is a tuple (S,A,F,γ) with states S, actions A,
exogenous events F, and state transition function γ:
S�(A�F)�2S, which describes how an action’s execution 
or an event’s occurrence transforms the environment’s 
state. In complex environments, the agent has only partial 
access to the state, events, and state transition function. 
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The Planner receives as input a planning problem 
(MΣ,sc,gc), where MΣ models Σ, sc is the current state, and 
goal gc can be satisfied by some states Sg�S. It outputs a 
plan pc, which is a sequence of actions Ac=[ac,…,ac+n], and 
a corresponding sequence of expectations Xc=[xc,…xc+n], 
where xi�Xc is a set of state constraints corresponding to 
the sequence of states [sc+1,…,sc+n+1] expected to occur 
when executing Ac in sc using Σ. 

The Controller takes as input initial state s0, initial goal 
g0, and MΣ, and gives them to the Planner to generate plan 
p0 and expectations X0. The Controller then forwards p0’s 
actions to Σ for execution and processes the resulting 
observations, which may also reflect the processing of 
other agents’ actions or events from an Event Generator.  

During plan execution, a GDA Controller performs the 
following four knowledge-intensive tasks:  
Discrepancy detection: GDA detects unexpected events by
comparing sc+1 with xc�X (i.e., it tests for constraint 
violations corresponding to unexpected observations). If a
discrepancy d of one or more differences exists, then 
explanation generation is performed to explain it.
Explanation generation: The cause for a detected 
discrepancy d must be revealed so that it can be resolved.
Given a state sc and d, this task hypothesizes an
explanation e of its cause.  
Goal generation: Resolving a discrepancy may warrant a 
change in the current goal(s). This task generates a goal g
in response to d, given e and sc.
Goal management: Given a set of pending goals GP and 
new goal g, this task will update GP (e.g., by adding g or 
deleting/modifying other pending goals) and select the next 
goal g′�GP to be given to the Planner.  

GDA does not prescribe specific types of algorithms for 
these tasks, and treats the Planner as a black box. In 

contrast to reactive planners (e.g., Firby 1987)), GDA 
agents use expectation failures for goal formulation. 

3. ARTUE and Related Work  
ARTUE is a GDA agent. It uses set-difference to detect 
discrepancies and an assumption-based truth maintenance 
system (ATMS) (de Kleer 1986) to generate explanations. 
ARTUE calls SHOP2 (Nau et al. 2003) to generate plans,
where we assume a mapping exists from any goal to be 
achieved to a SHOP2 task that achieves it. Molineaux et al. 
(2010) reported that ARTUE performs well on scenarios 
defined using the TAO Sandbox (see §4). 

To perform goal generation and management, ARTUE 
uses expert-provided principles, which encode goal 
selection knowledge. T-ARTUE instead learns it via a 
case-based active and interactive learning algorithm. 
Research on AL, both case-based and otherwise, tends to 
focus on strategies for determining which labels to request 
in the context of classification tasks (e.g., Hu et al. 2010;
Sculley 2007). We also focus on a classification task, but 
in a GDA online planning context.

Two groups have investigated case-based GDA for 
controlling agents in complex video games. First, Weber et
al. (2010) introduced a case-based approach for goal 
formulation. They define it as the tasks of (1) locating a 
case c whose goal state c.s is most similar to the current 
goal g, (2) computing difference d=c′.s-c.s, where c′.s is a 
future goal state of c after executing n actions, and (3) 
adding d to g. Our work differs in that goal selection is 
triggered by a state discrepancy and cases are learned using 
AL and interactive feedback processes. Second, Muñoz-
Avila et al. (2010) used two manually-engineered case 
bases for their GDA algorithm, which (1) fetches the next 
expected state ci.x from a case ci whose state and goal 
states are maximally similar to the current versions, (2) 
detects whether ci.x differs from xnext, and if so (3) retrieves 
a goal state corresponding to this discrepancy. In contrast, 
T-ARTUE learns to acquire cases for goal selection. 

Finally, while goal reasoning research has focused on a
variety of interesting tasks, no prior work exists on AL for 
GDA (Aha et al. 2010). 

4. Discovery of Goal Selection Knowledge 
We describe three types of structured interactions between 
an agent and an expert through which the agent can learn 
goal selection knowledge: (1) goal selection queries, (2) 
generalization confirmation queries, and (3) goal selection 
criticism. The first two are system-initiated AL techniques 
(occurring when the system is unable to formulate a goal),
whereas the third is user-initiated. These interactions 
facilitate online learning, allowing an agent to derive a
procedure for goal selection that meets the expert’s needs. 

Figure 1: Goal-Driven Autonomy Conceptual Architecture
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We define scenarios from the TAO Sandbox (Auslander 
et al. 2009) to exemplify these interaction types. It is a US 
Navy simulator for training Tactical Action Officers in 
anti-submarine warfare (Figure 2). Trainees control assets 
(ships, planes, helicopters) by giving instantly-executed 
orders. Autonomous mission planning in the TAO Sandbox 
is a continuous planning problem (desJardins et al. 1999). 
This environment is partially observable, dynamic, and 
open with respect to the introduction of new objects. Thus,
opportunities and failures can arise that benefit from a goal 
reasoning process. However, this requires substantial 
engineering effort, which motivates the development of 
agents that can learn new goal selection knowledge. 

4.1 Goal Selection Queries 
In this interaction type, the agent queries an expert for the 
goal to select in the current state. This resembles other AL
processes, but is more constrained due to the nature of the 
online task, where the agent must experience and respond 
to states in an order determined by its environment, and 
has no knowledge of future states. Therefore, it only makes 
sense for the agent to query an expert regarding the current 
state, rather than an arbitrarily chosen example, as is
common in AL research (Settles 2009).  

The agent’s query includes (1) a comprehensive state 
description (that the expert can use to make a decision) and 
(2) a set of goals (that the Planner can accept). The expert 
must respond with a single selected goal. For example, a 
TAO Sandbox agent may request a goal when observing 
the first signs of an approaching storm. To do this, it forms 
a state description (e.g., locations and velocities of all 
known vessels and possible destinations), and enumerates a
list of the goal types it understands. It communicates these 
to the expert, who responds by selecting any of the infinite 
set of possible goal for this state, such as (sheltered ship1).  

4.2 Generalization Confirmation Queries 
Here the GDA agent requests confirmation of its learned 
goal selection knowledge. This enables it to get feedback 
on its hypothesized generalizations of user-provided goal 
selection knowledge with respect to the current state. 
These queries are less constrained than goal selection 

queries, as the agent can hypothesize arbitrary connections 
based on prior learning, and are thus more similar to 
traditional AL techniques.

These queries include (1) a description of the current 
state and (2) a set of hypothesized generalizations, where 
each describes the process the agent used for goal selection 
and the selected goal. The user can reply by confirming 
zero or more of the hypothesized explanations. For 
example, suppose a TAO Sandbox agent sees signs of 
another storm. It recalls prior similar occasions where the 
expert advised it to select the goal (sheltered ship1). Thus, 
it forms a query by (1) creating a state description and (2) a 
list of generalizations (e.g., the deductive rule “(storm-
signs) � (goal-select (sheltered ship1))” and the selected 
goal (sheltered ship1)). These are displayed, and the expert 
responds by indicating which (if any) are confirmed. 

4.3 Goal Selection Criticism 
This interaction is expert-initiated. After an expert 
observes an agent operating in an environment, they may 
critique it (e.g., indicate that a goal selected in a given state 
was not correct). This may help the agent to recover from 
learned over-generalizations.  

In this interaction: (1) the user requests a justification 
for goal selections (e.g., within a given time interval); (2) 
the agent presents its decisions (i.e., a list of states and 
goals selected); and (3) the user provides a critique (i.e., 
selected states and goal recommendations). For example, 
suppose the agent learned to return to its original goal 
(transport cargo destination) after a storm passes.
However, in state s a nearby ship2 requests assistance. Not 
recognizing this as a significant difference, the agent 
selects the (transport cargo destination) goal. Seeing this 
incorrect behavior, the expert later requests a justification.
The agent responds with its relevant decisions and the user 
highlights the agent’s mistake, explaining that in state s,
the goal (render-aid ship2) should be selected. 

5. Learning in T-ARTUE 
During training, we run a simulator that gives T-ARTUE a
stream of TAO Sandbox states, from which it learns its 
Goal Generator knowledge. When its prediction 
confidence is low, T-ARTUE uses the AL techniques 
described in §4.1 and §4.2, and the expert can also provide 
feedback after a trial ends (§4.3).

If at time t T-ARTUE observes a discrepancy dt
(between xt and st), it calls the Explanation Generator to 
generate explanation et. Then, the Goal Generator predicts 
a goal gt to resolve dt (given et and st) using case base C.
We next describe T-ARTUE’s case representation, 
retrieval and reuse algorithms, and its learning techniques. 

Figure 2: An Annotated Screenshot from the TAO Sandbox
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5.1 Case Representation 
Each case is a pair c = {prob,sol}, where prob={s,d,e}, s is 
the recorded state, d is the discrepancy at that time, and e is 
the explanation (i.e., a set of beliefs) T-ARTUE generated 
in response to d in s. A case’s solution is a tuple sol={g,i}, 
where g is the goal that T-ARTUE selected to resolve d,
and i is its discrete goal intensity level (i.e., a fixed value 
proportional to the importance of satisfying g).

Each problem component is represented by a set of 
literals, which are logical expressions that ascribe a 
predicate to zero or more constants. There are 40-70
literals per problem. T-ARTUE maintains a weight with 
each literal in a problem, and these are all initially set to 1. 

5.2 Retrieval and Reuse 
T-ARTUE uses a weighted nearest neighbor rule to
compute the feature similarity of new problem probt at time 
t with the problem ci.prob of each case ci�C as follows: 

where j and k are literals, wi,k is k’s weight, W is the sum of 
ci.prob’s literal’s weights, and 1(j,k) tests whether j=k.
Equation 1 yields a value in [0,1]. Equation 2 transforms 
this value to account for case intensity:  

where ci.int is case ci’s intensity, and we set α=6 and β=10. 
This prevents cases with high intensity and low similarity 
from overriding cases with the inverse. 

At time t, the Goal Generator retrieves the goal ct.g of 
the most similar case ct and outputs it to the Goal Manager.

5.3 Retention and Maintenance: Active Learning 
Figure 3 displays T-ARTUE’s learning processes. The 
probability that it will request a label (i.e., a goal to 
formulate and its intensity) is p(1-sim(probt,ct.prob,ct.int)),
where ct is the retrieved case. (Initially, T-ARTUE will 
always request a label to seed the case base.) If it requests 

a label, it will (1) request it from the user, or (2) present a 
set of hypotheses describing the goals it believes apply, 
from which the user can confirm or reject some subset.
Goal Selection Queries 
These queries yield a new case. Many literals in a case c’s 
problem (e.g., positions and velocities of vehicles) are 
contextually irrelevant to c’s goal and will vary greatly 
during trial runs. A few literals of a case problem (typically 
1-5) will suffice to identify the goal’s applicable context.
Relying on initially equal weights for case retrieval can 
yield poor performance. Thus, T-ARTUE adapts weights 
to increase goal selection accuracy, as described below. 
Explanation Confirmation Queries 
T-ARTUE generalizes cases to increase predictive 
accuracy. For example, the first time signs of a storm are 
observed, it creates a case describing the current state (e.g., 
positions and velocities of all vehicles, and the literal 
(storm-signs)) and the new goal (sheltered ship1). The next 
time a storm is observed, it will not retrieve a case that 
recommends (sheltered ship1) because the new state will 
differ, causing it to retain another case. However, after it
acquires several cases with the same goal, it can generate 
hypotheses that generalize its case knowledge. 

T-ARTUE’s rule-based hypotheses describe problem 
similarities among cases with the same goal, and define 
when a goal should be formulated. Rules are generated 
using Apriori (Agrawal and Srikant 1994), which takes a 
set of cases as input and searches for frequently occurring 
itemsets (conjuncts of literals) within their problems. A 
frequent itemset is one that appears in at least � cases (we 
set �=3) and all of its subsets are frequent. Frequent 
itemsets of length k are generated from frequent itemsets 
of length k-1. This process recurses, with increasing values 
of k, until none are found. Rules are then generated whose 
antecedent is a maximal-length frequent itemset and whose 
consequent is a corresponding goal.  

This set of hypotheses H is presented to the user, who 
can confirm a subset H′�H or reject them all. If the former, 
then T-ARTUE locates all cases C′�C whose problems 
each match at least one hypothesis in H′. For each case 
ci�C′, the weight wi,j for each of its literals li,j is updated. 
The squared error of the existing weight is defined relative 
to the probability that li,j appears in H′: 

The space of possible weights per case is searched using 
stochastic gradient descent, where weight updates 
correspond to the derivative of the squared error (Equation 
3) multiplied by a learning rate η (we set η=0.6). 

If the user rejects all the hypotheses, then the user must 
provide a goal and intensity, which triggers case retention. 

5.4 Goal Selection Criticism 
After a trial a user can critique T-ARTUE’s sequence of 
goal selection decisions (i.e., the goal chosen and the 

Figure 3: T-ARTUE’s Active and Interactive Learning Processes
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problem literals influencing a case’s selection). For each 
decision, the user may (1) recommend a different goal, or 
(2) criticize the weights T-ARTUE used. (See Figure 4.) 

T-ARTUE may fail to transition between goals. For 
example, in one scenario it must rescue a foundered vessel 
before heading to port. Initially, it will not recognize when 
the goal (rescue ship2) has been satisfied, and (at ship1 
destination) should instead be pursued. After a ship is
rescued, the current state includes (rescued ship2). This 
may not appear in cases with the goal (at ship1 
destination), or its weight may be too low to correctly 
classify the appropriate goal. However, after the user 
provides a correct goal, T-ARTUE creates rules describing 
the differences between the case’s and current problem,
and automatically adapts the literals’ weights (see §5.3).
These adaptations are not immediately confirmed by a 
user, but may be corrected after subsequent trials. T-
ARTUE makes many mistakes during its initial learning 
stages, which could cause it to create many similar cases. 
Thus, it attempts to hypothesize generalizations for goals 
provided by the user during criticism (see §5.3). 

 T-ARTUE may choose the correct case but using the 
wrong literal weights. For example, it may choose the goal 
(sheltered ship1) due to the literals (storm-signs), (at-x
helicopter1 35), and (at-y helicopter1 49). The helicopter’s 
position should not influence the decision to seek shelter. 
Thus, the user can tell T-ARTUE that (storm-signs) is the 
only relevant literal. Given this, it would create a rule 
associating the literals selected by the user with the case’s 
goal, and use the algorithm in §5.3 for weight learning. 

6. Empirical Study  
We claim that T-ARTUE can quickly and accurately learn 
to respond effectively in TAO Sandbox scenarios, given 

access to an expert. To test this, we trained it with 30 trials 
for each of two TAO Sandbox scenarios, where trials differ 
in their randomly-generated state conditions. As a baseline, 
we used ARTUE (given its expert-designed goal selection 
knowledge ‒ principles) using these conditions.  

Scenario 1 (Sub Hunt) requires T-ARTUE to respond to 
a nearby ship in distress, submarines, and underwater 
mines. Scenario 2 (Iceberg) requires it to learn to respond 
to a fast-approaching storm, the formation of an iceberg, 
and the foundering of a nearby vessel. Each scenario 
requires T-ARTUE to learn goals to respond effectively. 
We created oracles that automatically respond to T-
ARTUE’s queries, and used them in a set of online 
learning tests. We ran 10 repetitions per scenario, each 
with a different random seed. 

Figure 5 (top) shows the average percentage of this 
“optimum” performance attained by T-ARTUE per 
scenario, using the same random seeds, throughout 
training. For each trial, the oracle provided criticism each 
time T-ARTUE erred. As shown, T-ARTUE maintains 
90% of optimal performance after only 5 trials in Sub Hunt 
and after 15 trials in Iceberg. 

A mixed-initiative system is often more useful if it 
requires less attention from the human collaborator. 
Therefore, we investigated the effect of lowering the 
probability p that the expert would provide criticism by 
repeating the experiments with p={0, .2, .6, 1.0}. For 
example, with a setting of .6, an expert “notices” and 
criticizes T-ARTUE when it chooses a non-optimal goal 
with probability p=.6. Otherwise, the error was ignored.   

The lower two graphs in Figure 5 display the results.
Lower amounts of criticism increase the time required to 
attain the same level of performance, although long term 
performance is not severely affected. However, the lack of 
any criticism can prevent T-ARTUE from attaining a high 
performance level, and can even cause catastrophic failure. 
This is due to an incorrect assumption made early on that 
cannot be corrected through the query processes.  

To determine how much expert interaction was required, 
we examined the number of queries T-ARTUE per training 
repetition. For Iceberg, it averaged 11.2 queries. This
decreased quickly as time progressed: 90% of these 
occurred during the first ten learning trials. This indicates 
that T-ARTUE can survive on its own fairly quickly.  
However, Sub Hunt required 26.9 queries on average, and 
they were distributed more evenly throughout the trial. 
Examining the causes of this is a topic of future research. 

7. Conclusions 
Our study demonstrates that an agent can learn goal 
selection knowledge for immediate use in an online setting.
This is useful for goal reasoning agents that must respond  

Figure 4: Process for Goal Selection Criticism
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effectively to unexpected states in dynamic environments. 
Our results show that active and interactive learning 
techniques allow our agent to perform comparably to when 
its knowledge is manually crafted, given access to a 
sufficiently attentive expert. Our tests also show that a high 
level of expert attentiveness is needed to guarantee good 
performance. Our future work will include improving the 
generalization algorithms so that a lower level of 
attentiveness suffices to constrain the concepts learned by 
T-ARTUE. Finally, we will also examine other means to 
learn goal selection knowledge in goal reasoning agents.  
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