
Structured Value Elimination with D-Separation Analysis

Lionel Torti and Pierre-Henri Wuillemin
104, avenue du Président Kennedy

75016 Paris
France

Abstract

In the last ten years, new models based on Bayesian Net-
works (BN) emerged to handle large and complex systems.
These new models can be divided in two: the unification with
First Order Logic and uncertainty (Markov Logic Networks,
Bayesian Logic) and Knowledge Base Construction Mod-
els (Probabilistic Relational Models, Multy-Entity Bayesian
Networks, Relational Bayesian Networks). SKOOB, a con-
sortium of researchers and engineers in risk management, fo-
cuses on Probabilistic Relational Models (PRM). Inference
in such models is a much more difficult task than in BN.
Structured Value Elimination (SVE) is the state-of-the-art al-
gorithm for PRM models. In this paper, we propose an en-
hancement of SVE based on a well known complexity re-
duction technique from BN. We show how to integrate a d-
separation analysis in SVE and how this leads to important
improvements for the inference task.

Introduction

The need to represent uncertainty is a common issue in Ar-
tificial Intelligence and has been the main topic of a consid-
erable amount of research. Bayesian Networks (BN) are a
considered formalism for reasoning under uncertainty. In-
troduced twenty years ago, (Pearl 1988) and (Koller and
Friedman 2009) they still are used for a great number of
applications in domains such as automatic diagnostics, re-
liability and risk management (SKOOB 2008). The success
of BN in industrial applications creates a need of tractable
large scale complex systems. However BN have several
flaws when considering specification of large scale networks
which renders creation, maintenance and exploitation diffi-
cult or even impossible.

This issue is a partial cause of the recent emergence
of new models, commonly called First Order Probabilistic
Models (FOPM), which can be divided in two: the unifi-
cation of First Order Logic and uncertainty (Markov Logic
Networks, Bayesian Logic) and Knowledge Base Construc-
tion Models (Probabilistic Relational Models, Multi-Entity
Bayesian Networks, Relational Bayesian Networks). The
first ones are non oriented models (Markov Networks) in
opposition to the second ones which are oriented (Bayesian

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Networks). While these models share a common theoretical
background, their formalism may vary considerably.

In this paper we propose an enhancement of the state-of-
the-art inference algorithm on Probabilistic Relational Mod-
els (PRM). PRM (Pfeffer 2000) are an extension of the BN
formalism which includes the Object Oriented paradigm and
well suited for specification, maintenance and exploitation
of large scale complex systems. PRM can be seen as ex-
tensions of Object Oriented Bayesian Networks (Koller and
Pfeffer 1997) and (Bangsö and Wuillemin 2000). While non
oriented models have recent contributions regarding infer-
ence algorithms (Getoor and Taskar 2007), oriented models
have very few propositions: Structured Value Elimination
(Pfeffer 2000) and ground BN generation on which clas-
sic BN inference algorithm can be used (Pfeffer 2000) and
(Laskey 2008).

The algorithm presented in this paper, Structured Value
Elimination with d-separation analysis (SVED), is an ame-
lioration of the Structured Value Elimination (SVE) al-
gorithm (Pfeffer 2000) in which we have included a d-
separation analysis of the PRM. While SVE exploits the
structural information encoded in a PRM, d-separation helps
reducing the necessary amount of information required to
respond to a given query. D-separation analysis is a well
known method yet rarely mentioned, despite its effective-
ness in speeding up inference. The BayesBall algorithm
(Shachter 1998) presents an intuitive and effective way to
exploit d-separation in a BN and, as we will see, it can be
easily used with the PRM formalism.

In this paper we will give a short definition of PRM, then
we will recall the specificities of the SVE algorithm and
present our contribution which will be validated by exper-
imental results.

Probabilistic Relational Models

We give here a minimal set of definitions of the different el-
ements of a PRM. For a more detailed presentation of PRM
we suggest the following papers: (Pfeffer 2000) and (Getoor
and Taskar 2007).

PRM are used to exploit the Object Oriented paradigm to
produce large scale bayesian networks. The main intuition
is to build a system with a set of BN fragments (classes)
which are repeated (instances instantiations) in the network
(system or relational skeleton). Relations of encapsulation

122

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

can be defined between classes and is used to hierarchically
decompose a system in several subsystems.

• A class X is defined by a Directed Acyclic Graph (DAG)
over a set of attributes (or random variables) A(X), refer-
ences (or slots) R(X) and a probability law over A(X).
We note X the set of classes of a PRM.

A class defines a family of objects sharing the same prop-
erties: DAG, attributes and references. The DAG coupled
with the attributes defines the BN fragment. References are
used to define dependencies between classes and, by exten-
sion, between instances. Since we want to represent prob-
ability dependencies between attributes of different classes
with respect of the relations induced by the references, we
need to define the notion of reference chains.
• We note X.A an attribute A of a class X and we represent

it by a node in X’s DAG. An attribute represents a random
variable and is associated with a conditional probability
table defined over A and his parents Π(A). We note V(A)
the set of possible values taken by A.

• We note X.ρ a reference ρ between two classes X and
Y . The relation can be binary (simple) or n-ary (com-
plex). For each reference ρ of X , we say that its domain
is Dom[ρ] = X and its range is Range[ρ] = Y .

• A reference chain, or slot chain, ρ1, ρ2, . . . , ρi is a se-
quence of reference where Range[ρk] = Dom[ρk+1]. A
reference chain is simple if ∀i, ρi is simple and is complex
if ∃i such as ρi is complex.

Complex reference

state

printersroom room

state stateexists

canPrint

PowerSupply

Attribute

Simple reference

pow

ComputerPrinter

Room

Figure 1: A Class Dependency Graph

Figure 1 illustrates the precedent notions. It represents a
diagnosis problem in a local network between printers and
computers. Each Printer and Computer are placed in
a Room and each Room use one PowerSupply. There
are several computers and printers per room and each com-
puter is connected to zero, one or more printers. A peculiar
attribute is Computer.exists which is called an aggre-
gator: the reference Computer.printers is a complex
reference which implies that Computer.exists have an

unknown number of parents at class level. This is an issue
since the classical method to encode probabilities in a BN is
the use of Conditional Probability Tables (CPT) which im-
plies the number of parents to be known. If we wanted to
specify the CPT of Computer.exists it would be nec-
essary to either define a family of CPTs at class level or
specify the CPT at instance level for each instantiation of
the Computer class. Both solutions are cumbersome: it
is impossible to specify a family for all possible number of
parents and specifying the CPT at instance level is unwanted
since we want to separate the semantics of the instantiation.

• An aggregator is a deterministic functions over a set of
attributes {xi.A} such as ∀i, xi ∈ I(X).

By specifying the family of such functions enabled in the
framework (exits, forall, mean, min, max, . . .) it is possible
to use deterministic CPTs to aggregate the information en-
code in the set {xi.A}. Since these functions are determin-
istic it is possible to automatically generate the CPT when
the aggregator is instantiated. This make them not differ-
entiable from classic attributes at instance level. This solu-
tion is less expressive than the pseudo code used in MEBN
(Laskey 2008), but is much simpler to use and implement. It
is also generally sufficient for most authoring problems.

We finish with the definition of a system (or relational
skeleton) and of the grounded BN of a system. We consider
in this paper closed world systems, in opposition of open
world systems, a closed world system requires to specify all
instances and relations composing it. In an open world sys-
tem, instances which are required but undeclared, are cre-
ated automatically and added to the system.

• An instance x is the use of a given class X in a system
σs. There can be more than one instantiation of a given
class. We note I(X) the set of all instantiations of X ,
x.A the instantiation of X.A ∈ A(X) in x and x.ρ the
instantiation of X.ρ ∈ R(X).

• A system (or relational skeleton) is a set of instances I
with every reference of an instance x ∈ I correctly de-
fined, i.e. ∀X ∈ X ,∀x ∈ I(X),∀ρ ∈ R(x),∃y ∈
I(range[X.ρ]) and range[x.ρ] = y.

• A grounded Bayesian Network is the BN equivalent of a
system. It is built straightforwardly by creating a node
for each attribute and aggregator and adding arcs between
nodes to respect the instances relations. An algorithm lin-
ear in time for generating such grounded BN can be found
in (Pfeffer 2000).

There are several other notions that we will not detail here
such as: attribute typing, inheritance, structural and existen-
tial uncertainties. Even if they are important in the PRM
formalism they are not exploited by the different inference
algorithms presented in this paper.

SVE : Structured Value Elimination

Structured Value Elimination (SVE) (Pfeffer 2000) is an ex-
tension of the classical inference algorithm Value Elimina-
tion (VE) (Zhang and Poole 1994) in the PRM formalism.
The VE algorithm places in a pool the CPT of a BN’s nodes

123

Output nodesInnner nodes

D

G

F

A

EC

B

Figure 2: Inner and outer nodes in a class

and uses an order on these nodes to eliminate the random
variables one by one from the pool. When all the vari-
ables except the query are eliminated, the pool contains the
query’s marginal in a unnormalized potential. Exact infer-
ence in a BN is NP-Hard (Cooper 1988) and the order used
by VE has a major impact on the algorithm’s performance.

SVE exploits the structural information encoded in the
classes to avoid redundant computations. However the al-
gorithm presented in (Pfeffer 2000) is designed to exploit
open world systems and in our case we want to infer only
over closed world systems (which are more often encoun-
tered in risk management and reliability). Nevertheless, this
difference does not change dramatically the concepts behind
SVE.

Eliminated Nodes Potentials

{ } { P (A), P (G|A), P (B|Π(B)),
P (C|A, Π(C)), P (D|B, C),
P (E|C), P (F |D) }

{A} { Φ1(C, G, Π(C)), P (B|Π(B)),
P (D|B, C), P (E|C), P (F |D) }

{A, B} { Φ1(C, G, Π(C)), P (E|C),
Φ2(C, D, Π(B), P (F |D) }

{A, B, C} { Φ3(D, E, G, Π(B), Π(C)),
P (F |D) }

{A, B, C, D} { Φ4(E, F, G, Π(B), Π(C)) }
{A, B, C, D, E} { Φ5(F, G, Π(B), Π(C)) }

Table 1: Elimination of inner nodes in the figure 2.

To exploit structural information we must differentiate
two kinds of nodes: the inner nodes and the output nodes.
Inner nodes are nodes with children exclusively defined in
the same class, while output nodes have at least one child
defined in another class. In the figure 2 A, B, C, D and
E are inner nodes. F and G are output nodes. The table 1
shows the resulting potentials obtained after elimination of
the inner nodes in our example.

Once all inner nodes are eliminated the resulting poten-
tials are over output nodes and the set of referenced parents.
SVE exploits this by eliminating at class level inner nodes
and reusing the resulting potentials each time an instance of
the given class is found in the system. There is however
one exception of inner nodes which cannot be eliminated at
class level: the aggregators. Since these node have an un-

known number of parents at class level, it is impossible to
used their CPT to proceed to any elimination anywhere else
than instance level. There is a limitation to the reuse of the
inner nodes elimination: in the presence of evidence over
those nodes it is not possible to reuse the class level elimina-
tion, simply because it does not include the evidences in the
computations. This renders necessary to eliminate the inner
nodes of an instance with observations locally.

If applied to all instances in a system, this inner elimina-
tion builds a pool of potentials containing only output nodes
and aggregators. To prevent a two step elimination, SVE
uses a bottom-up elimination order to recursively eliminate
instances. This gives the guarantee that before an instance
is eliminated, all its child instances are eliminated. Thus
making possible the elimination of its output nodes and con-
sequently reducing the number of variables in the pool.

x7

x1 x2

x3 x4 x5

x6

(a) Step 1.

x5

x1 x2

x3 x4

(b) Step 2.

x1 x2

x3 x5

(c) Step 3.

Figure 3: Illustration of Bottom-Up Elimination.

Figure 3, where the different xi represents instances of
different classes, shows how a bottom-up elimination pro-
ceeds. If we suppose the queried variable resides in x1, a
recursive call is made over x1’s children: x3 and x4. The in-
stance x3 has two children, x6 and x4. Since x6 is a leaf in-
stance it can be eliminated and the recursion continues over
x4 which will end in a recursive call over x7. The figure
3(b) shows the remaining instance after these two elimina-
tions. The recursive elimination continues over x4 until all
instances different from x1 are eliminated, making possible
the extraction of the queried variable updated with evidences
if any.

D-Separation analysis in PRM

As stated by (Shachter 1998), d-separation analysis (w.r.t the
structure and the evidence) may induce another kind of op-
timisation: only a subset of the BN may be necessary in
order to answer a specific request. D-separation exploits the
graphical properties of BN to determine the requisite nodes
necessary for computing the marginal of a queried variable
given observations in the network.

The BayesBall algorithm (Shachter 1998) exploits d-
separation to determine in a simple yet effective way the set
of requisite nodes given a query and a set of observations. It
uses an imaginary ball which bounces between the nodes of
the BN’s DAG, following the flow of information.

In this work, our aim is to adapt such algorithm to PRM. A
d-separation analysis of a PRM will help reducing the num-
ber of computations, which can be seen as a low level ex-
ploitation of the structural information encoded in a PRM.

124

There are two possible approaches to exploit the Bayes-
Ball algorithm in a PRM. A naive approach would be to
ground the system and determine the requisite set using the
BayesBall algorithm and a mapping of the BN’s nodes with
the attributes in the system. But unless using an intelligent
implementation, which will be redundant with the PRM im-
plementation, the memory cost of creating such grounded
BN will grow rapidly.

The other approach consists in adapting the BayesBall al-
gorithm to directly reason over a PRM. This can be done
with very few intuitive modifications of how we represent
classes and instances. The problem is that informations
about attribute’s parents and children are not encoded in the
classes or instance’s DAG and since BayesBall reasons over
a BN’s DAG we need to represent external dependencies be-
tween attributes of different instances. This can be done by
adding two types of nodes in classes and instance’s DAG:
slot chains nodes and inverse slot chains nodes.

We have seen that PRM uses slot chains to create
dependencies between attributes of different classes.
An inverse slot chains is the reverse path defined by a
given slot chains. If we look at the Printer class
in figure 1 we see that the attribute Printer.state
has one parent: PowerSupply.state referenced
by the slot chain Printer.room.pow.state;
one child: Computer.exists referenced by
Computer.printers.state and its inverse
slot chain of Computer.printers.state is
Printer.inv(printers).exists. By adding
a node for each slot chain and inverse slot chain, it is
possible to use the BayesBall algorithm if we consider these
nodes as attributes with no observation. When the ball
arrives on a slot chain or inverse slot chain we simply make
it follow the reference represented by the node.

SVED : Structured Value Elimination with

D-Separation Analysis

The following algorithms describe the SVE with d-
separation analysis. Algorithm 1 arguments are the instance
(Q) and its attribute (query) for which we want to compute
the marginal. The remaining argument is an empty set of
potentials which will contain the marginal over the query at
the end of the process. Downward Elimination (DnEl) and
Upward Elimination (UpEl) are two procedures called re-
spectively on child instances and parent instances.

At line 1 of the algorithm 1 there are two set of instances,
visited and not visited, used respectively to prevent any
redundant elimination of an instance and to delay the com-
putation of the other ones.The need to delay the elimination
of some instances is due to the bottom-up elimination used
by SVE. When an instance i is eliminated the elimination
order guaranties that DnEl was called on all child instances
of i. However the parents instances of i have not been elim-
inated yet and it is necessary to keep track of them so they
can be eliminated after all their child instances (line 13 of
algorithm 2). This is realized by algorithm 1 at line 14 and
by algorithm 3 at line 15.

To know if an instance i can call the DnEl procedure on an

instance j, we use the notion of precedence between classes.
Using the Class Dependency Graph it is simple to define
an order between classes: for two classes C1 and C2 if an
attribute in C2 is an ancestor of at least one attribute in C1,
then C1 precedes C2. If both attributes in C2 and in C1

are ancestors of nodes in, respectively, C1 and C2 then an
arbitrary choice is necessary. In such case line 3 in both
algorithms 1, 2 and 3 guarantees computations soundness.

The call of the sub-procedure VE stands for a call of the
Value Elimination algorithm over the requisite nodes of the
current instance (line 8 of algorithm 1, line 8 of algorithms 2
and 3). When VE is given a class as argument it reuses any
elimination already made (line 9 of algorithm 2 and 3). The
Instance function returns the set of instances assigned to a
given slot chain or inverse slot chain.

Algorithm 1: SVED
Input: Q, query, pool
Set visited, not visited;1

visited = {Q} ∪ visited;2

pool = Requisite(Q) ∪ pool;3

for n ∈ Requisite(Q) do4

if n is a inverse slot chain then5

for i ∈ Instance(n) do6

DnEl(i, pool, visited, not visited);7

VE(Q, query, Requisite(Q), pool);8

for i ∈ not visited do if Q precedes i then9

DnEl(i, pool, visited, not visited);10

for n ∈ Requisite(Q) do11

if n is slot chain then12

for i ∈ Instance(n) do13

UpEl(i, pool, visited, not visited);14

Algorithm 2: Downward Elimination (DnEl)
Input: i, pool, not visited, visited
if i /∈ visited then1

visited = {i} ∪ visited;2

pool = Requisite(i) ∪ pool;3

for n ∈ Requisite(i) do4

if n is an inverse slot chain then5

for j ∈ Instance(n) do6

DnEl(i, pool, visited, not visited);7

if hasEvidence(i) then VE(i, Requisite(i), pool);8

else VE(Class(i), Requisite(Class(i)), pool);9

for n ∈ Requisite(i) do10

if n is a slot chain then11

for j ∈ Instance(n) do12

not visited = {j} ∪ not visited;13

125

Algorithm 3: Upward Elimination (UpEl)
Input: i, pool, not visited, visited
if i /∈ visited then1

visited = {i} ∪ visited;2

pool = Requisite(i) ∪ pool;3

for n ∈ Requisite(i) do4

if n is an inverse slot chain then5

for j ∈ Instance(n) do6

DnEl(j, pool, visited, not visited);7

if hasEvidence(i) then VE(i, Requisite(i), pool);8

else VE(Class(i), Requisite(Class(i)), pool);9

for j ∈ not visited do if i precedes j then10

DnEl(j, pool, visited, not visited);11

for n ∈ Requisite(Q) do12

if n is a slot chain then13

for i ∈ Instance(n) do14

UpEl(i, pool, visited, not visited);15

Experimental results

For the following experiments we have used different sys-
tems created from the Class Dependency Graph illustrated
in figure 1. The examples we used to realize our experi-
ments are generally composed of a fixed number of rooms
(fifty in our case) and a random number of printers and com-
puters per room. The number of computers have an incident
on the size of the network, while the printers have a direct
impact in the size of the biggest clique since every printers
state are aggregated by each computer in the same room.

Figure 4 illustrates an experiment where we randomly ob-
served a percentage of attributes in a system of 50 rooms,
10 printers and 40 computers (for a total of 6501 nodes).
The queried attribute was randomly chosen. The curve of
the figure 4 shows how much d-separation analysis is sen-
sible to the set of observations and the queried node. The
markov blanket of a variable d-separates it from the rest of
the graph, which is shown when the percentage of observed
nodes tends to 100 percent. When the percentage of ob-

R
at

io
 #

re
qu

is
ite

 n
od

es
 /

#n
od

es

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 10 20 30 40 50 60 70 80 90 100
% of observed nodes.

 0.1

Figure 4: D-separation analysis with BayesBall.

SS

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
in

 s
ec

on
ds

.

#computers per room.

SVE
SVED

VE
VEBB

 0

Figure 5: Structured and grounded inference.

served nodes tends to 0 percent, the curves indicates that
in the absence of information very few nodes are required.
However these results are highly dependent of the system on
which we obtained them and only indicates that we can ex-
pect d-separation to be more efficient in the presence of few
or many observations. Noteworthy the whole PRM is almost
never needed. This confirms the utility of such an analysis.

Figure 5 exhibits the behaviour of several inference algo-
rithms in the absence of observations. For this experiment
we have raised the number of computers per room from 10
to 200, with 6 printers and 40 rooms (for a total of 1441 to
24241 nodes). The curves which stops after 130 computers
represents classic inference algorithms used on the grounded
BN of the tested system. The following algorithms on BN
were used: Value Elimination (VE) (Zhang and Poole 1994),
Shafer-Shenoy (SS) (Shenoy and Shafer 1990) and Value
Elimination coupled with BayesBall (Shachter 1998). The
results shows the limitation of reasoning on BN, since the
computer used for the tests could not handle the size of the
grounded BN. Furthermore SVE and SVED gives good re-
sults.

Figure 6 show the behaviour of SVE and SVED in the ab-
sence of observations (the SVED curve is close to 0). The
system contained 40 rooms with 50 computers and printers
varying from 1 to 10 (for a total of 6041 to 6401 nodes). The

SVED

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

T
im

e
in

 s
ec

on
ds

.

#printers per room.

SVE

 0

Figure 6: Comparaison between SVE and SVED.

126

curves clearly show the possible gain d-separation analysis
can give to inference. However we must point out that the
example used for these test gives very good performance to
algorithms exploiting d-separation and they should be con-
sidered as best case situations. Although in the worst case
situation, its easy to show that SVE and SVED do not differ
neither in complexity nor in time.

#observations per room.

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

T
im

e
in

 s
ec

on
ds

.

SVE
SVED

 0

Figure 7: Inference performance under observations (6
printers per room).

Figure 7 shows the impact of observations on SVED and
SVE in a system with 6 printers, 50 computers per room
and 40 rooms. It gives the inference time when the power
supply’s state attribute is queried under different amounts of
observations. The number of observed nodes in each room
grows from 0 observed computers to 50. These results gives
us the insights of SVED performances under heavy obser-
vations: we can expect slower inference, even slower then
SVE in the worst case. The worst case for SVED would be
systems with small cliques.

SVED

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50

T
im

e
in

 s
ec

on
ds

.

#observations per room.

SVE

 0

Figure 8: Inference performance under observations (8
printers per room).

Figure 8 represents results of a similar experiment has the
one represented in figure 7. The difference reside in the
number of printers per room, which was raised to 8. This il-
lustrates the importance of the size of the largest clique in in-
ference complexity. We can see that the cost of d-separation
analysis is quickly negligible when inferring in systems with
large cliques.

Conclusion

In this paper we propose to integrate the BayesBall algo-
rithm in SVE. This simple modification may lead to a large
reduction of complexity for inference in PRM. Furthermore,
this work gives experimental results on inference in PRM,
which is absent from the current state-of-the-art. These re-
sults confirm the usefulness of developing inference algo-
rithms on PRM, thus we can say that exact inference in PRM
is a far from closed domain since there are still specificities,
such as inheritance or structural uncertainty, that could be
exploited to speed up inference. Value Elimination is only
one of many inference algorithms in Bayesian Networks and
adapting such algorithms could prove useful.

Acknowledgments

This work has been supported by the DGA and has benefit
comments, suggestions and ideas of the SKOOB consortium
members.

References

Bangsö, O., and Wuillemin, P.-H. 2000. Top-down con-
struction and repetitive structures representation in bayesian
networks. In Proceedings of the 13th Florida Artificial In-
telligence Research Society Conference, 282.
Cooper, G. F. 1988. Probabilistic inference using belief
network is np-hard. Technical Report KSL-87-27, Medical
Computer Science, Stanford University, Stanford, Califor-
nia.
Getoor, L., and Taskar, B. 2007. Introduction to Statis-
tical Relational Learning (Adaptive Computation and Ma-
chine Learning). The MIT Press.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.
Koller, D., and Pfeffer, A. 1997. Object-oriented Bayesian
networks. In Proceedings of the 13th Annual Conference
on Uncertainty in AI (UAI), 302–313. Winner of the Best
Student Paper Award.
Laskey, K. B. 2008. MEBN: A language for first-order
bayesian knowledge bases. Artificial Intelligence 172:140–
178.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems : Networks of Plausible Inference. Morgan Kaufmann.
Pfeffer, A. J. 2000. Probabilistic Reasoning for Complex
Systems. Ph.D. Dissertation, Stanford University.
Shachter, R. 1998. Bayes-ball: The rational pastime. In
Proceedings of the 14th Annual Conference on Uncertainty
in AI (UAI), 480–487. Morgan Kaufmann.
Shenoy, P., and Shafer, G. 1990. Axioms for probability
and belief-function propagation. In Shafer, G., and Pearl,
J., eds., Readings in Uncertain Reasoning. San Mateo, CA:
Morgan Kaufmann. 575–610.
SKOOB. 2008. http://skoob.lip6.fr.
Zhang, N., and Poole, D. 1994. A simple approach to
bayesian network computation. In 10th Canadian Confer-
ence on Artificial Intelligence, 16–22.

127

