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Abstract
For a knowledge-based system that fails to provide the 
correct answer, it is important to be able to tune the system 
while minimizing overall change in the knowledge-base. 
There are a variety of reasons why the answer is incorrect 
ranging from incorrect knowledge to information vagueness 
to incompleteness. Still, in all these situations, it is typically 
the case that most of the knowledge in the system is likely 
to be correct as specified by the expert(s) and/or knowledge 
engineer(s). In this paper, we propose a method to identify 
the possible changes by understanding the contribution of 
parameters on the outputs of concern. Our approach is based 
on Bayesian Knowledge Bases for modeling uncertainties. 
We start with single parameter changes and then extend to 
multiple parameters. In order to identify the optimal 
solution that can minimize the change to the model as 
specified by the domain experts, we define and evaluate the 
sensitivity values of the results with respect to the 
parameters. We discuss the computational complexities of 
determining the solution and show that the problem of 
multiple parameters changes can be transformed into Linear 
Programming problems, and thus, efficiently solvable. Our 
work can also be applied towards validating the knowledge 
base such that the updated model can satisfy all test-cases 
collected from the domain experts. 

Introduction1

How do you tune your probabilistic knowledge base? Let 
us say that your favorite probabilistic diagnostic system is 
not generating the answer that you or your expert friends 
expected. First, we would need to ask “why” are we getting 
that probabilistic answer (i.e., “why is this the most 
probable answer?”). The “why” could come in many forms 
ranging from determining which events have contributed 
most to the probabilistic mass to determining which rules 
or probabilistic relationships (e.g., direct conditional 
dependencies) were used and/or  how frequently. In 
essence, this provides an explanation of the answer which 
can help in determining the cause of the discrepancy. Now 
secondly, what would we need to change in the 
probabilistic knowledge-base in order to correct the 
problem? If we believe that most of our knowledge is 
correct, should we modify as “little” as possible? Of
course, what is “little”? Depending on your probabilistic 
representation, even a small change can have semantic 
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rippling effects throughout the knowledge-base. Related to 
this is the effect of indirect relationships. Even though we 
may determine the primary contributors in the “why” 
above, the correction may involve a change to a single 
indirect relationship potentially far-removed from the 
contributor. 

In related work, various efforts have been applied to 
Bayesian Networks (BNs) (Laskey 1995; Chan & 
Darwiche 2004). However, the quantification of the BN 
which often requires specification of a huge number of 
conditional probabilities is always a daunting task.  In 
reality though, the causal mechanism is likely to vary 
across the population, which happens when the causal link 
between two variables becomes weak given some 
evidence.  Under these situations, the complete conditional 
probability specification turns out to be unnecessary, as the 
redundant information only increases the reasoning 
complexity. Moreover, the underlying causal relationship 
may even be cyclic, which is not permitted in a BN.

To avoid these limitations, we represent our knowledge 
using Bayesian Knowledge-Bases (BKBs) (Santos & 
Santos 1999; Rosen et al 2004). BKBs are a rule-based 
probabilistic model that subsumes BNs by specifying 
dependence at the instantiation level (versus BNs that 
specify only at the random variable level); by allowing for 
cycles between variables; and, by loosening the
requirement in specifying probability distributions 
(especially allowing for incompleteness).  

To better understand the system and explain why the 
system is generating a conflict with regards to users’ 
expectations, we look into the contributing factors leading 
to the conflict and show how changing them can assist in 
correcting the system.  On the other hand, identifying just 
the primary contributing factors may not be enough. Thus, 
our second goal is to tune our knowledge system while 
minimizing the possible changes. This is crucial to the 
modelers who want to maintain system credibility by 
protecting certain knowledge from being changed. 
Previous work (Santos & Dinh 2008) proposed an 
algorithm for modifying a BKB such that the test-cases 
entered by the user can be satisfied. However, to validate a 
query, the given BKB often ends up with a large portion of 
rules/parameters being changed. In contrast, we start by 
changing only one rule (probability). Single-rule change, 
of course, can never be achieved in BNs because once a 
rule is changed, all the other rules in the same conditional 
probability table (CPT) column must be changed 
accordingly, such that the probability sum continues to be 
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1. We will show that the properties of BKBs can allow for 
such singular changes in different situations. Furthermore, 
we present a procedure to identify the candidate changes 
by using the fact that any joint probability can be expressed 
as a linear function of a rule, where the coefficients can be 
efficiently calculated using importance sampling method, 
instead of reasoning across the entire BKB. Single rule 
changes are good for maintaining the original probability 
distribution specified by the experts, but may still not 
guarantee a solution in every situation. We discuss such 
situations in terms of rule contribution and provide an 
intuitive explanation on when and why the single rule 
change is (in-)sufficient. 

In the second half of this paper, we extend our work to 
allow multiple rules (probabilities) to change, in particular, 
a set of rules that are analogous to a conditional probability 
table (CPT) in a BN, but still allows for a cyclic 
relationship between random variables. Multiple parameter 
changes can be more intuitive and meaningful since the 
rules involved in the same conditional statement � � � are 
always correlated in practice. Another contribution of this 
work is that we show how to formulate the problem of 
multiple rule changes while still maintaining the same 
computation cost needed for single rule changes. In fact, it 
can be solved efficiently through Linear Programming. 

Though the rules with direct contributions are more 
likely to be critical to the results, the optimal solution may 
contain some rules whose influence is underestimated due 
to their low weights, but may cause a “butterfly effect” as 
the weights change. We incorporate the ideas of sensitivity 
analyses and evaluate how the changes to a set of rules can 
help correct the system. Our underlying philosophy is that 
we want to change the rules that are most significant to the 
query, such that the amount of change can be minimized or 
controlled to some extent (as specified by the users if so 
desired). Sensitivity analysis has been used in several 
fields, including selective parameter updating in BNs 
(Wang et al 2002) and large-scale network quantification 
(Coupe et al 1999). However, sensitivity analysis in BNs 
(Chan & Darwiche 2004) cannot be applied to tuning a 
BKB since BKBs do not form CPTs providing more 
flexibility and avoid the need for Proportional Scaling
when the variable is multi-valued. 

In the next sections, we start with a detailed description 
of BKBs, followed by our tuning process from single to 
multiple parameter changes. Another application of our 
results to knowledge validation will be introduced in the 
last part.

Bayesian Knowledge-base
BKBs subsume BNs. Instead of specifying the causal 
structure using conditional probability tables (CPT) as in 
BNs, it collects the conditional probability rules (CPR) in 
an “if-then” style. Fig. 1 shows a graph structure of a BKB 
fragment, in which � is a random variable with possible 
instantiations {��, ��}. Each instantiation of a random 
variable is represented by an I-node, or “instantiation 

node”, e.g. � = ��, and the rule specifying the conditional 
probability of an I-node is encoded in an S-node, or 
“support node” with a certain weight. For example, 	


corresponds to a CPR which can be interpreted as: if 
� = �� and � = ��, then 
 = �� with a probability 0.5.   

One benefit of this approach is that it allows for 
independence to be specified at the instantiation level 
instead of the random variable level. Also, it does not 
require the full table representation of the CPTs and allows 
for reasoning even with incompleteness. As the BKB 
shows in Fig.1, the dependency relationship at the variable 
level implies that variable 
 depends on both � and � . 
However, given the evidence of � = �� , 
 becomes 
independent of � . This could happen in the real world 
when the role of a critical variable can dominate some 
local dependency relationships between variables. In a BN, 
in order to represent the probability distribution of 

dependent on � and � , all CPT entries of �(
|�, �) are 
required to fill in, which could grow exponentially when 
the number of the parent nodes is large. BKBs in contrast, 
only capture the knowledge that is available and does not 
require a complete distribution specification.

Figure 1: Example of a BKB fragment

The other feature of BKBs is that they also allow cyclic 
relationships among random variables. Imagine if the 
direction of some causal mechanism also depends on 
specific states of the variables. (Santos et al. 2009) gives an 
example of BKB modeling of a political election, in which 
the type of “race” may flip the causal direction between the 
belief of a piece of evidence and the voting action. 
  The formal definition of the graphical representation of a 
BKB from (Santos & Dinh 2008) is given below:
Definition 1. A correlation-graph is a directed graph 
� = (� � �, �) in which � � � = �, � � {� × �} �
{� × �}, and �	 � �, there exists a unique � � � such that 
(	, �) � �. If there is a link from 	 � � to � � �, we say 
that 	 ������!� �.

For each S-node 	 in a correlation graph �, we denote 
��"#$(	) as the set of I-nodes pointing to 	 , i.e. 
��"#$(	) = {� � �|� � 	 � �} and %"��$(	) as the I-
node supported by 	, i.e. the � such that 	 � � � �. 

Two I-nodes, �� and �� are said to be mutually
exclusive if they are the different instantiations of the same 
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random variables. Similarly, two sets of I-nodes 
�� and �� are mutually exclusive if there exists two I-nodes 
�� � �� and �� � �� , such that �� and �� are mutually
exclusive. For example, the sets of I-nodes {� = ��, 
 =
��} and {� = ��, 
 = ��, � = ��} are mutually exclusive. 
A state is a set of I-nodes such that it contains no more 
than one instantiation of each random variable. 
Definition 2. A set of S-nodes & is said to be 
complementary if for all 	�,  	� � & , %"��$(	�) and 
%"��$(	�) are mutually exclusive, but ��"#$(	�) and 
��"#$(	�) are not mutually exclusive. Variable ' is said 
to be the consequent variable of & , if for any S-node 
	 � &, %"��$(	) is an instantiation of '. 

We denote *+ as the set that contains all possible 
complementary sets of S-nodes w.r.t. variable ', such that 
for any complementary set � � *+ , ' is the consequent 
variable of r. We also introduce -+ to denote the subset of
*+ that removes all complementary sets in *+ that are a 
subset of some other complementary set, i.e. -+ = {�|� �
*+ / 1�2 � *+, � 3 �4} For example in Fig. 1, {	6, 	7} is a 
complementary set w.r.t. variable 
 and -8 =
{{	6, 	7, 	��}, {	
}, {	9}}. Note that for a certain variable 
' in Bayesian Network, the size of -+ goes exponentially 
with the number of its parent variables. However, since 
BKBs only capture context-specific dependence rules, the 
size of -+ can be considerably smaller in real-world cases.   
Definition 3. A set of S-nodes 
 is said to be a causal rule 
set (CRS) for the random variable ' if 
 contains all S-
nodes pointing to the instantiations of '. As a note, each S-
node only belongs to one CRS. 
 For each complementary set �2 � -+, �2 is a subset of 

 . For example, the CRS for variable 
 in Fig.1 is 
{	6, 	7, 	
, 	9 , 	�� }. 
Definition 4. A Bayesian knowledge base (BKB) is a tuple 
: = (�, ;) where � = (� � �, �) is a correlation–graph, 
and ; < � � [0,1] such that
1. �	 � �, ��"#$(	) contains at most one instantiation of 
each random variable.
2. For distinct S-nodes 	�, 	�  � � that support the same I-
node, ��"#$(	�) and ��"#$(	�)  are mutually exclusive. 
3. for any complementary set of S-nodes & 3 � , & is 
normalized: ? ;(	)@AB C 1 where ;(	) is a weight 
function that represents the conditional probability of 
�(%"��$(	)|��"#$(	)). 

The intuition behind these three conditions is that each 
S-node can only support one I-node; two rules supporting 
the same I-node cannot be satisfied at the same time; and, 
to ensure normalization of the probability distribution, 
every complementary set of S-nodes should be normalized. 
Definition 5. The CRS 
 w.r.t. the variable ' is called 
normalized if for any complementary set � � *+ , � is 
normalized. 
Theorem 1. Let 
 be the CRS of variable ' , if for any 
complementary set �4 � -+, �4 is normalized, then 
 is also 
normalized.

Theorem 1 can be easily proved from the definition of 
-+, since any complementary set in *+ is a subset of some 
complementary set in -+. 

As in BNs, reasoning with BKB is also based on the 
calculation of joint probabilities over the possible worlds. 
Here, a world is a subgraph of a BKB including at most 
one I-node of each random variable and the associated S-
nodes (a world is referred to as an inference in (Santos & 
Santos 1999). For example in Fig.1, the dotted rectangle 
circles a world. As proved in (Santos & Santos 1999), the 
joint probability of a world D is just the product of the 
weights of all S-nodes in D , i.e.�(D) = E ;(	)@�F . The 
idea of world plays an important role in two forms of 
reasoning with BKBs, belief revision (also called 
maximum a posteriori or MAP) (Santos & Santos 1999; 
Pearl 1988) and belief updating. In belief updating, the 
goal is to calculate the probability of a state of a random 
variable given some evidence, e.g. �(� = G|�� = H�, �� =
H�, … , �I = HI). As shown in (Rosen et al 2004), the joint 
probability of a state J = {�� = H�, �� = H�, … , �I = HI}
is a summation of the probabilities of all possible worlds 
where J is true, i.e.�(J) = ? �(D)F�KL

, where �M represents 
the set of worlds containing  J. The worst-case complexity 
of reasoning with BKBs is NP hard. Some approximation 
algorithms, e.g. stochastic sampling methods, have been 
introduced to make the reasoning process more efficient 
(Rosen et al. 2004). However, given that BKBs only 
captures the knowledge available, for real-world problems 
(Santos et al. 2009), exact methods have been shown to be 
computationally feasible at least of moderate size.   

As we discussed earlier, calculating the contributing 
factors is important to explaining the phenomenon. An 
algorithm used to compute the contribution of node 	 to 
the probability of state J , represented by �M(	) , was 
presented in (Santos et al. 2009), in which the contribution 
is the sum of the probabilities of the worlds including both 
J and 	, i.e. �M(	) = ? �(D)F�KL/@�F . Here, 	 is not 
restricted to just S-nodes. If it is an I-node, then the 
contribution measures how much influence an event can 
have on a state. 

Tuning a BKB
The main goal of this work is to tune the BKB by 
understanding the contributing factors leading to the 
inconsistent answer. More specifically, three problems will 
be addressed in this section. First, before we actually tune a 
set of rules (weights of S-nodes), we want to know how 
they contribute to the original answer. Second, given a 
BKB, : = (�, ;) and some evidence " entered by the 
user, we need to determine how we can identify necessary
changes to a set of S-nodes such that the tuned BKB can 
enable �2(N = '�|") > �2(N = '�|"), where �4 is the 
distribution after we apply changes on the rules (as 
compared to the original distribution �). Third, we want to 
select a set of S-nodes that are most sensitive to correcting
the answer and focus our efforts on refining their weights. 
In other words, we want to keep the change as small as 
possible.  

We begin by focusing on the goal of changing just a 
single S-node. Unlike BNs, which requires the sum of the 
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parameters in the same CPT column to remain 1.0, BKBs 
in contrast, allows for incompleteness, which makes it 
possible to minimize the change to a single S-node.  

Let J�and J�be two states representing {N = '�, "} and 
{N = '�, "} , following Bayes rule, the original result: 
�(N = '�|") < �(N = '�|") can be transformed into:
�(N = '�, ") < �(N = '�, ") or �(J�) < �(J�) . As 
defined in the previous section, given an S-node 	, we can 
express �(J�) in terms of �MQ

(	) as: 
                                                                                         
                                                                                       

Similarly, 
                                                                                  

where �  and � are two constants independent of ;(	). 
 An S-node with high contribution value can be 
considered as a critical parameter to the probability of a 
state. In Fig.1 currently,  �(J�) = �(� = ��, % = #�) =
0.096 and  �(J�) = �(� = ��, % = #�) = 0.106 , which 
indicates that the most probable state for variable � is ��

given evidence % = #�. After calculating the contributions 
of each S-node, we determine that 	T participates in all 
possible worlds including  J� , and thus has the largest 
contribution to �(J�), i.e. �MU

(	T) = 0.106. Therefore, it is 
reasonable to decrease the probability of �(J�) by 
lowering the weight of 	T. However, 	T is also the largest 
contributor to �(J�), i.e. �MQ

(	T) = 0.096, which suggests 
that lowering the weight of 	T will proportionally decrease 
�(J�) and �(J�) at the same time. As a result, 	T is not an 
appropriate choice to correct the system. 

So, which kind of S-node can help to correct the system?
Considering that we only adjust the weights of S-nodes 
without changing the structure of BKB, the corresponding 
worlds of a state will stay the same. Let V be the S-node 
that we want to change and WX be the amount of change 
that we apply to V. In order to achieve �4(J�) > �4(J�), 
from equations (1) and (2), the following condition must
hold:

                                                                           
where, 
                                                                                 Y = 1,2

In addition, to ensure the validity of the tuned system, all 
the complementary sets of S-nodes that involves V should 
remain normalized. Let \ be the CRS for variable N, such 
that V � \, then %"��$(V) is an instantiation of N. From 
the definition of CRSs, every complementary  & , such 
that  V � &, is a subset of  \ . Therefore, as long as 
 is 
normalized, the updated BKB is still valid. From Theorem 
1, we can simplify the conditions of normalization as 
follows: 

where -^(V) only collects the complementary sets in -^

that contain V . Combining with inequality (3), the 
conditions to correct the system for S-node V can be 
integrated as follows: 

                                                                                       

where

Since WX is the only unknown variable, the solution space 
can be easily found by solving for the equality condition. 
The size of -^(V) can be larger than 1 due to the 
incompleteness, but still remains small in practice. The 
time complexity of computing all contribution �M(V) in
terms of V is worst-case NP-hard, which is the same as 
belief updating. However, with the aid of importance
sampling method introduced in (Rosen et al. 2004), we can 
approximate all coefficients � and _. 

Considering the fact that �(J�) and �(J�) can be written 
as a function of ;(V) 
                                                                              
                                                                                     

Let H�, H� be two different weights assigned to V, Then the 
values of �V can be easily determined as the following:

where     and denote the corresponding probabilities of 
�(J�) respectively. The time complexity of computing the 
probability �(J�) using sampling method is `(��), where 
� is the number of random variables. The way of 
computing _ is similar to above. 

Figure 2: Example of a BKB with no single S-node solution to 
make 
 = �� be the most probable instantiation of variable 

given evidence � = ��. 

Unfortunately, the single S-node solution does not 
always exist. We now describe the situations when we are 
unable to find a solution for inequalities (4). Intuitively, the 
single S-node solution does not exist if there is no room to 
increase �(b = '�, ") due to the normalization constraint 
(consider BNs). Instead, a second method may be to
decrease the probability of �(N = '�, ") , such that 
{ N = '�} becomes the most probable state given evidence 
". As the example shown in Fig. 2, we want to select the S-
node that contributes to �(
 = ��, � = ��) and reduce its 
weight, e.g. 	�, 	c, 	e ,  	
 and 	9 . Tab.1 shows the 
probability of �4(
 = ��, � = ��) and �4(
 = ��, � = ��)
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after reducing the weight of these five S-nodes to 0 
respectively. Obviously, no matter which S-node we pick 
to change, the joint probability of �4(
 = ��, � = ��) is 
still larger or equal to �4(
 = ��, � = ��). In other words, 
no S-node is significant enough to �(N = '�, ") over 
�(N = '�, ").

;(	f) =0 	� 	c 	e 	
 	9

�2(
 = ��, � = ��) 0.252 0.140 0 0.252 0.140 
�2(
 = ��, � = ��) 0 0.076 0 0.076 0.076

Table 1: Updated Probabilities of states {
 = ��, � = ��} and 
{
 = ��, � = ��} with one weight of S-node assigned to 0.

Sensitivity of a Single S-node
Now we address the third problem of selecting the optimal 
S-node that can minimize the possible change. Though we 
may determine the primary contributors as we discussed 
above, an S-node with small direct contribution to the 
results may actually assist in correcting the system 
indirectly. For example, changing its weight may impact 
another high-contributing S-node, and thus flip the final 
answer. Therefore, the contribution to the original results
alone is insufficient for correcting the system in terms of S-
node change. To overcome this, we incorporate sensitivity 
analysis. Sensitivity analysis has been used to evaluate the 
change in the posterior probability of the target query 
caused by parameter variation.  (Laskey, 1995) proposed to 
measure sensitivity by using partial derivatives of the 
probability in terms of the parameter. In our work, in order 
to achieve �2(N = '�|") g �2(N = '�|") > 0 while 
minimizing change, we measure the sensitivity with 
respect to the ratio �(N|") = �(N = '�|")/�(N = '�|") as 
a function of the S-node to be changed. The idea is to make
�(N|") larger than 1.0 with a small |WX|. 
Definition 6. Given a BKB : = (�, ;), let H be the weight 
of S-node 	 , the sensitivity of H on �(N|") is a partial 
derivative:

The ratio �(N|") can be expressed in terms of H as:  

which is a fraction of two linear functions on H. Then the 
partial derivative of �(N|") on H turns to be:

                                                                                          
The S-nodes with higher |�(H|N, ")| are more sensitive to 
the results, and thus more likely to correct the system with 
small change. Note that the S-nodes with �(H|N, ") < 0  
implies a negative WX, which means that there is no need 
to check the normalization condition in inequalities (4). 

Tune a Variable CRS
Tuning a single S-node is simple to apply. However, as the 
example shown in Fig. 2 above demonstrates, there may 
not exist a single S-node solution. In order to overcome 
this limitation, we instead consider changing the S-nodes 
in the CRS of a random variable.  

There are several advantages to applying single CRS
tuning instead of single S-node tuning. First, allowing CRS
tuning enlarges the range of its possible changes since the 
S-nodes in a same complementary set can be changed 
simultaneously. Therefore it becomes more likely to find a 
solution to correct the system. Back to the example in 
Fig.2, if we apply a positive change of 0.3 to 	7 and a 
negative change of g0.3 to 	
 , which still satisfies 
normalization, then the updated BKB will have the 
probability of �4(N = '�|")  > �4(N = '�|") . Second, in 
contrast to single s-node tuning, single CRS tuning may be 
more intuitive and meaningful. For example, if the chance 
of “Rain = True” gets higher, it is reasonable to believe 
that the probability of “Rain = False” should become 
lower. Furthermore, if we want to test how a sensor 
influences the outcome in a mechanical system, we may
want to change both the false-positive and false-negative 
rates at the same time. 

Let \ be the CRS set of S-nodes w.r.t. variable N ,  
WX(	) be the change applied on S-node 	 � \
respectively. WX(	) = 0 if the weight of 	 stays the same. 
Considering the fact that two S-nodes  	�and 	� can not 
coexist in the same world since either ��"#$(	�) and 
��"#$(	�)   are mutually exclusive or %"��$(	�) and 
%"��$(	�)  are mutually exclusive, equalities (1) and (2) in 
this case will be replaced with:

Combining with normalization constraints of -N to find the 
solution of parameter changes over the CRS that 
satisfies �2(N = '�|") g �2(N = '�|") > 0, the following 
conditions must hold:

                                                                                         

where j is the number of S-nodes in \, 

           
Solving inequalities (7) can be treated as a Linear 

Programming (LP) problem using simplex algorithms, 
i.e.kYj ? |WX(I

f 	f)|, such that the upper conditions hold. 
The objective function with absolute value can be 
transformed into a linear objective with additional linear 
constraints and variables (Shanno & Weil, 1971). The 
simplex method can be very efficient in practice with a 
linear to polynomial complexity on average. Note that the 
time complexity of computing all coefficients �f, _f and 
searching for lN is the same as for the single S-node 
solution.  The only concern is that, when j is big, the size 
of the coefficient matrix � in linear programming may 
become too large to solve. Considering that � in the linear 
programming problem is always a sparse matrix, various 
efficient revised simplex methods can be used.
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Sensitivity of a Variable CRS
In this section, we analyze the sensitivity of a CRS 
 on 
the ratio �(N|") = �(N = '�|")/�(N = '�|"). 
Definition 7. Given a BKB : = (�, ;) , let Hm =
[H�, H� … HI] be the vector that denotes the weights of S-
node in CRS 
 = {	�, 	� … 	I} , the sensitivity of Hm on
�(N|") is a partial derivative:

Similar to the way we derive �(N|") as a function of the 
weight of a single S-node, �(N|") on Hm can be given by:

Then the sensitivity of Hm on �(N|") is a partial derivative 
vector:

                                                                                          
A Euclidean norm of the partial derivative vector can be 
used to compute the sensitivity value. The CRS with higher 
sensitivity value will cause larger changes to the results. 

As a reminder, every BN can be transformed into a BKB 
by representing the entries in the CPT with “if-then” rules 
in the BKB. Therefore, tuning a variable CRS can be also 
applied to a BN based system. We can prove that if two S-
nodes in the same CPT column change together, the tuned 
system is still a valid BN, i.e. the probability sum of a CPT 
column remains 1.0. Let H and G denote the amount of 
change to 	� and 	� , respectively. Given �H g _G =
�o,   where � , _ and �o have the same definition as in 
inequalities (7). If we plot |H| + |G|in terms of H + G, we 
will find out that the optima always shows up at  H + G =
 0 regardless if � is larger than _ or not.

Now we provide a concrete example on how to correct 
the system by tuning a CRS. We again refer to the 
correlation-graph of the BKB in Fig. 1, and assume the 
goal is to flip the most probable answer for variable �
given evidence % =  #�. Currently, �(� = ��, % = #�) =
0.096 and P(� = ��, % = #�) = 0.106 . We start by
evaluating the sensitivity of CRSs in terms of variables 
�, 
, � and % . The sensitivity value of these four CRSs
computed from equation (8) is: �([	c, 	e, 	�o]) = 0.121 >
�([	6, 	7, 	
, 	9, 	��]) = 0.113 >  �([	�, 	�]) = 0.107 >
�([	T, 	��]) = 0. We use the simplex method to minimize 
|WX(	c)| + |WX(	e)| + |WX(	�o)| while maintaining 
constraints in inequalities (7). The minimum is attained 
when WX(	e) = g0.053 and WX(	�o) = 0.053 . As we 
can see, this solution only requires a small change in the 
original BKB while keeping the internal conditional 
probabilities collected from experts the same.

Conclusion
This paper proposed a method to tune a BKB. Specifically, 
we described how to explain and fix the conflict between 
the users’ expectation and system answer by making a 
small change to the parameters. The optimal set of 
parameters is determined by evaluating their sensitivity, 

which minimizes the amount of change. We started by 
tuning a single parameter, and then extended to multiple 
parameters. Another contribution of this work is that we 
demonstrated that tuning a system via multiple parameter 
changes has the same computational complexity as single 
parameter changes. The problem of multiple parameter 
changes can be transformed into a Linear Programming
(LP) problem and efficiently solved.  

Another application of system tuning with multiple 
parameters in BKB is on automatic knowledge validation, 
in which the goal is to tune the given BKB with the 
minimum necessary changes such that the updated BKB 
will pass all test cases. The problem complexity of solving 
multiple queries altogether is the same as for a single 
query, since it is still an LP problem with only an 
additional inequality needed for each query.  One way to 
measure the sensitivity value w.r.t. multiple queries is to 
just simply take the average over all the queries. 
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