
A Method of Virtual Camera Selection Using Soft Constraints

Michael Janzen and Michael Horsch and Eric Neufeld
mike.janzen@usask.ca, eric@cs.usask.ca, horsch@cs.usask.ca

Department of Computer Science
University of Saskatchewan, Canada

Abstract

We describe a software tool to select among camera feeds
from multiple virtual cameras in a virtual environment using
semiring constraint satisfaction problem techniques (SCSP),
a soft constraint approach. We show how to encode a de-
signer’s preferences, and select the best camera feed even
in over-constrained or under-constrained environments. The
system functions in real time for dynamic scenes, using only
current information (ie. no prediction). To reduce compu-
tation costs for a final implementation, the SCSP evaluation
can be cached and converted to native code. Our approach is
implemented in two virtual environments: a virtual hockey
game using a spectator viewpoint, and a virtual 3D maze
game using a third person perspective. Comparisons against
hard constraints (constraint satisfaction problems) are made.

Introduction

Most video games, movies, and television shows use a dy-
namic camera viewpoint that varies the user’s viewing expe-
rience. Previous automated virtual camera work uses con-
straint systems to place or move the camera, but little treat-
ment has been given to the problem of selecting among mul-
tiple virtual cameras.

Systems that automatically place and move a virtual cam-
era, which could supply the camera feeds for selection, are
discussed in the next section. Given infinite resources, cam-
era placement and feed selection become equivalent. From
the camera placement perspective, the camera parameters
come from an infinite number of locations and angles. From
the camera selection perspective, the system selects from an
infinite number of cameras that span every location and an-
gle. However, given limited resources, camera placement al-
gorithms prioritize searching nearby locations, where cam-
era selection considers a finite number of discrete locations.

We encode a camera director’s preferences for selecting
a camera feed into a collection of preference functions in a
modular fashion using a soft constraint representation. We
emphasize dynamic scenes such as sports games and third
person shooters, where action is not entirely predictable (as
opposed to a scripted scene or a conversation between two
or three people). We demonstrate a real-time software tool
for the selection process using a spectator viewpoint virtual

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

hockey game and a third person perspective maze game.
Multiple screens provide a convenient way to increase the
complexity of the constraints.

In the sequel, we describe the semiring constraint satis-
faction problem (SCSP) formalism, and ways to express a
sequence of preferences that progressively refine the visual
experience. As we developed these preferences in the field,
we found trade-offs among preferences.

Virtual Camera Placement

Automated camera placement methods can be generally
grouped into two approaches: through-the-lens systems and
constraint systems. For a comprehensive survey see work
done by Christie and colleagues (2008).

In a through-the-lens system a designer specifies points
in world space to pin to points in screen space (Gleicher
and Witkin 1992; Christie and Hosobe 2006). As the scene
evolves the camera placement system adjusts the location,
angle, and zoom level to keep the points in world space at
the same screen location. Designers avoid over-constrained
cases, or the error is distributed in a least squares fashion.

Camera placement using pure constraint systems require
the designer to specify constraints for the system to man-
age, such as height, camera angle, and an unoccluded
view of an object or subject (Drucker and Zeltzer 1994;
Bares and Lester 1999). The system selects camera param-
eters to satisfy all of the constraints. When the problem is
over-constrained, less important conflicting constraints are
dropped until all remaining constraints are satisfied (Bares
and Lester 1999). A frame coherence constraint can cause
the camera to select nearby locations and angles (Halper,
Helbing, and Strothotte 2001).

Bourne presents a camera control system using soft con-
straints (2008). The camera placement method searches
nearby locations using a sliding octree solver, which
searches nearby locations in a divide and conquer fashion
from a coarse to fine resolution. Each potential location is
evaluated using a weighted constraint satisfaction problem
(CSP) in which weights are assigned to each constraint. A
potential location is assigned a score based on the sum of
the weights of the constraints the location satisfies. This ap-
proach differs from dropping less important constraints, in
that multiple, less important constraints may be satisfied at
the expense of violating a more important constraint.

27

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference



Virtual Camera Selection

He et al. introduce a mechanism to cut between cameras
based on film conventions (1996). Idioms, i.e. knowledge of
camera cuts, are encoded into finite state machines. States
encode parameters for the current camera, while transitions
between states represent cuts between cameras. For exam-
ple, an idiom for filming a two person conversation may
start with an establishing shot and then alternate between
the speaker and listener. Bhatt and Flanagan discuss camera
selection in scripted scenes using event calculus (2010).

Idioms are less suited to dynamic scenes, where the flow
of action is less predictable, than scripted scenes (Turkay,
Koc, and Balcisoy 2009; Bourne, Sattar, and Goodwin
2008). To change to any camera, an idiom approach would
require a completely connected finite state machine. Guards
on transitions (conditions to satisfy before changing states)
are comparable to hard constraints; the system may remain
with a sub-optimal camera choice since the guard is not
completely satisfied. Similarly, although not stated, the sys-
tem chooses randomly if more than one guard is satisfied.

Assa et al. present a camera selection method based on
correlation with motion capture data (2010). The pixels
from each potential camera are correlated with the motion
capture data, and the view with most motion in the scene is
displayed. Similarly Passos et al. use a neural network to
select between three camera feeds in a racing game (2009).
Their system learns from user input, rather than allow a de-
signer to specify important conditions for selecting a camera
feed. Our system differs from both of these systems by en-
abling a designer to explicitly specify important conditions
to capture on camera.

SCSP Formalism

The problem is to find a set of assignments for a set of vari-
ables related by a set of constraints. For in depth treatment of
constraint satisfaction problems (CSP) see (Dechter 2003).
A semiring constraint satisfaction problem (SCSP) is a gen-
eralization of CSPs and CSP-like problems. Both classical
CSPs and partial CSPs (PCSP), such as a weighted CSP, can
be represented in the SCSP framework. A key difference
between a classical CSP or PCSP is a SCSP constraint may
be satisfied to a degree. A PCSP can be partially satisfied
if some of its constraints are fully satisfied and others are
not. The key idea in the generalization of SCSPs is to rep-
resent constraints as functions rather than relations. This re-
quires that the function return values that combine and com-
pare in a few restricted ways. When preferences in a SCSP
are specified such that there is a total order (i.e. all values
are comparable) a join operation enables a ranking over the
global preference (Freuder and Wallace 1992). A solution to
a SCSP is a tuple that has the maximum global preference.

Formally, a SCSP is a tuple (S,X,C,D) where S is a
semiring 〈A,+,×,0,1〉, C is a set of constraints as ex-
plained below, X is a set of variables, and D is a set of
corresponding domains, which are typically discrete and fi-
nite. A is a set of preference values including 0 and 1, which
represent the minimal and maximal values respectively. The
operators + and × operate over pairs of elements of A and

are closed, commutative, and associative. Their definition
changes depending on which SCSP implementation is cho-
sen (we use max and multiplication for our work).

Each constraint in C is a function mapping outcomes
of variables included in the constraint to preference values;
thus the constraint defines a function over some of the vari-
ables in X. Functions are joined using a join operator, de-
noted ⊗, which uses × to combine preferences. The com-
bination of all constraints yields the global preference over
the problem. Specifying the global preference directly can
be intractable in practice, since the number of tuples is ex-
ponential in the number of variables in X; specifying in-
dependent constraints in multiple, smaller tables is more
tractable. Typically, for implementation a branch and bound
method searches the global preference. As the search de-
scends the tree, constraints involving set variables are ap-
plied to the partial solution. Our implementation uses a
best first branch and bound search to first traverse branches
with a higher scored partial assignment. For more informa-
tion on SCSPs see (Bistarelli, Montanari, and Rossi 1997;
Bistarelli et al. 1999).

Design

We introduce a camera selection mechanism based on a
semiring, 〈A,+,×,0,1〉. Here A is the closed unit interval,
with 0 and 1 equal to their numerical values respectively.
We implement + with max and × with multiplication. It is
trivial to show that these choices satisfy the properties of a
semiring. X, D, and C, are dependent on the implementa-
tion; a hockey example is presented below.

A designer’s camera preferences are encoded in con-
straints, C, which we represent with tables. For example,
in our hockey game, one constraint is KeepCentered speci-
fying that the hockey puck appear in the center of the cam-
era. Another constraint is DistanceToCamera, which spec-
ifies that the puck appear closer to the camera rather than
further away. These are just one viewer’s preferences; an-
other viewer may have different preferences. These con-
straints can be encoded in tables, shown in Table 1 using
variables location and distance. Intuitively higher values in-
dicate greater preference. Any preference function over a
finite set of discrete variables can be encoded in a similar
fashion. Table 1 shows unary preferences (one variable), but
preferences can be defined over more variables in general.

Location Pref
center 1.0
border 0.7

out 0.1

Distance Pref
near 1.0

middle 0.8
far 0.1

Table 1: KeepCentered and DistanceToCamera preferences

Here the variables are X = {Location, Distance}. Pref-
erences among variable outcomes in one constraint are ex-
pressed independently of preferences of variable outcomes
in another constraint. Interdependencies between variables
arise in more complex situations, and can be easily modeled.

28



Since the join operator is based on arithmetic multipli-
cations, when the two constraints are joined, the best tuple
in the global preference is {Location = center, Distance =
near}, with a preference of 1.0.

To know which camera to select, a Feed variable must be
introduced. For example, the constraint for two cameras,
both equally preferred, is shown in Table 2. If cameras are
not equally preferred, such as in the maze game described
later, then the preference values would reflect this.

Feed Pref
one 1.0
two 1.0

Table 2: A Preference over Camera Feeds

Static Constraints versus Dynamic Constraints

Static constraints are set at design time, and dynamic con-
straints are set automatically during execution. The con-
straints shown in Table 1 are static constraints, and may not
reflect the current situation. It may be that no camera has the
puck centered in the camera view, with a near distance. For
example, the dynamic constraint shown in Table 3 provides
evidence that the puck is in the border of camera one’s view.
Dynamic constraints provide evidence by assigning a pref-
erence level of 0 to tuples inconsistent with the current state
of the virtual environment.

Feed Location Pref Feed Location Pref
one center 0.0 two center 0.0
one border 1.0 two border 0.0
one out 0.0 two out 1.0

Table 3: Example Dynamic Preference Table

Considering the static and dynamic constraints from Ta-
bles 1, 2 and 3, the best tuple from the global preference is
now {Feed = one, Location = border, Distance = near}, with
a preference of 0.7. Similarly, adding a dynamic constraint
for the distance ensures that only tuples with a distance cor-
responding to reality are selected as the best tuple. Dynamic
constraints are set just before the system selects a feed.

Additional Constraints

We represented a variety of additional constraints using this
formalism. A unary BiasCamera constraint prefers some
camera viewpoints to others. In the maze game this con-
straint allows the system to prefer viewpoints behind the
avatar to those in front, making the avatar easier to control.
The constraint is similar to Table 2, but has 33 domain val-
ues for Feed with some values less than one.

A temporal constraint, FrameCoherence 1, prevents rapid
changes between camera feeds. Table 4 shows a designer’s

1We call this constraint FrameCoherence since its function is to
maintain camera frame coherence, similar to the frame coherence
objective in (Halper, Helbing, and Strothotte 2001).

preference to prefer feeds currently used for less than five
seconds versus camera feeds selected for more than ten sec-
onds. The last two values in Table 4 apply to cameras that
are not currently selected.

Duration Pref
selected for less than two seconds 1.0

selected two to five seconds 0.9
selected five to ten seconds 0.4

selected more than ten seconds 0.3
selected less than two seconds ago 0.1

not recently selected 0.7

Table 4: Preference for Frame Coherence

A potentially unwanted viewing effect occurs when using
FrameCoherence and multiple screens. A camera feed se-
lected for less than two seconds has a high preference, but
the preference does not specify on which screen the feed
should be displayed. Thus the feed could rapidly switch
between different screens. To avoid this, we introduce a
wasFeed variable for each screen. To prefer the same feed
remain on a given display, the designer specifies the pref-
erence of selecting a feed based on which feed is currently
selected on a given screen. When used with fixed position
cameras wasFeed can also be used to design a constraint to
avoid switching to another feed that is less than 30◦ differ-
ent from the current camera, a desirable property with jump
cuts (Haigh-Hutchinson 2009). The preferences we use are
non-trivial; a constraint graph using 4 screens, 29 variables
and 59 constraints is shown in Figure 1. The figure contains

Figure 1: Constraint Graph Example using Four Displays

constraints to show the scorer after a goal has been scored,
which are similar to preferences to show the puck. The num-
bers on the ends of variables are used to break name depen-
dencies. For example, without a variable for each display,
specifying a near distance on screen one would also force a
near distance preference on screens two, three and four. The
lines terminated in a dot represent unary constraints.

Occlusion constraints keep particular characters or ob-
jects in view. In the maze game the player searches for tar-
gets, so views with a target are preferred to those without.
However, the target may be occluded by a wall. A constraint
over the variable TargetVisible ∈ {well,some,poor} encodes
the preference to see a target. To set the dynamic constraint,

29



the player is bounded by a non-visible box, which is divided
into 27 smaller boxes (3 × 3 × 3). A count of the number of
these smaller boxes that are visible determines the dynamic
constraint assignment to TargetVisible.

Problem Domain

We constructed two virtual environments: a spectator per-
spective hockey game and a third person maze game, shown
in Figures 2a and 2b. In the hockey game, with one dis-

Figure 2: Hockey and Maze Games

play and ten cameras our SCSP search completes in ap-
proximately one millisecond, but displays acceptable results
when run every 30 frames (one evaluation per second).

In the hockey game, we wanted to keep the puck in the
center of view as much as possible, while keeping the action
as close as possible. Other viewers may have other prefer-
ences; we choose these as a baseline. An independent simu-
lator controls players and ten cameras are placed around one
side of the rink. The game can implement constraints such
as those presented in Table 1 or Figure 1, but considers ten
cameras instead of two.

For the dynamic constraint KeepCentered the screen is
considered to range from −1 to +1 (ie. normalized coor-
dinates). The puck is considered to be in the middle of a
camera’s view if its x and y coordinates lie between -0.4 and
0.4, border of the screen between -1 and 1 (but not in the
middle), and out of view otherwise. The dynamic constraint
for DistanceToCamera is similarly encoded, but based on
the z coordinate of the puck.

In the maze game, the goals of the camera selection sys-
tem are to choose a view that helps the player see the avatar,
and provide cinematic cues for objectives in the game. The
user controls an avatar in a 3D maze and fires boxes at tar-
get boxes. The player wins when all target boxes have been
hit. Camera view constraints include keeping the avatar in
view (AvatarVisible), seeing a firing box (FiringBoxVisible),
seeing a target box (TargetBoxVisible), and being behind
the avatar (BiasCamera). A VisibleTransition constraint
avoids camera changes that pass through walls. Smooth
camera changes are performed by linearly interpolating be-
tween camera views, rather than having abrupt camera feed
changes, as we chose with the hockey game. This is similar
to commercial games that use a third person perspective.

We implement occlusion constraints by bounding objects
using rectangular cuboids and projecting these to rectangles
on a 2D screen. For example, the player’s avatar is divided
into 27 boxes (3× 3× 3) and the visibility is classified into
well if less than 13 boxes are occluded, some if less than
18 boxes are occluded, or poor otherwise. Once on the 2D
screen a rectangle is occluded if it is overlapped by a rectan-
gle from another object that has a lower z value (ie. closer).
The VisibleTransition constraint uses the occlusion informa-
tion of the cameras along potential camera paths to deter-
mine the degree of occlusion of the considered camera path.

Cache Acceleration

As time goes on in the simulation, configurations reoccur
whenever dynamic constraints for the current evaluation are
identical to a previous evaluation. Consequently we imple-
mented a cache to take advantage of the temporal locality
and reduce the average evaluation time. Figure 3 plots the
average time to select a camera based on the number of cam-
eras available. Each data point in Figure 3 is the average of
1000 evaluations using the hockey game with four displays
and the preferences KeepCentered and DistanceToCamera
from Table 1. The cache is implemented using a hash table
with arrays for items mapped to the same hash value.

Figure 3: Computation Time Cache vs. No Cache

The triangles in Figure 3 show that the cache improves the
average camera selection time, but has noticeable lag with

30



a large number of cameras. However the cache technique
is still practical since best first search is an anytime algo-
rithm. The search can return the best current feed selection
in a timely fashion while a background process continues to
search for the optimal feed. Subsequent requests using the
same dynamic constraints use the improved camera selec-
tion from the cache.

Native Code Systems
One brute force way to design a camera selection system is
to encode the camera selection system in a series of if-then-
else statements, which execute more quickly than searching
for the best feed selection. However, this approach has the
same software maintenance problem that large expert sys-
tems did, namely that large rule bases are difficult to modify
or extend as the number of rules increase (Jackson 1986).

An advantage of our approach over native code is that the
designer can focus on camera selection at an abstract level;
for example, specifying that the puck remain in the center of
the camera’s field of view, instead of using the puck’s x, y,
and z coordinates directly. Also, our system automatically
balances constraints when not all constraints can be simul-
taneously satisfied, rather than require the designer to write
rules for over-constrained situations. Thirdly, preferences
are easy to modify by changing the preferences in a small
table. With native code, changing one if–statement can have
unexpected interactions.

Conversion To Native Code

To achieve the potential benefits of both approaches we
demonstrate how to automatically convert the SCSP system
to native code. Thus the camera selection system is designed
under the SCSP scheme, but executes in less time.

A naı̈ve conversion would consider all dynamic constraint
combinations and map them to the appropriate camera feed.
However, the number of states in the input space is pro-
hibitive, even for relatively few constraints (320 considering
only KeepCentered and DistanceToCamera with ten cam-
eras and one display). Adding additional constraints in-
creases the number of combinations, and thus evaluation
time, with exponential complexity assuming the new con-
straints contain new variables.

In practice, relatively few dynamic constraint combina-
tions occur. Some combinations are self contradictory and
never occur. For example, the puck being in the center
of camera one’s field of view may mean that the puck is
not simultaneously in the center of camera ten’s field of
view. We generate likely dynamic constraint combinations
by sampling game execution, and store them in a cache large
enough to avoid conflicts. The samples form a training set
from which a decision tree is generated using an informa-
tion gain heuristic. The decision tree is written to C code
if-statements, which are compiled to native code. When the
native code is provided with dynamic constraints that were
not in the sampling, it returns the most frequently used cam-
era in the decision tree’s subtree.

The quality of native code camera selection approaches
the SCSP system asymptotically. Consequently, a high per-
formance can be achieved in a relatively short time as shown

in Figure 4 which uses the KeepCentered and DistanceTo-
Camera preferences and one screen. With large SCSP sys-
tems the collection of cache samples, and conversion to na-
tive code, can be parallelized to reduce conversion time.

Figure 4: Native Code Performance versus SCSP solution

Findings

In the hockey game, using KeepCentered and DistanceTo-
Camera our camera selection system effectively chooses
views that center the puck with a near view when available,
and avoids far views with the puck out of view. When the
preferences values are reversed, the system appropriately se-
lects far views with the puck out of view. Initially, we im-
plemented only the KeepCentered constraint, but found that
the camera selection system often selected views from the
opposite end of the hockey rink, if the puck was centered.
Adding the DistanceToCamera constraint required the sys-
tem to also consider the distance to the puck, resulting in
what we feel is a more pleasing camera selection. Adding
the FrameCoherence constraint prevented the system from
switching between camera feeds too quickly (less than two
seconds), or remaining on one feed for too long.

In the maze game, we first implented the BiasCamera and
AvatarVisible constraints; the game was playable, but we
wanted to encourage seeing target boxes, as this is the goal
of the game. We then added the TargetBoxVisible and Fir-
ingBoxVisible, but found the camera passing through walls
disorienting. Increasing the preference to see the player
solved this problem, along with adding the VisibleTransition
constraint to avoid camera changes that pass through walls.

Evaluation

Camera placement methods have used CSPs with hard con-
straints, and He et. al’s Virtual Cinematographer (He, Co-
hen, and Salesin 1996) uses hard constraints in that guards
on transitions between states are satisfied or unsatisfied.
Since there are no implementations of these systems avail-
able, we examine how our soft constraint system (prefer-
ences) compares to a hard constraint system (CSP), and
mapped our preferences to CSP constraints. For the values
in Tables 1 and 4 we threshold values 0.5 and greater to 1

31



and values less than 0.5 to 0. Other mappings are possible.
For example the designer may not consider a preference of
0.7 to satisfy the constraint.

For each number of displays the hockey game was
run with KeepCentered and DistanceToCamera for at least
10000 feed selections from 10 cameras. Additional con-
straints preferred different camera feeds on each screen.
The tests were repeated with an added FrameCoherence
constraint. As Table 5 shows the CSP method frequently
finds solutions when the problem is under-constrained, but
finds solutions less often as the problem becomes over-
constrained resulting in finding no solutions with three con-
straints and five displays. Our SCSP solution was able to

Display Count Two Constraints Three Constraints
1 98.4% 91.5%
2 91.6% 69.2%
3 65.4% 35.6%
4 44.0% 18.4%
5 3.4% 0.0%

Table 5: Percent of Samples CSP solved

find a solution 100% of the time, albeit by partially sat-
isfying constraints as the system became over-constrained.
Notice that the percentage of solutions decreases with the
same number of displays when the number of constraints in-
creases from two to three, a trend that continues as additional
constraints are added.

Discussion

Our approach offers designers a tool to select cameras at run
time, which may result in better camera selection in games
and other virtual environments, faster development of the
camera selection system with an easier method of modifica-
tion, and potentially allow users (players) to customize the
camera selection system after a games release. Our system
is flexible in that it can handle different types of constraints,
such as centering objects and avoiding occlusion, and robust
in that it can handle over-constrained and under-constrained
problems automatically, based on the level of preference
provided by the designer. A CSP system is unable to deter-
mine a camera feed when the problem is over-constrained.
By design our system expands to handle multiple screens.
For improvement in run-time performance our system can
generate native code, which still allows a camera selection
design in modular tables.

Acknowledgements

The first author thanks NSERC and the University of
Saskatchewan for support in the form of a PGS-D and de-
partmental scholarship. The research of the second and third
authors is supported by NSERC Discovery Grants.

References

Assa, J.; Wolf, L.; and Cohen-Or, D. 2010. The Virtual Di-
rector: a Correlation-Based Online Viewing of Human Mo-
tion. Computer Graphics Forum 29:595–604.

Bares, W. H., and Lester, J. C. 1999. Intelligent Multi-Shot
Visualization Interfaces for Dynamic 3 Worlds. In Intelli-
gent User Interfaces, 119–126.
Bhatt, M., and Flanagan, G. 2010. Spatio-Temporal Abduc-
tion for Scenario and Narrative Completion (a preliminary
statement). International Workshop on Spatio-Temporal Dy-
namics.
Bistarelli, S.; Montanari, U.; Rossi, F.; Schiex, T.; Verfaillie,
G.; and Fargier, H. 1999. Semiring-Based CSPs and Val-
ued CSPs : Frameworks, Properties and Comparison. Con-
straints 4.
Bistarelli, S.; Montanari, U.; and Rossi, F. 1997. Semiring-
based constraint satisfaction and optimization. Journal of
the ACM 44:201–236.
Bourne, O.; Sattar, A.; and Goodwin, S. 2008. A Constraint-
Based Autonomous 3D Camera System. Constraints 13(1-
2):180–205.
Christie, M., and Hosobe, H. 2006. Through the Lens Cin-
ematography. In Proceedings of the 6th International Sym-
posium on Smart Graphics.
Christie, M.; Olivier, P.; and Normand, J.-M. 2008. Cam-
era Control in Computer Graphics. Comput. Graph. Forum
27(8):2197–2218.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann Publishers.
Drucker, S. M., and Zeltzer, D. 1994. Intelligent Camera
Control in a Virtual Environment. In Proceedings of Graph-
ics Interface ’94, 190–199.
Freuder, E. C., and Wallace, R. J. 1992. Partial Constraint
Satisfaction. Artif. Intell. 58(1-3):21–70.
Gleicher, M., and Witkin, A. 1992. Through-the-Lens Cam-
era Control. Computer Graphics 26(2):331–340.
Haigh-Hutchinson, M. 2009. Real-Time Cameras: A Guide
for Game Designers and Developers. Morgan Kaufmann
Publishers.
Halper, N.; Helbing, R.; and Strothotte, T. 2001. A Cam-
era Engine for Computer Games: Managing the Trade-Off
Between Constraint Satisfaction and Frame Coherence. In
Chalmers, A., and Rhyne, T.-M., eds., EG 2001, volume
20(3). Blackwell Publishing. 174–183.
He, L.; Cohen, M. F.; and Salesin, D. H. 1996. The Virtual
Cinematographer: A Paradigm for Automatic Real-Time
Camera Control and Directing. Computer Graphics 30(An-
nual Conference Series):217–224.
Jackson, P. 1986. Introduction to Expert Systems. Addison-
Wesley.
Passos, E. B.; Montenegro, A.; Clua, E. W. G.; Pozzer, C.;
and Azevedo, V. 2009. Neuronal editor agent for scene
cutting in game cinematography. Comput. Entertain. 7(4):1–
17.
Turkay, C.; Koc, E.; and Balcisoy, S. 2009. An information
theoretic approach to camera control for crowded scenes.
Vis. Comput. 25(5-7):451–459.

32




