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Introduction   
There are two primary types of graph-based data miners: 
frequent subgraph and compression-based miners. With 
frequent subgraph miners, the most interesting substructure 
is the largest one (or ones) that meet the minimum support. 
Whereas, compression-based graph miners discover those 
subgraphs that maximize the amount of compression that a 
particular substructure provides a graph. The algorithms 
associated with these two approaches are not only 
different, but they also may result in dramatic performance 
differences, as well as in the normative patterns being 
discovered. In order to compare these two types of graph-
based approaches to knowledge discovery, in the following 
sections we will compare two publicly available 
applications:  GASTON and SUBDUE. 

Methodologies 
The goal of GASTON is to return all frequent 
substructures in a graph using a depth-first search on the 
input graphs [Nijssen and Kok  2004]. The core of the 
GASTON algorithm (and other approaches, like gSpan
[Yan and Han 2002]) is the construction of its hierarchical 
search tree based upon the DFS code assigned to each 
graph. Using its canonical tree structure, the algorithm 
performs a traversal of the tree in order to discover the 
frequent sub-graphs. This search through the DFS codes is 
repeated on each edge until frequency drops below the 
minimum support threshold. 

The goal of SUBDUE is different from GASTON (and 
other frequent subgraph miners), in that it chooses to return 
the substructures that compress the graph the best [Holder 
et al. 1994]. Using a beam search (a limited length queue 
of the “best” patterns that have been found so far), the 
algorithm grows patterns one edge at a time, continually 
discovering what substructures best compress the 
description length of the input graph. The core of the 
SUBDUE algorithm is in its compression strategy.  After 
extending each substructure by one edge, it evaluates the 
substructure based upon its compression value (the higher 
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the better). A list is maintained of the best substructures, 
and this process is continually repeated until either there 
are no more substructures to compress. 

Algorithmic Differences 
Because of the algorithmic choices each methodology uses, 
there are differences in the amount of memory/space that is 
used for their internal structures. GASTON uses a sparse 
adjacency list representation of the graphs, and with its tree 
structure and pruning strategy (the depth-first search 
allows for removal of edges and whole graphs from the 
search space after all relevant patterns for that edge or 
graph has been processed), it uses a minimal amount of 
memory. Whereas, SUBDUE uses a significant amount of 
memory due to the graph structures it builds and the 
maintenance of best substructures and subgraph instances. 

In addition to the pruning that was mentioned, several 
optimization techniques have been employed by both of 
these systems.  GASTON, as already mentioned, achieves 
its optimization through its pruning strategy, and of course, 
it does not do candidate generation. SUBDUE implements 
not only an optional aggressive form of pruning the list of 
best substructures, it also performs some heuristic 
measures to avoid some repetitive comparisons. Each of 
these optimizations not only reduces the amount of 
memory needed, they also increase the relative speed of 
each of these approaches. However, SUBDUE does make 
more calls to the graph isomorphism tests than GASTON,
and the canonical tree ordering implemented in GASTON 
minimizes its search space.

Empirical Evaluation
We now present the empirical results from experiments 
comparing the two approaches. We analyzed graphs which 
are considered sparse (average degree < 2). While there are 
many different types of graphs, sparse graphs are very 
representative of real-world phenomenon such as network 
traffic, citation networks, and social networks. In addition,
we kept the size of the sparse subgraph S constant
(arbitrarily, 10 vertices and 9 edges), and varied the other 
parameters as follows: 
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Number of Transactions (N):  10, 100, 1000, 10000 
Max copies of subgraph per transaction (C):  1, 2, 3 
Max random edges per transaction (E):5%,10%,15%, 20%   

The synthetic graphs were created using a tool called 
subgen that generates random graphs based upon user-
specified parameters. 

We chose to use SUBDUE and GASTON because very 
few graph mining tools are publicly available. For 
SUBDUE, we will use version 5.2 (www.subdue.org). All 
SUBDUE runs will use the default options (i.e., no 
parameters specified). For GASTON, we will use version 
1.1 (http://www.liacs.nl/~snijssen/gaston). Again, we will 
just use the default options (i.e., no parameters specified), 
except for varying minimum support thresholds (mst).  
Now, here is where we will make a slight modification to 
the baseline code. We will modify GASTON to output the 
single (best) substructure that maximizes (frequency *
size). This will be in direct contrast to what SUBDUE 
discovers, where the best substructure is defined to be the 
subgraph that compresses the graph the best (MDL). 

Figure 1.  Comparison of running-times for n=1000. 

For the experiments where n=10, when c=3, SUBDUE 
discovers the normative pattern in under 0.3 seconds, 
whereas for GASTON discovery of the normative pattern 
with an mst of 10% and number of extra random edges (e)
at 10%, takes ~2 hours, and more than 16 hours when e >
10%. For the experiments where n=100, when c=3, 
SUBDUE completes in under 5 seconds, whereas for 
GASTON discovery of the normative pattern with an mst
of 10% and number of extra random edges (e) at 5%, takes 
~7 minutes, and more than 3 hours when e > 5%. Also, 
with an mst of 30%, runs with e=15% take ~19 minutes 
and runs with e > 15% do not complete in less than 3 
hours. For the experiments where n=1000, when c=3, 
SUBDUE discovers the best substructure in under 4 
minutes, whereas for GASTON discovery of the normative 
pattern with an mst of 10% and number of extra random 
edges (e) at 5%, takes ~13 minutes, and more than 3 hours 
when e > 5%. Also, with an mst of 30%, runs with e=15% 
take over 2 hours and runs with e > 15% do not complete 
in less than 10 hours. (Due to space constraints, only the 
graph from this set of experiments is shown in Figure .) 

For the experiments where n=10000, SUBDUE runs range 
from a maximum of < 16 hours to minimum running times 
> 3 hours. GASTON performs well on all runs when the 
mst is at least 50% (less than one second in the worst case), 
but even at an mst of 30%, the runs grow significantly 
when more connectivity is introduced into the graph. Most 
runs with an mst of 10% had to be terminated after a few 
hours. 

We also need to examine what normative patterns are 
discovered and how many instances of the normative 
pattern are reported. For these synthetic graphs, the 
subgraph seeded into all transactions is as shown in Figure 
2. For all SUBDUE and GASTON runs, this normative 
pattern is reported as the best substructure, with no extra 
random edges. In addition, in all cases, both approaches 
report all instances of the best substructure. So, not only 
does the frequent subgraph mining approach produce 
identical results to the compression approach, but it is 
clearly faster when the number of transactions is large.  It 
should also be noted that some of the performance 
degradation in GASTON, when the mst is low, is due to 
the connectedness of the graph. The synthetic graphs that 
were generated consisted of a mixture of edges between 
vertices in the same subgraph and vertices in different 
subgraphs. The less connected the graph, the faster the 
running times. While it does not appear to affect GASTON 
when the mst is at least 50%, runs under that mst, in some 
cases, do not finish in a reasonable amount of time. 
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Figure 2.  Normative pattern.
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