
Aggregating Forecasts Using a Learned Bayesian Network 

Suzanne Mahoney, Ethan Comstock, Bradley deBlois, and Steven Darcy
Innovative Decisions, Inc. 1945 Old Gallows Rd., Suite 207, Vienna, VA 22182 

{smahoney, ecomstock, bdeblois, sdarcy}@innovativedecisions.com

Abstract 
Under the Defense Advanced Research Projects Agency’s 
(DARPA) Integrated Crisis Early Warning System 
(ICEWS), Innovative Decisions, Inc. (IDI) constructed a 
Bayesian network to combine forecasts produced by a set of 
social science models. We used Bayesian network structure 
learning with political science variables to produce 
meaningful priors. We employed a naïve Bayes structure to 
aggregate the forecasts. In both cases, IDI improved 
classification by intelligently discretizing continuous 
variables. The resulting network not only met performance 
criteria set by DARPA, but also out-performed each of the 
social science models across all types of forecasted events. 
We describe the construction of the aggregator as well as a 
set of experiments performed to explore the nature of the 
Bayesian EOI Aggregator’s performance.

Introduction   
For ICEWS, DARPA “seeks to develop a comprehensive, 
integrated, automated, generalizable, and validated system 
to monitor, assess, and forecast national, sub-national, and 
international crises in a way that supports decisions on how 
to allocate resources to mitigate them.”  (O’Brien, 2010) 
Lockheed Martin – Advanced Technology Laboratory 
integrated computational social science models to forecast 
country instability over a set of 29 countries. The 
forecasters used reports from open sources coded by event 
type along with political science variables to produce 
forecasts. IDI’s Bayesian EOI Aggregator combined the 
forecasts into a set of predictions for five types of 
instability events of interest (EOIs): Ethnic-Religious 
Violence, Domestic Political Crisis, Insurgency, Rebellion 
and International Crisis. 

We first describe the process used to construct IDI’s 
Bayesian EOI Aggregator. We then present DARPA’s 
performance criteria and summarize the Phase I ICEWS 
results. We next describe and present the results of several 
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experiments conducted during Phase II. This is followed
by a brief discussion.  

IDI’s Bayesian EOI Aggregator
The Bayesian EOI Aggregator as illustrated by Figure 1 is 
a Bayesian network  (Pearl, 1988) with three types of 
random variables:  

Context variables from the political science 
literature  
EOIs being forecasted 
Forecaster estimates from social science models 

Constructing a Bayesian network has two foci: learning 
the structure and learning the parameters. (Heckerman, 
1999) For ICEWS, data was available for calendar years 
1998-2009 and 29 countries, so parameter learning was 
accomplished using Bayesian parameter learning (Russell 
and Norvig, 2003).  Therefore, the focus of our work was 
to learn the structure of the network and its variables. 

Figure 1: Abstract View of Bayesian EOI Aggregator
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Learning the Context Model 
Figure 2 shows the Bayesian network for the context and 
EOI variables. The states of the context variables represent 
bins formed by discretizing the variables’ continuous 
values. Because some data was systematically missing, we 
assigned it to the special state of -101.  We obtained past 
data for the variables from public sources. Because the 
context model is predictive, we matched the context 
variables with EOI ground truth data provided by DARPA 
by lagging the context variables by at least one calendar 
month. 

Learning the structure of the network presented two 
problems: 1) discretizing the context variables and 
2) learning the structural dependencies among the 
variables. Given that interleaving discretization and model 
structure learning improves the performance of Bayesian 
network classifiers (Hoyt, 2008) we cycled through the 
following steps: 
1) Discretize the context variables: By examining the 

training data, we subjectively clustered values for each 
of the eight continuous variables. Specifically, we 
discretized parents of a dependent variable to improve 
the discrimination among possible values of the 
dependent variable. 

2) Learn the Bayesian network structure:  We used 
Bayes Net Power Constructor (BNPC) to learn the 
structure of the context model. (Cheng, et al, 1998) 
Mutual information and conditional mutual 
information scores guide its construction process. 

3) Learn the parameters: We used NeticaTM to learn the 
conditional probability tables.  

4) Test the resulting structure: We examined the 
performance of a structure by exercising the resulting 

model to determine how well it predicted the EOIs 
using the training data. 

The possible Bayesian network structures for a set of 
nodes is extremely large and structures generated are 
dependent upon the data set. Therefore, we used discretion 
in choosing an appropriate structure (Russell and Norvig, 
2003). We chose a structure that performed well compared 
with other structures and met DARPA guidance: 
specifically DARPA encouraged us to avoid variables that 
could not be changed (e.g. mountainous). 

Learning the Core Aggregation Model  
Figure 3 shows the portion of the aggregator used to 
capture the EOI estimates for Ethnic Religious Violence. 
There are corresponding sets of nodes for the other EOIs.  

The Core Aggregation Model is a set of conditional 

Figure 2 Context Variables with EOIs (Phase II Model)
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Figure 3 Example of Core Aggregation Model
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probability tables (CPTs), one for each forecaster’s 
estimate for a given EOI. The nodes representing the 
forecaster estimates and their relationships with the EOI 
follow a naïve Bayes pattern (Duda and Hart, 1973). We 
selected this structure for several reasons: 1) In spite of its 
simplicity, naïve Bayes is known to perform well over a 
wide range of classification problems (Friedman, et al, 
1997); 2) It is simple to implement and learn; 3) The 
structure made adding or removing a forecaster a 
straightforward exercise, independent of other forecasters.   
 For each forecaster, training data consisted of forecaster 
estimates, continuous values ranging from zero to one, and 
ground truth EOI data for all 29 countries and 27 calendar 
quarters from 1998 through 2004. The challenge was to 
discretize each forecaster’s estimates for an EOI to produce 
calibrated probabilities. Calibration entails adjusting 
forecasted probabilities so that the forecasted probability 
matches the probability of the event being forecasted.  

Because the forecasters were constantly revising their 
models, IDI developed an application to automatically 
discretize the data. Early on we had achieved encouraging 
results using only two bins per forecaster estimate variable. 
These bins were based on the Receiver Operator 
Characteristic (ROC) curve of forecaster’s estimates. 
Given that experience and knowing that naïve Bayes 
performance using continuous variables depends upon their 
discretization (Yang and Webb, 2002), we opted to create a 
finer discretization as follows:  
1) On the assumption that a forecaster was at least 

partially calibrated, we used the training data to 
calculate: E, the average of the forecaster’s estimates 
made in cases where the ground truth produced an EOI 
event; N, the average of the forecaster’s estimates 
made in cases where the ground truth did not produce 
an EOI event; the average of E and N. These became 
the initial bin boundaries for the forecaster’s estimates 
of an EOI. 

2) If a bin had fewer than 30 data points, we combined it 
with a neighboring bin. 

3) Next, we looked at the ratios of no EOIs to EOIs for 
predictions falling into the same bin. If the ratio did 
not decrease in going from a bin associated with lower 
probability of EOI estimates to a bin associated with 
higher probability estimates, we collapsed the bins 
into a single bin. 

The process produced two to four bins for each forecaster 
providing estimates for each of the five given EOIs.   

The example shown in Figure 4 graphically illustrates 
the initial and final bins for one of the forecaster models. In 
the two plots, the counts of predictions that fall within a 
bin are shown with the exception of the first bin whose 
count is 479. For each bin, the table presents the bin 
boundaries, normalized counts by ground truth, and ratios 
of no events to events. The normalized counts represent the 

CPT for the forecaster’s estimates of the EOI. For a given 
prior, probabilities ranging from zero to one are reduced to 
three values, one for each bin. At the same time, all 
forecaster estimates above the low value of 0.422 favor 
EOI events over non-EOI events, thus reflecting the 
ground truth of those events. So, the CPT recalibrates the 
forecaster’s estimates. This illustrative CPT is typical of 
the ones learned for the forecasters’ estimates. 

To understand how well the resulting binning would 
perform, we ran a 10-fold validation test (Kohavi, 1995). 
K-fold validation involves randomly generating k test sets 
out of the training data, learning the parameters with the 
remaining data and then testing. The results provided an 
estimate of the model error. As shown in Table 2, the error 
rate can vary dramatically by EOI and among the 10 tests 
performed for the EOI. 

Table 1: Error Rates for Selected EOIs 

Figure 4:Learning Discretization of Forecaster Estimates

Test Ethic Religious Crisis International Crisis
1 0.01 0.12
2 0.02 0.08
3 0.00 0.12
4 0.01 0.06
5 0.00 0.15
6 0.00 0.20
7 0.02 0.09
8 0.03 0.15
9 0.04 0.12

10 0.05 0.08
Mean 0.02 0.12

Std Dev 0.02 0.04
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Results for ICEWS Phase I 
DARPA’s performance measures include: 
1) Accuracy: Proportion of predictions made that are 

correct. Note that this includes both no EOI events and 
EOI events. Part of the reason the accuracy is 
generally high for these EOI forecasters is that fewer 
than 20% of the quarters have EOI events. If one 
simply predicted no EOI all of the time, the accuracy 
would exceed 80%.  

2) Recall: Proportion of EOI events that were correctly 
predicted. This measure applies only to EOI events. 
Note that one can easily get a 1.00 for this measure if 
one simply predicts an EOI event every time. The cost 
comes in accuracy and precision.  

3) Precision: Proportion of correctly predicted EOIs 
among EOIs predicted. Like recall, this measure 
applies only to EOI events. Note that a high score in 
this measure may be obtained by only predicting EOI 
events that are almost certain. But, the cost is to lower 
recall.  

DARPA’s performance goals were 80% for accuracy and 
recall and 70% for precision. EOI events included Ethnic-
Religious Violence (ERV), Domestic Political Crisis 
(DPC), Insurgency (Ins), Rebellion (Reb) and International 
Crisis (IC). 

The ICEWS Phase I training and test data covered 
calendar quarters from 1998 to 2004 and 2005 to 2006 
respectively. Although, the tests had high accuracy for all 
five EOIs, recall and precision were problematic in all 
cases. Table 2 summarizes the Phase I training and test 
results. Because accuracy is so easily achieved we present 
a single measure, the product of recall and precision, for 
comparing the performance of the forecasters with IDI’s 
Bayesian EOI Aggregator. Given the DARPA performance 
goals, acceptable scores are greater than 0.56. The 
forecasters included Philip Schrodt of the University of 
Kansas (UK), Stephen Shellman of Strategic Analysis 
Enterprises (SAE) and Michael Ward of the University of
Washington (UW). 

In the training results, the Bayesian EOI Aggregator 
outperformed all the other models for every EOI. With the 
exceptions of IC and DPC, the Bayesian EOI Aggregator 
performed acceptably well on the test data. With the 
exception of DPC, the Bayesian EOI Aggregator 
outperformed other models for each EOI on the test data.  
When multiple models are making forecasts in the same 
direction, the Bayesian EOI Aggregator tends to make 
more extreme predictions that are closer to one or zero. 
Therefore it is not surprising that for DPC, an EOI for 

which all of the models performed poorly, the Bayesian 
EOI Aggregator performed even more poorly. 

Table 2: Product of Precision and Recall for Phase I Data 

EOI

Logit 
Event 
UK

Logit 
Event 
SAE

Bayesian 
Event
SAE

Spatial 
Networks 

UW

EOI 
Aggre
gator 

T
ra

in
in

g

Reb 0.75 0.78 0.55 0.57 0.88
IC 0.37 0.18 0.62
Ins 0.38 0.72 0.13 0.63 0.92

ERV 0.79 0.75 0.50 0.25 0.81
DPC 0.58 0.44 0.20 0.29 0.68

T
es

t

Reb 0.39 0.80 0.53 0.40 0.83
IC 0.25 0.15 0.37
Ins 0.10 0.47 0.36 0.17 0.60

ERV 0.48 0.50 0.27 0.31 0.64
DPC 0.08 0.19 0.16 0.06 0.07

Phase II Experiments 
In an effort to better understand and improve IDI’s 
Bayesian EOI Aggregator, we posed a number of 
questions. 
1) In Phase I, we used only four bins to successfully 

aggregate the forecasters’ estimates. Does increasing 
the number of bins improve performance? 

2) How does the performance of the Phase I aggregator 
compare with other approaches to aggregation such as 
simple averaging? 

3) In Phase I, we used a Context Model to provide priors 
for the Bayesian EOI Aggregator. How critical are 
those priors to the results? 

To investigate these questions, IDI used Phase II data. 
Unlike Phase I, DARPA required monthly predictions in 
Phase II for all 29 countries. The Bayesian EOI Aggregator 
was trained using data for the years 1998 – 2007 and tested 
with the years 2008 – 2009. We used early versions of the 
forecaster models so the results we present do not reflect 
their current performance. 

Discretization Approaches  
To answer the first experimental question, IDI 
implemented four discretization approaches to establish the 
bin boundaries for the forecasters’ estimates. Bayesian 
parameter learning was then used to provide parameters. 
To respond to the second question, IDI implemented three 
approaches for combining estimates that assume that the 
forecasters’ estimates are already calibrated and therefore 
do not need Bayesian learning to calibrate them. Table 3 
lists the different discretization and aggregation methods 
with a description of each. 
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As before, tests showed high accuracy for all forecasters 
and discretization/aggregation approaches. Again, 
performance comes down to recall and precision. Table 4 
presents their product for all EOIs and 
discretization/aggregation methods. In addition, the table 
also presents results for each of the individual forecasters: 
Michael Ward of Duke, Ross Schaap of Eurasia Group 
(EG), Philip Schrodt of Penn State (PS), and Stephen 
Shellman of SAE.   

Table 3 – Discretization/Aggregation Methods 

Method Description
ROC 

Curves
A single bin boundary is set by taking 

the point in the ROC curve closest to 
the upper left hand corner of the graph.

Averages –
4 Bins

This is the default discretization 
method described earlier.

Averages –
6 Bins

This approach expands the Averages-4
approach by adding additional bin 
boundaries halfway between 0 (or 1) 
and the next bin boundary.

WPKID WPKID (Yang and Webb, 2002) 
balances the number of bins and cases 
per bin. The number of bin boundaries 
is roughly the square root of the
number of cases.

No 
Calibration 

– 3 Bins

This approach assumes the forecaster is 
calibrated. With three bins, the 
probabilities produced by a forecaster 
take on values of .167, .500, or .833.

No 
Calibration 

– 9 Bins

Similar to No Calibration – 3 Bins but 
more granular.

Average Forecasts are simply averaged .

In considering performance across the EOIs, the 
calibrating approaches perform better than any single 
forecaster. Second, a poor forecaster makes little difference 
for calibrating approaches. Third, calibrating approaches 
outperform non-calibrating ones.

Having many bins does not necessarily produce better 
performance. In particular, WPKID was not found to 
perform better than the other calibration methods.  This is 

due to the fact that the sets of probabilities being 
discretized and calibrated are generally clustered near zero 
and one. As a result the WPKID bins near zero and one 
have similar event to non-event ratios, and the benefit of 
having many bins is lost.  This explains why all of the 
calibrating methods perform similarly.  

How Various Context Models Impact 
Performance 
The primary function of the context model within the 
Bayesian EOI Aggregator is to set the prior probability for 
each EOI. To better understand the contribution of the 
context model to the performance of the Bayesian EOI 
Aggregator, we constructed context models using different 
strategies and compared the results. Table 5 describes the 
context models.  

Table 5:  Description of Context Models 

Model Description
Uniform 
Priors

For each EOI the prior probability was 
set to 0.50.

EOI Base 
Rate Priors

For each EOI the prior probability was 
set to the base rate for that EOI across 
all countries.  

Country 
Specific 

This context model has just one 
variable: Country.  The prior 
probabilities, learned from data, are 
specific to each country for each EOI.

Original 
Context

The context model structure was 
learned from data during Phase I.  Its 
probability distributions were relearned 
from the monthly training data.

Table 6 shows the performance for the different 
approaches for developing priors. For all context models, 
the Averages – 4 method was used as the aggregation 
approach. As before, accuracy is not a discriminator, so we 
use the product of recall and precision in recognition of the 
trade-off between the two. 

Country-specific context performs about the same as 
other approaches: This supports the belief that the context 
model may be simply learning to discriminate among 

Table 4: Product of Recall and Precision for Discretization/Aggregation Methods and Forecasters

EOI Calibrating Approaches Non-Calibrating Approaches Forecasters
ROC Av4 Av6 WPKID No Cal - 3 No Cal - 9 Average  Duke EG PS SAE

Reb 0.77 0.74 0.75 0.73 0.74 0.75 0.78 0.81 0.58 0.32 0.76
IC 0.35 0.41 0.40 0.41 0.41 0.41 0.06 0.09 0.03
Ins 0.30 0.26 0.22 0.27 0.03 0.05 0.03 0.06 0.00 0.06 0.05

ERV 0.60 0.58 0.57 0.60 0.02 0.42 0.04 0.78 0.00 0.13 0.25
DPC 0.30 0.22 0.22 0.29 0.08 0.14 0.08 0.07 0.00 0.03 0.37
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countries as well as the belief that one can use structural 
variables to model a country. Interestingly, with the 
exception of International Crisis, the uniform and EOI base 
rate priors’ performances are comparable with those of the 
context model. 

Discussion 
Ensemble learning algorithms construct a set of 
hypotheses. On test cases, each hypothesis ‘votes’ for the 
classification (Dietterich, 2002). Stacking occurs when 
multiple base classifiers are combined using a learned 
meta-level classifier (Wolpert, 1992). The ICEWS 
modeling approach is an example of stacking with the 
Bayesian EOI Aggregator serving as the meta-level 
classifier.   

Given that the probability distributions produced by any 
one forecaster tend to be bunched near its extremes with 
few forecasts in the middle, we have shown that any 
reasonable approach to discretizing the probability 
distributions of these forecasters works well. We have 
shown that by recalibrating the forecaster probabilities, the 
Bayesian EOI Aggregator generally out-performs any one 
other forecaster as well as non-calibrating approaches such 
as averages.  

Although we have demonstrated that the Phase I Context 
Model could be readily replaced with a country-specific 
context model with minimal impact on performance, the 
performance of the context model indicates that a country 
may be effectively represented by a set of descriptive 
variables from the political science literature. It also 
demonstrates that an iterative discretization approach 
works well with political science variables. 
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