Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

Structured Motifs Identification in DNA Sequences

Yuridia P. Mejia ', Ivan Olmos !, Jesiis A. Gonzalez >
! Facultad de Ciencias de la Computacion,
Benemérita Universidad Autonoma de Puebla,
14 sur y Av. San Claudio, Ciudad Universitaria,
Puebla, México
{yuripmt,ivanoprkl} @ gmail.com
2 Instituto Nacional de Astrofisica, Optica y Electrénica,
Luis Enrique Erro No. 1, Sta. Maria Tonantzintla, Puebla, México
jagonzalez@inaoep.mx

Abstract

In this paper, we present an algorithm that finds structured
motifs in a DNA sequence. A structured motif consists of a
central motif and one or two satellite motifs, which may be
located to the left and / or right of the central motif. The
search of the motifs is performed in two stages: first, the cen-
tral motifs are located through an exact set matching process,
which is implemented by a deterministic finite automaton;
in the second stage, the satellite motifs are located from the
position of the central motifs at a distance defined as input.
This last phase requires two steps: first, a matrix is calculated
through a dynamic programming technique using the Leven-
shtein algorithm. After this, we identify the satellite motifs
using the matrix. Based on our results, our method is fast at
the moment to search for central patterns (in linear time), and
the second phase is most expensive because it is necesary to
identify all the possible alignments and after that, perform the
alignment with their respective satellite.

Introduction

Searching for interesting regions (patterns) in DNA
databases is a frequent problem in biology, allowing to dis-
cover biological functions of organisms (Liang 2003). The
DNA motif search problem consists of finding all instances
of a string (pattern) in a text (a DNA database). The DNA
database consists of the nucleotide alphabet: A for adenine,
C for cytosine, G for guanine, and T for thymine. The out-
put is a list of positions where the pattern appears. In gen-
eral, a pattern is a string that is not only defined by the let-
ters A, C, G, and T. This happens because in the biologi-
cal area it is necessary to represent ambiguities associated
with certain changes in the organism that is being studied
(mutations, hereditary processes, and so on) (Schmollinger
2004). Because of this, a pattern is generally defined under
the IUPAC nomenclature (International Union of Pure and
Applied Chemistry), where each character represents two or
more letters of the nucleotide alphabet.

Sometimes the patterns to search for are simple (strings),
but there are cases where we need to search for patterns with
a complex structure (structured motifs), i.e. looking for pat-
terns composed of a main motif (central pattern, or P¢ for
short) and one or two motifs located at some distance to the

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

44

left or right of the central pattern (P, and Pg respectively).
In the biological area, the patterns associated with a central
pattern are called satellites (Crochemore and Sagot 2000).

There is an important difference in the way that we search
for a Pc and how we search for a P; or a Pg. The Pc is
defined according to the IUPAC alphabet, P¢ can be trans-
formed into a set of strings to search for in a DNA database.
This is known as the exact set matching problem (Gus-
field 1994). One of the most representative approaches to
solve the exact set matching problem is the Aho-Corasick
algorithm (Gusfield 1994), but new approaches with perfor-
mance improvements, such as the MFA algorithm, (Pérez
et al. 2009) have been developed. On the other hand, P;
and Py are also based on the IUPAC alphabet (it is possi-
ble to derive a set of strings from P, or Pg). However, at
the moment to search for these satellites, it is possible to
apply operators such as insertions, deletions, and substitu-
tions. This is done with the aim to find an alignment of the
satellite with a segment of the DNA database (based on our
domain experts, Candelario Vazquez and Patricia Sanchez,
these operations are allowed because satellites may have a
higher level of ambiguity) but limited by a threshold.

In this paper we propose an algorithm that finds all struc-
tured motifs of the form Pc - Pg in a DNA database, which
are separated at most by a distance of d;. Our approach is
divided in two main phases: the first one searches for the
central patterns using the MFA algorithm, and the second
one uses a dynamic programming technique with the Leven-
shtein function, to find such structured motifs.

Notation

With the aim to define the concepts of the structured motifs
problem, we introduce the following notation.

An alphabet, denoted by X, is a non empty finite set of
letters. A string of the alphabet X is a finite subset of ele-
ments of X, where a letter is placed one after the other. The
empty string, denoted by e, is the sequence of zero letters.
The length of a string X, is defined as the number of letters
in X, denoted as |X|. With X[i], we denote the i letter in X,
where i = 1, 2, ..., |X|. The concatenation of two strings X
and Y is the string composed by the letters of X followed by
the letters of Y, denoted as XY.

We define T as the union of two sets: £2 and Zf. The
base alphabet, denoted as £, is defined as an alphabet X8

= {A,C,G,T}. The extended alphabet, denoted as SE is
defined as an alphabet Xf = (R, Y, K, M, S, W, B, D, M, V, N},
where R={G, A}, Y={T,C}, K={G, T}, M={A,C}, S =
{G,CL,W={A, T}, B={G, T,C},D={G, A, T, H={A, C,
T}, V={G, C, A}, N={A, G, C, T}. The extended alphabet
is guided by the IUPAC nomenclature and will be used to
represent ambiguities in patterns.

A pattern P of size m, is defined as a string P = P[1] P[2]
... P[m], where for every P[i] € P: P[i] € £. A DNA database
is defined as a string £ = {[1] {[2] ... {[n], such that for every
(il € ¢: ¢i) € ZB.

Let X be a string of the form X = AWB, such that A and B
are two strings separated by a string W, the distance between
A and B is defined as d(4 g), Where d4) = |[W|.

An association (matching) between two strings A and B,
is the process where each character of A is associated with
a character of B. In this paper, we distinguish three types of
string matches: exact matching, exact set matching, and in-
exact matching. For simplicity, with the aim to define these
concepts, we will use the strings X, Y, and Z, where X and
Z are defined in £8 and Y is defined in X2 U XF.

1. Exact Matching between X and Z: Tt is the process where
each of the characters of X is equal to its corresponding
character on Z, this matching is also known as equality
between strings and is denoted by X = Z. Formally, X =Z
if foreach i =1, 2, ..., m, X[i] = Z[i]. For example, if X =
ACG and Z = ACG,then X =Z.

2. Exact Set Matching between X and Y: This matching is
established between X and Y if there is a string S gen-
erated from Y, where S = X. The string S is derived by
replacing the XF characters in Y by characters in 8. For-
mally, an exact set matching, denoted by X ~ Y, is present
if for each i = 1,2...m: X[i] = Y[i] if Y[i] € =F or X[i] €
Y[i]if Y[i] € ZF. For example, if X = ACG and Y = AMG,
where M = {A, C}, by replacing the characters in £ of
Y by characters of 2 we generate two strings AAG and
ACG. Since we can generate a string S = ACG, where X
=S,thenX ~Y.

3. Inexact Matching between Z and X: An inexact matching
between Z and X, denoted by Z = X, is present if it is
possible to generate a string Z’ from Z through a series of
substitutions, insertions and / or deletions, so that Z’ = X
(Navarro 2001).

e A substitution on Z = ayp, is the operation where a
character 7y is exchanged by another character y’, gen-
erating Z' = ay’S. We apply a substitution when we
want to match two strings X and Z, where |X| = |Z]| but
they differ in one or more characters. If y € £5, then y
is replaced by ¥’ € X5 such that y # y’. On the other
hand, if y € £, then 7y is replaced by y’ € & - y. For
example, let the string Z = TGTCA, such that « = TG,
v =T and § = CA, we want to make an exact matching
between Z and X, where X = TGGCA, then we apply
the substitution operation y for y’ to generate the string
7' = TGGCA, where a = TG, v = G and 8 = CA, so
that Z' = X.

e An insertion on Z = af3, is the operation where we add
a character y to Z, generating Z’ = ayB. We apply this

45

operation when we want to match two strings Z and
X, where |Z| < |X|. For example, if Z = TAG and X =
TGAG, where Z = of3, then @ = T and 8 = AG. If we
apply an insertion in Z, we insert y in Z such that y =
G, we generate Z’ = TGAG such that Z' = X.

e A deletion on Z = ayp, is the operation where we re-
move a character 7y to the Z string, generating Z’ = af.
We apply a deletion operation when we want to match
two strings Z and X such that |Z] > |X|. For example, if
X=TCAGand Z =TCAAG, wherea=TC,y =A, and
B =AG. When we apply a deletion in Z, we eliminate
v from Z and generate Z' = TCAG, such that Z' = X.

Generally, the number of operations that can be applied
to a string is limited by a threshold defined by the user. In
this paper, we denote by o (xy) the maximum percentage of
operations that can be applied to generate Y from X.

Finally, we introduce the concept of structured motif.
This term is used to refer to a motif formed by three mo-
tifs separated by a distance. Formally, a structured motif is
a string X, where X = Py W P¢c Z Pg, |[W|=d; and |Z| = d,.
Starting from the P (central pattern), we have a Py (right
satellite) located to the right of Pc, where d(p,. p,) < d»; Like-
wise, there is a Py, (left satellite), which is located to the left
of Pc, such that dp. p,) < dj.

For example: Let X = AGTGACGACTCA, where we
need to search for the structured motif P = ACG, P; = TG,
Pr = TC, where d; = 3 and d, = 4. First, we find that P¢
is located at position 5 in X. From this position we search
for the left and right satellites. In this example, we found a
satellite Py, at position 3 with d(p, p.) = 0 and a satellite Pg
at position 10 where d(p, p,) = 2.

It is important to mention that we also consider as struc-
tured motifs those composed by the central pattern and a
right satellite (P¢ - Pg), the central pattern and a left satellite
(Pr. - Pc) or those containing both satellites (Py - Pc - Pg).
For simplicity, this paper describes the solution to locate
structured motifs of the form Py - Pc, where dp, p.y < di
and a threshold o

Proposal

The methodology proposed for searching structured motifs
of the form P; - P¢ in a DNA sequence ¢, where dp, p,) <
dy, and a threshold o, consists of two phases:

e We first implemented a candidates generation phase,
where all substrings S of a DNA sequence ¢ are located,
such that S ~ P¢. As the output of this phase, we get a set
C={S : S isasubstring of { and S ~ Pc}. At this stage,
we proposed an automaton that searches for all instances
of Pcin{.

e Second, we implemented a candidates evaluation phase,
where each string S from C is procesed with the aim
to search for the substrings S’ of £, where S’ ~ P, and
dp,.sny < dy. As the output of this phase, we obtain a list
of positions of central patterns where it is possible to gen-
erate a left satellite after we apply a finite sequence of in-
sertions, deletions, and sustitutions operations (restricted
by o). Finally, due to the fact that the last phase does

not report the explicit satellites, we use a dynamic pro-
gramming technique with the aim to identify the actual
satellites found in ¢.

Candidates Generation Phase

As we mentioned before, this phase is implemented through
an automaton called MFA (Pérez et al. 2009), which finds
the longest suffix of a pattern that is associated with the pre-
fix of previously recognized patterns. With the aim to ex-
plain the MFA algorithm in this section, we assume that our
input parameters are: Pc = AMS, P =GK,d; =4 and { =
ATGGACAACC (a fragment of a DNA sequence).

The MFA algorithm consists of two phases: a preprocess-
ing and a searching phase. In turn, the preprocessing con-
sists of three phases: the expansion of Pc, the creation of
the states matrix matQ, and the construction of the transi-
tions matrix of the automaton 9.

The expansion of P¢ is performed by substituting from
right to left, each of the characters in >E for characters in
258 (with respect to the [UPAC nomenclature). The output of
this stage is a set of strings seqP. For example, if Pc = AMS,
where M ={A, C}and S ={C, G}, replacing M and S by their
characters in 8 we obtain seqP = {AAC,ACC, AAG,ACG).

In the second step we create the array of states marQ,
which is sequentially filled from top to bottom (rows) and
from left to right (columns), so that the final states are stored
in the last column. The number of rows is controlled by the
product of the cardinalities of each element of P¢, and |P¢|
is the number of columns. In Fig. 1 we show how to fill
matQ.

matQ:
T For column A:
|A] =1, a row will be filled sequentially
For column M:
M| = 2, be filled to the line |A| * M| =1*2=2
For column S:
|S| =2, befilled to the line |A| * M| *|S|=1*2*2=4

S O O >
cownR
PSRV)

1
2
3
4

Figure 1: Filling of matQ

In the last stage, the transition matrix ¢ is created and
filled row by row, and their values depend on the longest
suffix of a string which is a prefix of an element of seqP. As
an example, consider vertex 2 with label ”AA”, which is ob-
tained through the concatenation of the letters from the root
to vertex 2. The transitions from this vertex are created by
concatenating each character of £? to the vertex label, gen-
erating the strings AAA, AAC, AAG, and AAT. After that,
we search for the longest suffix of each string that is a prefix
of an element in seqP. This operation is performed with a
transition function proposed for the MFA algorithm (Pérez
et al. 2009). For this example, the strings that match with
this condition are AAC and AAG, generating two transitions
(one with C and a second with G).

Each of these transitions defines if the cell 6[i, j] needs
to be updated, where i represents the vertex that is being
analyzed and j is the j” element of X# that is used in a
transition. In our example, 6[2,2] and 6[2, 3] are updated
(transtions that are not being used are filled with 0). The

46

............

Piad

s
-

L3=AC

Figure 2: Generation of prefixes to fill 6

value assigned to 6[i, j] comes from matQl[k,], where k is
the k" element of seqP where we locate the prefix of vertex
i, and [is the cardinality of this prefix. According with our
example, 0[2,2] = matQ[1, 3], because k = 1 (the first ele-
ment of segP has the prefix AAC) and [= 3 (JAAC| = 3). In
this example, 5[2, 2] = 4, generating a transition from vertex
2 to vertex 4 with the letter C (in the MFA algorithm, matQ
is indexed starting in 1, because these indices are associated
to the i*" element of seqP, starting from 1; unlike rows and
columns in 6, where for simplicity the rows start from 0 and
the columns start from 1). Resuming to our example, matrix
o of Fig. 3 is generated after we perform the preprocesing
phase.

\loxuupwm—o| |
e R =
coowuwhkwolaln
cCooNNwNoooQw
oo b e o e

Figure 3: Transition matrix of the automaton

Once we built the automaton with the MFA algorithm, the
pattern search process in a DNA database { is performed in
the same way as we do with a traditional automaton, record-
ing in a matrix PCS the found patterns (first column), and
its position in . For example, if { = ATGGACAACC and 6
is the matrix of Fig. 3, we found the patterns AAC and ACC
at positions 9 and 10 respectively (see Fig. 4).

PCS:
AAC | 9
ACC | 10

A T G G & ©C A A © C
0oj1 0 0 0 1 3 1 2 @& &5

Figure 4: Searching Phase

Candidates Evaluation Phase

This phase consists of evaluating each element S of PCS
and locating substrings S’ in { where S’ = Py, and d(s's)
< d;. This phase is divided in two stages: we first create a
matrix D based on the Levenshtein algorithm (Bofivoj 1995)
and after that, we verify D with the aim to locate satellites
with an exact match or, the existence of an inexact match
with P; based on a finite set of insertions, deletions, and
sustitutions, without exceeding a threshold o

Levenshtein Algorithm Before we build the dynamic ta-
bles derived from the Levenshtein algorithm, as first step
we have to replace all the extended characters of Py, to base
characters, just as the expansion process of the candidates
generation phase. Let $ be the output set of this expansion.
For example, if P, =GK and K ={G, T}, then $ = {GG, GT}.

Once we create §, we need to locate all the instances
of each element of S in ¢, based on the initial position of
P and the distance value d;. The segment of { where
we search for the satellites is defined as a search window.
First, the limits of the search window are computed as fol-
lows: Wy = PoSgr — di — |PL| and W,y = Posgar — 1,
where PosSgus = PoSeng - |Pcl + 1 and Pos,,y is the final
position stored in PCS. Resuming to our example, where
{ = ATGGACAACC, S = {GG,GT}, and d; = 4, we show
how to compute Wy, and W,,, for each element in $, and
in Fig. 5 we show the search window for P¢ = AAC:

o AAC: Wy = Posgay —dy —|GK| = T-4-2 =1,
Wena = PoSgar —1=T7T-1=06
o ACC: Wy = POSgqy —dy — |GK| = 8—-4-2 = 2,

Wena = PoSgarr =1 =8-1=717

1 2 3 4 5 6 7 8 9 10
Wstart Wend |Posstart Posend
A T G G A C A A C C
G G [

Figure 5: Initial and Final Positions of the Search Window

After we identify the search window W, we generate a
matrix Dn+1)n+1) (Where m =1S’|, such that S’ € S and n =
|[W]). This matrix stores the minimum number of insertions,
deletions, and substitutions operations that we need to apply
to a substring of the current window W such that it matches
with S’ in an inexact way. This matrix is filled using the
Levenshtein algorithm (Bofivoj 1995), which is guided by
the equations shown in Fig. 6.

D[0,j]=0,where0<j<sn
D[i,0]=i,where0<ism
DI[i,j] = Min(D[i-1,j]+1, D[i,j-1]+1,D[i-1,j-1]+cost)

Figure 6: Levenshtein Algorithm

In this expresion, cost = 0 if Sy ; = W[], otherwise cost =
1, where Sy ; is the i character of the k" element in $, and

47

W/l is the j character of the search window that is being
analyzed.
It is important to mention that we need to fill a matrix D
for each element in S associated to each element in PCS.
For example, in Fig. 7 we show the matrices D associated
to the satellite GK, where the central patterns are AAC and
ACC.

Dynamics Tables for AAC

D, T G G A € I T G G C
0O O 0 0 0 0 o 0 0 0 0 0

G [1 0 0 | 1 G 1 1 0 0 1 1

G |2 2 1 0 1 2 T2 1 2 1 1 2

Dynamics Tables for ACC

Dy i G A C A D; G G A C A
0o 0 0 0 0 0 0O 0 0 0 0 0

G|1 0 0 1 1 0O G|1L 0 0 1 1 1

G|l2 1 0 1 2 2 T2 2 1 1 2 2

Figure 7: Matrix D generated for Pc = AMS and P, = GK

Once D is generated, we store in the last row of D the min-
imum number of operations needed to transform a substring
of the search window (subwindow) into the satellite P;. For
example, if we consider table D; of Fig. 7, the value of
position d;[2,4] = 1 means that we need a single operation
to transform the search subwindow GGA into the satellite
GG. In order to know which operation (insertion, deletion,
or sustitution) is required to achieve this transformation, we
need to trace a path from position D[2,4] up to row zero,
based on the operations that were applied in the subwindow.
This process is explained in the following section.

Location of Satellites As mentioned in the previous sec-
tion, the idea of this phase is to trace a path from a cell in
the last row to a cell in the first row. Each cell visited in this
path represents an operation that is applied to a character of
the substring of the current search window.

The cells that are selected from the last row are those in
which values do not exceed the threshold. Based on these
cells, we build a path, step by step. In each step, we move
between cells with three possible directions: left, top, or
upper-left diagonal. The direction that we follow depends
on where the minimum value between the three possible di-
rections is located, which is computed based on the third
restriction of Fig. 6. If two or more directions have the mini-
mum value, then each of these directions generates a branch,
which is expanded independently. This process starts with
the last characters of the satellite to search for and the sub-
window to search in. For each step, we moved from char-
acter i’ to the character (i — 1) in the satellite, but in the
subwindow it depends on the operation used in the transition
(insertions, deletions, and sustitutions are applied only to the
subwindow). This idea is represented in Fig. 8.

For example, consider the satellite S = ACGTAC (S
is an element of §) and a segment of a search window
W = ..ACTGAC, where the threshold o = 2. After we

D[i-1,j-1] DIi-1,]
Sustitution/ Insertion
equal]
DIi.j-1] N
~ DIijl
Dafetion

Figure 8: Associate operations by position

build D with the Levenshtein algorithm, there are two cells
in the last row where the threshold is satisfied (D[6,2] = 2
and D[6,6] = 2, as we can see in Figure 9). If we build
the path from D[6, 6], then we first test the minimum value
between {D[5,6] + 1,D[6,5] + 1, D[5,5] + 0} (because of
S[6] = W[6] = C, then moving to the cell D[5,5] would not
increase the cost). As result, we moved to the cell D[5, 5].
In the same way, from D[5, 5] we moved to the cell D[4, 4]
without changes in w (where w is a string that indicates the
changes that a substring of the subwindow suffered to be-
come a satellite with its respective operations) . However,
from D[4, 4] the path is divided in two branches, because
S[4] # W[4] and all the possible directions have the same
value ({D[3, 4]+ 1, D[4,3]+1, D[3,3]+1}). As consequence
of this, if we take the direction D[4, 3], then w[4] is ’deleted”
in the alignment between S and W. If we select the path
through D[3, 4], then we insert a "gap” in w[3], moving the
letters to the left one position, resulting in w = AC_TAC
(this corresponds to an alignment with one error between
S and W). Finally, if we select the path through D[3, 3],
there is a sustitution of 7 by G. At the end of this process,
we found three possible alignments of W with respect to S:
AC_TAC,ACG_AC and ACGTAC.

This process is shown in Algorithm 1. In line 4 of this
algorithm we compute the minimum value between the pos-
sible cells where the path could be expanded from cell
Dli, jl. In lines 5, 9, and 13 we test the values of the
cells, with the aim to identify if there is more than one cell
with the minimum value. If so, the corresponding paths
are expanded. It is important to mention that this algo-
rithm needs to be invoked once per each cell D[|S|, j] in
the last row of D that satisfies the threshold, using the call:
AlignmentW(D,S,W,|S|.j).

In the following section we present a set of experiments
where we use our approach.

Results

In this phase we show the results of the implementation of
the candidates generation phase through the MFA automata
and some results about how the implementation of the Lev-
enshtein algorithm works, but we are still working in the
analysis of the results with the biological experts.

All the experiments were done in an Intel Core Duo 1.8
Ghz with 4 GB of RAM and the Windows Vista operating
system. Both algorithms were implemented in C + +.

We evaluated the performance of the MFA algorithm

48

LA C T G A C
.0 0 0 0 0 O

Al .01 1 1 0 1
Cl .. 1\()%;----1._ 2 1 0
G|..2 I, 11, 2 1
T|..3 2 "1=2_2 2
Al..2 3 2 2\2\ 3
c|..3 2 3 3 372
!

Figure 9: Path of Operations

Algorithm 1 AlignmentW

Input: D (Levenshtein matrix), S (satellite), w a string with
the current alignment, i, j integers that define the expand
position

Output: alignments w

1: if i =0 or D[4, j] = 0 then

2: print w and return

3: end if

4: Min —min{ D[i - 1,71+ 1,D[i,j—-1]1+1,D[li—-1,j -
1]+ cost } is found (cost « 0 if S [i] = w[j] or cost «— 1
otherwise)

5: if D[i — 1, j] = Min then

6: W « insert a gap at position j in w
7. AlignmentW(D, S, w',i—1,)

8: end if

9: if D[i, j — 1] = Min then

10: W’ « delete the character at position j in w
11: AlignmentW(D, S, w',i,j— 1)

12: end if

13: if D[i— 1, j — 1] = Min then

14: W' « string w where S [i] = w[]

15: AlignmentW(D,S,w',i—1,j—1)

16: end if

through experiments with four real databases: Candida albi-
cans (14,361,129 base pairs), Ustilago maydis (19,683,350
base pairs), Aspergillus nidulans (30,068,514 base pairs)
and Neurospora crassa (39,225,835 base pairs). These
databases correspond to the text used to search for pat-
terns, denoted by . All databases were downloaded for
free from the Gene Research Center, from the fungi section
(http://www.broad.mit.edu/).

In Fig. 10 we show our run-time in the preprocessing
phase and the run-time in the searching phase in Fig. 11.

For simplicity and without losing generality, in our ex-
periments we are looking for patterns of length 32, because
this is the maximum length of patterns that our domain ex-
perts need to locate. In the x axis, we indicate the number
of patterns generated by the combination of extended letters.
The y axis indicates the dimension of each of the databases.
Finally, the z axis shows the execution time in seconds.

As shown in the graphs, in both, the preprocessing phase
and the searching phase, the MFA automata does not change
significantly neither in terms of the dimension of the set of

MFA Algorithm

Time (sec)

39891806

D%b 30594897
420
0,
eraj"’en%q 20020474
Ae MY RH R

14600086

N om
String Set Dimension

Preprocessing Runtime

Figure 10: Preprocessing RunTime of the MFA Algorithm

MFA Algorithm

, |

39891806

)
%%90594897 SN

o
1y, 9
B e,
®) 5, 20020474 _
CT oI ERYLIORNE

14609086 S2IBELRG G

4608 1

String Set Dimension

Searching Runtime

Figure 11: Searching RunTime of the MFA Algorithm

patterns that we locate, nor in the size of the database. This
is very important because the databases can be very large.

In the phase of the Levenshtein algorithm we are still in
the experimental phase, because up to now we have done just
a few experiments with real data until the moment that we
present this paper. However, some of the experiments that
we made are with the database Candida Albicans and the
patterns: Pc = GATA, P = TGACTCA, Pr = TGACTCA
with distances of 100, 200, 500 and 1000 nucleotides to the
left and right of the central pattern and a threshold of 35%
(which is 2 operations by satellite as maximum).

All the data for the experiments were provided by the bi-
ologists Patricia Sanchez and Candelario Vazquez, and this
information has a real meaning in biology.

In figure 12 we show the results of the experiments, the
columns that we present are: central pattern, satellites left
and right , threshold error, distances left and right, number of
satellites or alignments that we located and the total search-
ing time in seconds.

As we can see, the number of alignments in each exper-
iment increases significatively, this happens because calcu-
lating the Levenshtein matrix has a cuadratic cost and the
alignments can be done in linear time, but both of them must
be calculated every time we find a central pattern and the

49

Central Leftv ngh.t Threshold | # pcs 'Leﬂ 'nght Alignments Total
Pattern | Satellite | Satellite Distance | Distance (secs)
100 100 1291128 | 405.322
200 200 2568125 614.378
9
GATA | CTATCG | CGATATCT 35% 72232 500 500 6423502 | 1701.004
1000 1000 12842312 | 4600.063

Figure 12: Searching RunTime of the Levenshtein Algorithm

alignments are done when we find a satellite. It is impor-
tant to mention that if we increase the distance between the
central pattern and the satellite we can find more alignments.

Conclusions and Future Work

The methodology presented in this work allows us to search
for structured patterns in DNA sequences through a finite
automata and a dynamic programming technique.

The candidate generation phase was performed based on
the MFA automata, which has already been implemented.
This algorithm is capable to find all the instances of the cen-
tral pattern P¢ in the DNA sequence, with an attractive per-
formance.

We already finished the implementation of the candidate
evaluation phase based on the Levenshtein algorithm. How-
ever, we have to make more experiments to analyze its per-
formance, while the biologists are analyzing the results that
we obtained with the aim to find a biological interpretation.

With our approach it will be possible to find structured
motifs in DNA databases, providing a useful tool for biolo-
gists that need to find complex motifs.

References

Bofivoj, M. 1995. Approximate string matching by finite
automata. In Conf. on Analysis of Images and Patterns in
number 970, LNCS 342-349.

Crochemore, M., and Sagot, M. F. 2000. Motifs in se-
quences: Localization and extraction. 26-31.

Gusfield, D. 1994. Algorithms on Strings, Trees, and Se-
quences. Computer Science and Computational Biology.
Cambridge University Press, 1st edition edition.

Liang, Mike P, B. D. L. A. R. B. 2003. Automated con-
struction of structural motif for predictiong functional sites

on protein structures. Pacific Symposium on Biocomputing
204 - 215.

Navarro, G. 2001. A guide tour to approximate string match-
ing. ACM Computing Surveys 33(1):31-88.

Pérez, G.; Mejia, Y. P.; Olmos, 1.; Gonzdlez, J. A.; Sdnchez,
P.; and Vazquez, C. 2009. An automaton for motifs recog-
nition in dna sequences. MICAI 2009 - LNAI 5845, Springer
- Verlag 556-565.

Schmollinger, M. e. 2004. Parseq: Searching motifs
with structural and biochemical properties. Bioinformatics
20:1459 - 1461.

