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Abstract

The aim of Belief Merging is to aggregate possibly conflict-
ing pieces of information issued from different sources. The
quality of the resulting set is usually considered in terms of
a closeness criterion between the resulting belief set and the
initial belief sets. The notion of distance between belief sets
is thus a crucial issue when we face the merging problem. The
aim of this paper is twofold: introducing a syntactical way to
calculate distances and proposing the use of a distance based
on prime implicants and prime implicates that considers the
importance of each propositional symbol in the belief set.

Introduction
The goal of Belief Merging is to aggregate in a consistent
way multiple beliefs usually represented as sets of logical
statements so as to obtain a new set of statements (Libera-
tore and Schaerf 1998). Such process is applied in knowl-
edge based systems when a cognitive agent receives a set of
contradictory pieces of information from many sources, e.g.
other agents or its own sensors or “mental states”.
Belief Merging process is based on three main compo-
nents (Konieczny, Lang, and Marquis 2002): a notion of
distance between propositional models, a function to aggre-
gate distances and a procedure to select the closest eligible
resulting sets w.r.t. the aggregation stage. Usually, the Ham-
ming distance is adopted in order to calculate the distance
between models, where a propositional symbol is consid-
ered as minimal change unit (Dalal 1988). This distance
has been widely considered in belief revision (Dalal 1988;
Satoh 1988), belief update (Forbus 1989; Winslett 1988)
and belief merging (Konieczny, Lang, and Marquis 2002).
However, this consideration can not be minimal (Marchi,
Bittencourt, and Perrussel 2010; Bittencourt, Perrussel, and
Marchi 2004), because changing one propositional symbol
truth value may lead to significant changes if this symbol
frequently appears in the formulas of the initial belief bases.
Thus, the common notion of minimal change is biased by
the structure of the belief bases.
In that context, two main problems can be identified: first,
the belief merging process is performed over set of models;
and second, the minimal change unit may promote signifi-
cant changes on the belief base. These issues have already
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been partially addressed in (Perrussel, Marchi, and Bitten-
court 2008) where it was proposed a merging process that
can satisfy the postulates characterizing belief merging pro-
posed in (Konieczny, Lang, and Marquis 2002) in a par-
tial way by choosing implicants (or implicates) among all
the belief sets. As proposed, the merging process entails
that some privileges are given to some specific formulas and
these privileges are not compatible with the fairness princi-
ple which is a key one in belief merging: fairness states that
all beliefs and all belief sets should be equally considered.
In this paper, we propose a new way to merge beliefs that
avoid this problem by proposing a new way to define the im-
plicants/implicates which will belong to the resulting base;
and it is not required that these statements should belong to
one of the initial belief sets. Hence, in that way, we take care
of the fairness issue. We also avoid this limitation about pos-
tulates satisfaction.
This paper focuses on a syntactical way to perform the merg-
ing process where the belief bases are represented as sets
of prime implicants, and by considering another minimal
change distance based on prime implicants and prime im-
plicates representation. These two representations enable us
to correlate symbols in terms of models (prime implicants)
and also in terms of structure (prime implicates). The key
results are that the proposed framework (i) is fully compli-
ant with the definition of belief merging and (ii) gives a new
perspective on the closeness criterion for setting proximity
between belief bases.
The paper is organized as follows: we first give the formal
definitions which set the notion of prime forms (implicate
and implicant) and we detail the quantum notation intro-
duced by (Bittencourt 1998) which aims at relating implicate
and implicant. Next, we formally present the concept of be-
lief merging and present the set of associated postulates pro-
posed by Konieczny and Péres (Konieczny and Pérez 2002).
We also remind the definition of majority (Lin and Mendel-
zon 1999) and arbitration operators (Liberatore and Schaerf
1998). The next section presents the syntactical approach of
the belief merging process. Next, we introduce the new min-
imal change unit and present its application on belief merg-
ing processes. We finally conclude the paper by presenting
some considerations and future work.
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Preliminaries

Let P be a finite set of propositional symbols, such that
P = {p1, . . . , pn}. Let {L1, . . . , L2n} be the set of their
associated literals, where Li = pj or Li = ¬pj . A clause is
a disjunction of literals: C = L1 ∨ · · · ∨ LkC

. A term is a
conjunction of literals: D = L1 ∧ · · · ∧ LkD

. The comple-
ment of a literal L is noted L: if L = p then L = ¬p. The
complement of a term D is noted D, e.g. if D = p1 ∧ ¬p2
then D = ¬p1 ∧ p2. The subtraction of two terms D and D′
is noted D −D′ and results in literals of D that do not have
correspondence with the literals of D′, e.g. if D = p1 ∧¬p2
and D′ = p1 ∧ p2, D −D′ = {¬p2}.
Given a propositional logic language L(P ) and a formula
ψ ∈ L(P ), ψ can be rewritten in a conjunctive normal form
(CNF), where CNFψ = C1 ∧ · · · ∧ Cm, or in a disjunctive
normal form (DNF), where DNFψ = D1 ∨ · · · ∨Dw, such
that ψ ≡ CNFψ ≡ DNFψ .
A clause C is an implicate (Jackson 1990; Kean and Tsiknis
1990) of a formula ψ iff ψ |= C, and it is a prime impli-
cate iff for all implicates C ′ of ψ such that C ′ |= C, we
have C |= C ′. We define PIψ as a conjunction of prime
implicates of ψ such that ψ ≡ PIψ . A term D is an im-
plicant of a formula ψ iff D |= ψ, and it is a prime im-
plicant iff for all implicants D′ of ψ such that D |= D′,
we have D′ |= D. We define IPψ as a disjunction of
prime implicants of ψ such that ψ ≡ IPψ . In proposi-
tional logic, prime implicates and prime implicants are dual
notions, in particular, an algorithm that calculates one of
them can also be used to calculate the other (Socher 1991;
Bittencourt, Marchi, and Padilha 2003).
Alternatively, prime implicates and prime implicants can be
defined as special cases of CNF (or DNF) formulas, that con-
sist of the smallest sets of clauses (or terms) closed for in-
ference, without any subsumed clauses (or terms), and not
containing a literal and its negation. In the sequel, conjunc-
tions and disjunctions of literals, clauses or terms are treated
as sets.
We define a profile Ψ = {ψ1, . . . , ψn} as a finite set of
formulas, where each formula ψi represents a belief receive
from the source i. We note

∧
Ψ, the conjunction of all for-

mulas ψ1 ∧ ... ∧ ψn; Ψ1 �Ψ2 denotes the union of each set
belong to the sets Ψ1 and Ψ2, that is {ψ11 ∪ψ21, . . . , ψ1n ∪
ψ2n}; and Δμ(Ψ), the resulting belief merging set.
An interpretation is a function from P to B =
{true, false}. Let W be the set of all possible interpre-
tations. An interpretation w is a model of a formula ψ
(w |= ψ) iff ψ is true in w. For any formula ψ, [[ψ]] denotes
the set of models of ψ.

Quantum Notation

Conjunctive and disjunctive normal forms, as well as prime
implicants and prime implicates can be correlated through
quantum notation (Bittencourt 1998). The quantum nota-
tion correlates each literal L that occurs in a formula ψ with
the clauses C or terms D to which literal L belongs. In
that sense, a conjunctive quantum of a literal L ∈ ψ, de-
noted by LFc , is a representation that correlates the literal
L with its set of conjunctive coordinates Fc ⊆ CNFψ that

contains the subset of clauses in CNFψ to which literal L
belongs. Dually, a disjunctive quantum of a literal L ∈ ψ,
LFd , explicits the relation between the literal L and its set of
disjunctive coordinates that contains the subset of terms in
DNFψ to which literal L belongs.
In association with prime normal forms, quantum notation
gives us a measure of the importance of a literal in a for-
mula through the notion of exclusive coordinates. Given a
term D and a literal Li ∈ D, the exclusive conjunctive co-
ordinates of Li in D, defined by F̂ i

c = F i
c − ∪k

j=1,j �=iF
j
c ,

are the clauses in set F i
c , to which no other literal of D

belongs; and given a clause C and a literal Li ∈ C, the
exclusive disjunctive coordinates of Li in C, defined by
F̂ i
d = F i

d − ∪k
j=1,j �=iF

j
d , are the terms in set F i

d, to which
no other literal of C belongs. These sets represent clauses or
terms that are supported only by the literal L.
An algorithm to calculate prime normal forms using quan-
tum notation is presented in (Bittencourt, Marchi, and
Padilha 2003). The following example illustrates the con-
cepts of quantum notation and exclusive coordinates.
Example 1 Consider formula ψ represented by PIψ and
IPψ . Each literal in PIψ has a set of coordinates repre-
senting terms in IPψ to which the literal belongs, as well
as each literal in PIψ has a set of coordinates representing
clauses in PIψ to which the literal belongs. To facilitate
the understanding, clauses and terms are identified by num-
bers.
PIψ IPψ

1 : ¬p{1, 3 }
3 ∨ ¬p{1, 2 }

2 1 : ¬p{1, 2 }
3 ∧ ¬p

{1, 3, 4 }
2

2 : ¬p{ 1 ,3}
3 ∨ p

{ 2 ,3}
4 2 : ¬p

{ 1, 3 ,4}
2 ∧ p

{ 2 ,4}
4

3 : ¬p
{ 1, 2 }
2 ∨ ¬p{ 3 }

1 3 : ¬p{ 1 ,2}
3 ∧ ¬p{ 3 }

1 ∧ p
{2, 4 }
4

4 : ¬p{ 1 ,2}
2 ∨ p

{2, 3 }
4

The boxed coordinates indicate the exclusive coordinates of
each literal. Consider the literal ¬p3 in clause number 1 in
PIψ . Its set of exclusive coordinates is given by:

F̂ p3

d = F p3

d − F¬p2

d

F̂ p3

d = {1, 3} − {1, 2} = {3}
The coordinate related to term 1 in IPψ is not exclusive to
this literal, since it appears also in ¬p2; but the coordinate
related to term 3 in IPψ is exclusive, since any other literal
in that clause has this coordinate.

Belief Merging
A belief merging process consists in aggregating multi-
ple possible contradictory pieces of information in a sin-
gle base. This process was identified by Revez (Revesz
1993), but a proper logical framework was introduced only
in 2002 (Konieczny and Pérez 2002) when the specific na-
ture of the belief merging process has been identified (Liber-
atore and Schaerf 1998; Lin and Mendelzon 1999). The pro-
posed framework defines a belief merging process in a se-
mantic way by considering the initial belief bases and an in-
tegrity constraint set in terms of models: the resulting belief
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base Δμ(Ψ) is given by the models of the integrity constraint
set μ that are closest to the initial profile Ψ = {ψ1, ..., ψn}
according to some closeness criterion. This closeness cri-
terion is represented with the help of a total pre-order �Ψ

which is itself based on an underlying distance between in-
terpretation and profile. That is: let Dist be a function char-
acterizing the distance between an interpretation w and a
profile Ψ such that Dist(w,Ψ) ≥ 0; then w �Ψ w′ iff
Dist(w,Ψ) � Dist(w′,Ψ) (i.e. Dist(w,Ψ) = 0 iff w is a
model of each ψi ∈ Ψ). Based on the pre-order entailed by
Dist, belief merging is characterized as follows:

[[Δμ(Ψ)]] = Min�Ψ
([[μ]])

Belief Merging can also be characterized by the following
set of postulates:
(IC0) Δμ(Ψ) 
 μ

(IC1) If μ is consistent, then Δμ(Ψ) is consistent
(IC2) If Ψ is consistent with μ, then Δμ(Ψ) =

∧
Ψ ∧ μ

(IC3) If Ψ1 ↔ Ψ2 and μ1 ↔ μ2 then Δμ1
(Ψ1) ↔

Δμ2
(Ψ2)

(IC4) If ψ 
 μ and ψ′ 
 μ, then Δμ(ψ � ψ′) ∧ ψ � ⊥ ⇒
Δμ(ψ � ψ′) ∧ ψ′

� ⊥
(IC5) Δμ(Ψ1) ∧Δμ(Ψ2) 
 Δμ(Ψ1 �Ψ2)

(IC6) If Δμ(Ψ1) ∧ Δμ(Ψ2) is consistent, then Δμ(Ψ1 �
Ψ2) 
 Δμ(Ψ1) ∧Δμ(Ψ2)

(IC7) Δμ1(Ψ) ∧ μ2 
 Δμ1∧μ2(Ψ)

(IC8) If Δμ1
(Ψ) ∧ μ2 is consistent, then Δμ1∧μ2

(Ψ) 

Δμ1

(Ψ) ∧ μ2

The postulates describe the principles that belief merging
operators should satisfy. Among these principles, syntax ir-
relevance (IC3), minimal change (IC2) and fairness (IC4)
are the key postulates. Notice that fairness is an underly-
ing principle of numerous other postulates (such as IC5 and
IC6). Hence, Belief Merging can be expressed in an equiva-
lent way in terms of selection of models and postulates.
There are two main belief merging operators: Arbitra-
tion (Revesz 1993; Liberatore and Schaerf 1998) and Ma-
jority (Lin and Mendelzon 1999). These operators follow
the belief merging semantical definition. For both, distances
are based on Dalal distance (Dalal 1988) which evaluates
the closeness in terms of truth values of the propositional
symbols.

DIST(wi, wj) = {p ∈ P | p ∈ wi and p �∈ wj}∪
{p ∈ P | p �∈ wi and p ∈ wj}

Therefore, the distance between a model w and a belief base
ψ is given by the minimal distance between w and a model
wj ∈ ψ.

DIST(w,ψ) = min(| DIST(w,wj) | | wj ∈ [[ψ]])

Arbitration operator, noted ΔMax, retains as much as possi-
ble the information of the initial belief bases. The distance
between a model w and a profile Ψ is given by the maximum
distance calculated between w and the bases ψ in Ψ:

DistMax(w,Ψ) = Maxψi∈Ψ | DIST(w,ψi) |

The following total pre-order is assumed: the model w is
preferred to the model w′ iff the maximal distance from w
to profile Ψ is smaller than the maximal distance from w′ to
Ψ.
w �Max

Ψ w′ iff DistMax(w,Ψ) ≤ DistMax(w
′,Ψ)

Majority operator, noted ΔΣ, retains information that is be-
lieved by the majority. The distance between a model w and
a profile Ψ is given by the sum of the calculated distances
between w and ψ in Ψ:

DistΣ(w,Ψ) =
∑
ψi∈Ψ

| DIST(w,ψi) |

The following total pre-order is assumed: the model w is
preferred to the model w′ iff the sum of the calculated dis-
tances from w to profile Ψ is smallest than the sum of the
calculated distances from w′ to Ψ.

w �Σ
Ψ w′ iff DistΣ(w,Ψ) ≤ DistΣ(w

′,Ψ)

Example 2 Consider the merging of the belief bases Ψ =
{ψ1, ψ2, ψ3}, such that ψ1 = ψ2 = (p1∧p2)∨(p2∧p3∧p4),
ψ3 = (¬p3 ∧ p4 ∧ ¬p5). Consider the integrity constraint
μ = (¬p1 ∧ ¬p3 ∧ ¬p4 ∧ p5) ∨ (¬p2 ∧ ¬p3 ∧ p5). Table
1 presents the minimal distances calculated between models
of μ and profile Ψ, as well as the values calculated using the
Arbitration and Majority operators.
The merging belief base is given by selecting the models of

w ∈ [[μ]] ψ1 ψ2 ψ3 Arb Maj
{¬p1, p2,¬p3,¬p4, p5} 1 1 2 2 4
{¬p1,¬p2,¬p3,¬p4, p5} 2 2 2 2 6
{¬p1,¬p2,¬p3, p4, p5} 2 2 1 2 5
{p1,¬p2,¬p3,¬p4, p5} 1 1 2 2 4
{p1,¬p2,¬p3, p4, p5} 1 1 1 1 3

Table 1: Minimal distances between models μ and profile Ψ

μ according to the total pre-order of each operator.
[[ΔMax

μ (Ψ)]] = [[ΔΣ
μ (Ψ)]] = {{p1,¬p2,¬p3, p4, p5}}

Syntactical Belief Merging
In (Marchi, Bittencourt, and Perrussel 2010), the authors
presented a syntactical approach to belief revision. We ex-
tend that approach to belief merging by considering the sim-
ilarity between those processes. To perform the belief merg-
ing process in a syntactical way, we use the property of the
prime implicants representation, i.e. each prime implicant
represents a set of models. It means that once a prime impli-
cant is changed, all related models are also changed.
The first step is to obtain the set of prime implicants
of the profile Ψ = (ψ1 . . . ψn), given by IPΨ =
(IPψ1 , . . . , IPψn), and the set of prime implicants of the
integrity constraint μ, given by IPμ.
In the second step, we extend each term Dk

μ in IPμ with all
contradictory literal of each term Dj

ψi
belonging to the base

of IPψi
.

Γ = {D | D = Dk
μ ∪ (Dj

ψi
−Dk

μ)}
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The distance between terms is given by the contradictory
literals between terms Dj

ψi
and Dk

μ:

κ(Dj
ψi
, Dk

μ) = Dj
ψi

∩Dk
μ

Example 3 Consider merging of belief profile Ψ presented
in example 2 represented by prime implicants IPΨ =
(IPψ1

, IPψ2
, IPψ3

) and the integrity constraint μ, given by
IPμ, as follows:

IPψ1
=1 : p1 ∧ p2, 2 : p2 ∧ p3 ∧ p4

IPψ2
=1 : p1 ∧ p2, 2 : p2 ∧ p3 ∧ p4

IPψ3 =1 : ¬p3 ∧ p4 ∧ ¬p5
IPμ =1 : ¬p1 ∧ ¬p3 ∧ ¬p4 ∧ p5, 2 : ¬p2 ∧ ¬p3 ∧ p5

Where terms were numbered in order to indicate which terms
Dψi

and Dμ compound each term in Γ. The following table
presents terms in the set Γ as well as the set of contradictory
literals κ for each term Dj

ψi
in the profile:

Dj
ψi

×Dk
μ D = Dk

μ ∪ (Dj
ψi

−Dk
μ) ∈ Γ κ(Dj

ψi
, Dk

μ)

D1
ψ1

×D1
μ {¬p1, p2,¬p3,¬p4, p5} {p1}

D2
ψ1

×D1
μ {¬p1, p2,¬p3,¬p4, p5} {p3, p4}

D1
ψ1

×D2
μ {p1,¬p2,¬p3, p5} {p2}

D2
ψ1

×D2
μ {¬p2,¬p3, p4, p5} {p2, p3}

D1
ψ2

×D1
μ {¬p1, p2,¬p3,¬p4, p5} {p1}

D2
ψ2

×D1
μ {¬p1, p2,¬p3,¬p4, p5} {p3, p4}

D1
ψ2

×D2
μ {p1,¬p2,¬p3, p5} {p2}

D2
ψ2

×D2
μ {¬p2,¬p3, p4, p5} {p2, p3}

D1
ψ3

×D1
μ {¬p1,¬p3,¬p4, p5} {p4,¬p5}

D1
ψ3

×D2
μ {¬p2,¬p3, p4, p5} {¬p5}

Table 2: Terms in Γ and the contradictory literals.

In a semantical way, a belief merging process consists of
finding the models of the integrity constraint that are the
closest to the models of the initial belief bases. In our
context, syntactical belief merging using prime implicants
means choosing the terms in Γ that have the smallest set of
contradictory literals: the value of | k(Dψ, Dμ) | is mini-
mal. We perform this operation for each term Dk

μ and for
each belief base IPψi

of IPΨ.

d(Dk
μ, IPψi

) = min({|k(Dj
ψi
, Dk

μ)| | Dψi
∈ IPψi

})
To define syntactical Arbitration and Majority operators, we
introduce a syntactical criteria of distance and a total pre-
order. Our syntactical Arbitration operator DNFΔMax

μ
is

based on the following distance:

DistMax(D
k
μ, IPΨ) = MaxIPψi

∈IPΨ
d(Dk

μ, IPψi
)

and the following total pre-order:

D �Max
IPΨ

D′ iff DistMax(D, IPΨ) ≤ DistMax(D
′, IPΨ)

Syntactical Majority operator, denoted by DNFΔΣ
μ

, imple-
ments the following distance:

DistΣ(D
k
μ, IPΨ) =

∑
IPψi

∈IPΨ

d(Dk
μ, IPψi)

and the total pre-order is given by:

D �Σ
IPΨ

D′ iff DistΣ(D, IPΨ) ≤ DistΣ(D
′, IPΨ)

To compose the merging belief base, we choose the terms
in Γ associate with terms Dk

μ whose values are minimal ac-
cording to the applied operator:

Δμ(Ψ) = Min�(Γ)

Example 4 Consider example 3. For terms Dk
μ and for be-

lief bases IPψi
we observe the distances given by the car-

dinality of the set κ, i.e. | κ(Dk
μ, D

j
ψi
) |. Table 3 presents

the minimal distances d(Dk
μ, IPψi

). Applying the distances
definitions and the total pre-order, Majority and Arbitration
operators lead to the following results:
Bold values indicate which term is selected by the opera-

d(Di
μ, IPΨ)

Di
μ ψ1 ψ2 ψ3 DistMax DistΣ

{¬p1,¬p3,¬p4, p5} 1 1 2 2 4
{¬p2,¬p3, p5} 1 1 1 1 3

Table 3: Minimal distances d(Dμ, IPΨ).

tors w.r.t. the pre-orders. The resulting belief base is given
by terms of Γ relate to D2

μ with minimal | κ(D2
μ, D

j
ψi
) |;

that is:
DNFΔMax

μ
= DNFΔΣ

μ
= (p1 ∧ ¬p2 ∧ ¬p3 ∧ p5)∨

(¬p2 ∧ ¬p3 ∧ p4 ∧ p5)

The syntactical belief merging process gives different results
that the ones obtained by the semantical process. This is
due to the fact that each prime implicant represents a set of
models and the syntactical operators will choose minimal
subsets of models of profile IPΨ that are the closest to the
integrity constraint. In the previous example 4, the result of
the belief merging has three models, i.e:

{{p1,¬p2,¬p3, p4, p5},
{p1,¬p2,¬p3,¬p4, p5},
{¬p1,¬p2,¬p3, p4, p5}}

against only one model returned by the semantical operators
(example 2),

{p1,¬p2,¬p3, p4, p5}
It means that literals {¬p1,¬p4} were preserved.

This syntactical characterization satisfies the belief
merging postulates previously presented:

Theorem 1 For any profile Ψ and integrity constraint
μ, the prime implicant-based merging process defined as
Δμ(Ψ) = Min�(Γ) satisfies postulates (IC0)–(IC8).
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Sketch of the proof The proof is mainly based on the def-
inition of a total pre-order over models entailed by the total
pre-order defined over implicants. Once this pre-order is de-
fined, it means that our merging operator can be expressed
in terms of models as shown in the previous section.
The consequence is that our arbitration and majority opera-
tors satisfy postulates (IC0) through (IC8).

A Quantum as Minimal Change Unit

One of the most important principles that guide the belief
merging process is the minimal change. In general, the truth
value of a propositional symbol is considered as a minimal
change unit, as proposed by Dalal (Dalal 1988). This extra-
logical choice has a significant impact over the resulting be-
lief base; this problem is getting clearer if the belief base is a
conjunction of clauses. In (Marchi, Bittencourt, and Perrus-
sel 2010; Bittencourt, Perrussel, and Marchi 2004), a new
minimal change unit was introduced. Bittencourt et al. ar-
gued that the minimal change unit should be the literal and
its context in a belief base, and they proposed to consider
a clause in the set of prime implicates as the new minimal
knowledge unit.
In this section, we investigate the behavior of the belief
merging processes when using the minimal knowledge unit
proposed by Bittencourt et al. In order to measure how many
clauses are involved in a merging process, the set of exclu-
sive conjunctive coordinates is taking in account: we only
consider the critical clauses that are related with the literals
in the contradictory set, given by Dj

ψi
∩Dk

μ. Therefore, we
redefine the distance between terms κ as:

κ̂(Dj
ψi
, Dk

μ) = ∪m
n=1F̂

n
c

where F̂n
c is the set of exclusive conjunctive coordinates as-

sociated with each literal Ln ∈ Dj
ψi

∩Dk
μ.

The minimal distance between term Dk
μ and belief base

IPψi
is given by smallest value of κ̂:

d̂(Dk
μ, IPψi

) = min({|κ̂(Dj
ψi
, Dk

μ)| | Dψi
∈ IPψi

})
Using this minimal change notion we can redefine syntacti-
cal Majority and Arbitration operators. The new Arbitration
operator DNF

̂ΔMax
μ

uses the following distance:

DistMax(D
k
μ, IPΨ) = MaxIPψi

∈IPΨ d̂(D
k
μ, IPψi)

The total pre-order is defined as before and is denoted by
�̂Max

IPΨ
.

The distance criteria used by the syntactical majority op-
erator based on the exclusive coordinates, noted DNF

̂ΔΣ
μ

,
is:

DistΣ(D
k
μ, IPΨ) =

∑
IPψi

∈IPΨ

d̂(Dk
μ, IPψi

)

Again, we obtain a new total pre-order entailed by the new
distance:

D �̂Σ
IPΨ

D′ iff DistΣ(D, IPΨ) ≤ DistΣ(D
′, IPΨ)

We conclude the definition of the new merging operators by
stating how the Belief Merging postulates are satisfied.

Theorem 2 For any profile Ψ and integrity constraint μ,
the implicant-based merging process defined as Δμ(Ψ) =

Min�(Γ) such that �=�̂Max
IPΨ

or �=�̂Σ
IPΨ

satisfies postu-
lates (IC0)–(IC8).
Sketch of the proof The proof is similar to the one given for
theorem 1. That is, we build up a pre-order over interpreta-
tion which is entailed by the pre-orders over terms.
Example 5 Consider the merging process performed over
a profile Ψ = {ψ1, ψ2} and integrity constraint μ, as pre-
sented bellow by prime implicants, prime implicates and
quantum notation:

IPψ1 =1 : p
{1,2}
1 ∧ p

{3}
2 , 2 : p

{3}
2 ∧ p

{1}
3 ∧ p

{2}
4

PIψ1 =1 : p
{1}
1 ∨ p

{2}
3 , 2 : p

{1}
1 ∨ p

{2}
4 , 3 : p

{1,2}
2

IPψ2 =1 : p
{1}
1 ∧ p

{2}
2 , 2 : ¬p{3}3 ∧ p

{4}
4 ∧ ¬p{5}5

PIψ2
=1 : p

{1}
1 , 2 : p

{1}
2 , 3 : ¬p{2}3 , 4 : p

{2}
4 , 5 : ¬p{2}5

IPμ =1 : ¬p{1}1 ∧ ¬p{2}3 ∧ ¬p{3}4 ∧ p
{4}
5 ,

2 : ¬p{1,2}2 ∧¬p{3}3 ∧p{4}5

PIμ =1 : ¬p{1}1 , 2 : ¬p{2}2 ∨ ¬p{1}3 , 3 : ¬p{2}2 ∨ p
{1}
4 ,

4 : p
{1,2}
5

The following table presents the set Γ calculated over IPΨ

and IPμ, as well as the contradictory sets of literals and the
distances given by the exclusive coordinates associated with
these sets:

D = Dk
μ ∪ (Dj

ψi
−Dk

μ) Dj
ψi

∩Dk
μ | ∪m

n=1F̂
n
c |

{¬p1, p2,¬p3,¬p4, p5} {p
{ 1, 2 }
1 } 2

{¬p1, p2,¬p3,¬p4, p5} {p{ 1 }
3 , p

{ 2 }
4 } 2

{p1,¬p2,¬p3, p5} {p{ 3 }
2 } 1

{¬p2,¬p3, p4, p5} {p{ 3 }
2 , p

{ 1 }
3 } 2

{¬p1, p2,¬p3,¬p4, p5} {p{ 1 }
1 } 1

{¬p1,¬p3,¬p4, p5} {p{ 4 }
4 ,¬p{ 5 }

5 } 2

{p1,¬p2,¬p3, p5} {p{ 2 }
2 } 1

{¬p2,¬p3, p4, p5} {¬p{ 5 }
5 } 1

Taking the minimal distances for each term Dk
μ, we have:

d(Dk
μ, IPΨ)

Dk
μ ψ1 ψ2 DistMax DistΣ

{¬p1,¬p3,¬p4, p5} 2 1 2 3
{¬p2,¬p3, p5} 1 1 1 2

Where the bold values indicate the terms chosen by Majority
and Arbitration operators. The merging belief base is given
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by:

DNF
̂ΔMax

μ
= DNF

̂ΔΣ
μ
= (p1 ∧ ¬p2 ∧ ¬p3 ∧ p5)∨

(¬p2 ∧ ¬p3 ∧ p4 ∧ p5)

Note that clause 3 of PIψ1 and clauses 2 and 5 of PIψ2 were
changed by the merging process. Its means that clauses 1
and 2 of PIψ1

and clauses 1, 3 and 4 of PIψ2
were pre-

served. If the usual measure, that is, the number of contra-
dictory literals was taken, both terms of IPμ will be cho-
sen and the resultant belief base will include, beyond terms
present above, the following term: (¬p1 ∧ p2 ∧¬p3 ∧¬p4 ∧
p5), that is minimal because literal p1 of IPψ1

and, conse-
quently, clauses 1 and 2 of IPψ1 and clause 1 of IPψ2 will
also be changed.

Conclusion

In this paper we have extended the syntactical approach pro-
posed by Bittencourt et al. (Marchi, Bittencourt, and Perrus-
sel 2010) to belief merging processes. We redefine Majority
and Arbitration operators in a syntactical way, by consider-
ing the belief merging over sets of models, that is, the prime
implicants set of belief bases and integrity constraint. We
show that this syntactical approach gives us different results
than when we consider all models of the belief bases and the
integrity constraint. This result proposes a new kind of belief
merging which still takes care of the three key issues: con-
sistency, minimal change and fairness; and at the opposite of
(Perrussel, Marchi, and Bittencourt 2008), our approach of
belief merging process satisfies all the belief merging postu-
lates.
The advantage of our approach is that in general, we have
less prime implicants than models and prime implicants is a
natural way to handle minimal change (minimal set of rele-
vant symbols) and fairness (combination of implicants).
We also presented the behavior of belief merging process
when a new minimal change unit is considered. Using a spe-
cial notation named quantum notation, we consider a clause
in the set of prime implicates as minimal knowledge unit and
we show that this choice allows to preserve more clauses
compared to the the classical Dalal minimal distance. This
new way to merge beliefs enable to stress up the minimal
change issue. We have shown that this distance entails a
well-behaved definition of belief merging operators.
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