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Abstract

The choice of a good annealing schedule is necessary for
good performance of simulated annealing for combinatorial
optimization problems. In this paper, we pose the simulated
annealing task decision-theoretically for the first time, allow-
ing the user to explicitly define utilities of time and solution
quality. We then demonstrate the application of reinforce-
ment learning techniques towards approximately optimal an-
nealing control, using traveling salesman, clustered traveling
salesman, and scheduling problems. Although many means
of automating control of annealing temperatures have been
proposed, our techniques requires no domain-specific knowl-
edge of problems and provides a natural means of expressing
time versus quality tradeoffs. Finally, we discuss alternate
abstractions for future decision-theoretic variants.

Introduction

Simulated annealing (SA) is a technique for combinatorial
optimization that is inspired by analogy to the cooling and
freezing of liquids. A slowly cooled metal reaches a more
orderly, lower-energy state than one that is cooled rapidly
(i.e. “quenched”). With SA, search in a state space varies
with a “temperature” parameter from a random walk to a
hill-descending stochastic local optimization. For further
background reading on SA, we recommend (Kirkpatrick,
Gelatt, & Vecchi 1983) and (Press et al. 1992).

The basic SA algorithm can be described as follows:

• Pick an initial state s.

• While cooling (i.e. reducing) the temperature T according
to a given schedule:

1. Generate a next state s′.
2. Compute ΔE = E(s′)− E(s), the change in energy.
3. If ΔE < 0, accept the next state (s← s′).
4. Otherwise, accept the next state with probability

e−ΔE/kT , where k is Boltzmann’s constant1.

• Return the state s∗ that minimized E.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In practice, Boltzmann’s constant is often omitted from the
implementation.

To apply SA, the user must make four design deci-
sions (Press et al. 1992): (1) the state representation, (2)
the next state generation function, (3) the energy (or objec-
tive) function, and (4) the cooling or annealing schedule.
The successful application of SA depends on good choices
for each of these. Although (1)-(3) present interesting chal-
lenges of their own, we here focus on (4), the annealing
schedule. In the case where the temperature is controlled
dynamically, we refer to this as annealing control.

In their paper (Kirkpatrick, Gelatt, & Vecchi 1983), Kirk-
patrick et al. note the importance of the annealing schedule.
They show that different combinatorial optimization prob-
lems call for different annealing schedules that change the
rate of cooling in specific temperature ranges. However, in
practice, many annealing schedules are chosen through ar-
cane, unpublished, and largely ad hoc techniques. The pa-
rameters of such schedules (e.g. starting temperature, de-
cay rate, etc.) are typically chosen empirically through lim-
ited human experimentation, e.g. (Press et al. 1992, p. 446).
Whether to avoid such suboptimal human experimentation
biases or just to simply avoid the need for such tedious ex-
perimentation, there has been much research towards auto-
mated annealing control.

For example, Otten and van Ginneken (Otten & van Gin-
neken 1989) developed a theory for annealing in the frame-
work of Markov chains. Unfortunately, the application of
their theory requires the user to know both the size of the
state space and the number of global optima. Not only is
the state space size difficult to estimate for many problems,
but one rarely expects to have knowledge of the number of
global optima. Techniques such as this require too much
knowledge of the state space.

Many means of controlling annealing, e.g. (Aarts &
van Laarhoven 1985), (Huang, Romeo, & Sangiovanni-
Vincentelli 1986), (Lam & Delosme 1988), and (Boyan
1998), provide ways to speed cooling and trade off the qual-
ity of the result for computational time. This tradeoff of
time versus quality of result is fundamental to the practi-
cal application of SA. However, such work has been built
on a foundation of theoretical work on “optimal” anneal-
ing where such optimality is solely concerned with the qual-
ity (i.e. low energy) of the result and not with the time of
computation. The time-quality tradeoffs of such techniques
are achieved by allowing various deviations from such op-
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timal annealing (e.g. deviations from thermal equilibrium).
To date, no method has dealt explicitly with the user’s utility
of time and quality, i.e. what is optimal to the user.

In this paper, we introduce a means of controlling an-
nealing that requires no knowledge of the state space, and
allows the user to be explicit about the time-versus-quality
tradeoff. This is accomplished by first posing SA decision-
theoretically as an optimal control problem, and then ap-
plying simple reinforcement learning techniques (Sutton &
Barto 1998). Annealing control is learned through annealing
experience. Our experiments demonstrate the practicality
of this technique through successful application to traveling
salesman problems and course scheduling problems.

Related Work

Whereas we will discuss the application of machine learn-
ing to the design of annealing schedules, machine learning
has also been applied to the separate problems of initial state
selection and next state generation. In principle, these tech-
niques could be used in conjunction with our own.

Boyan’s STAGE algorithm (Boyan & Moore 1998) is a
multi-restart stochastic local search algorithm that intelli-
gently chooses initial states for restarts. Given that each
initial state and Markovian stochastic local search leads to
a final state with its associated object-level utility, STAGE
learns a function approximation for the mapping of initial
states to final state utilities, using both the given objec-
tive function and additional relevant weighted search fea-
tures. STAGE then hill-climbs this function approximation
to choose the next initial state that is expected to maximize
the final state utility for the next stochastic local search.

In his master’s thesis (Su, Buntine, & Newton 1997), Su
is concerned with combinatorial optimization problems with
computationally expensive energy functions, e.g. the VLSI
cell-based layout placement problem. Su uses regression to
compute a function approximator that efficiently predicts the
energy of a state. With each iteration of annealing, many
possible next states are sampled and evaluated with this effi-
cient approximator. The sampled neighboring state with the
minimal expected energy is chosen as the next state for the
iteration.

In the section “A Simple Parameter-Learning Agent”, we
refer to the agent task as parameter selection because of its
relation to work on the algorithm selection problem as de-
fined in (Rice 1976). In particular, the work of (Lagoudakis
& Littman 2000) is closely related to our own in that re-
inforcement learning techniques are applied to the dynamic
recursive selection of algorithms for sorting and order statis-
tic selection problems. In contrast, we learn control of an
algorithm parameter dynamically within an iterative archi-
tecture. Work in this area increasingly provides evidence
of the benefits of learning metalevel algorithm selection and
control.

Decision-Theoretic Simulated Annealing

A decision-theoretic controller for simulated annealing
maps sensory inputs and utility gains or losses to control

outputs so as to maximize the expected utility of the pro-
cess. These sensory inputs may come at varying intervals
in the process, and consist of information about the process.
Control outputs dictate how the process should proceed until
the controller functions next.

In pursuing optimal control, the two primary considera-
tions are (1) the utility of the quality of the result of SA (i.e.
the value of the state found), and (2) the utility of the time
taken to compute such a result. Put simply, each iteration of
simulated annealing offers a potential gain of solution qual-
ity with a definite loss of time.

The measure of result quality, called the object-
level (Horvitz 1988) or intrinsic (Russell & Wefald 1991)
utility function, should be considered distinct from the state
energy function of SA. While object-level utility may be a
function of energy, the two functions serve different pur-
poses. A result of SA may not have any object-level utility
until its energy crosses a certain threshold. The energy func-
tion, by contrast, can and should provide guidance in search-
ing the state space. We denote the energy and object-level
utility of the search state s to be E(s) and UO(s) respec-
tively.

We must also measure the utility of time. The time cost
or inference-related utility, denoted UI(t), represents the
cost of computation where t is elapsed SA time. Let st

be the current search state of an SA process at time t. Let
s∗t = argminst′ ,t′∈[0,t]E(st′) denote the minimal energy
state visited up to time t. Then the net utility U(s∗t , t) of
an SA process at time t is UO(s∗t ) − UI(t). If we compare
the net utility of an SA process at two different times t1 and
t2, then the net utility of the SA process from t1 to t2 is
U(s∗t2 , t2)− U(s∗t1 , t1).

The annealing agent may choose between iterations how
to proceed with annealing. We call each of the annealing
agent control signals an annealing action. An annealing ac-
tion may dictate a temperature control policy and the dura-
tion (i.e. number of iterations) of that policy. Another im-
portant annealing action is to terminate the SA process. An
annealing agent monitors the state of the SA process and di-
rects its progress or termination.

Optimal control of annealing would then be an agent map-
ping annealing process information to annealing control ac-
tions that maximize expected utility. Thus, learning opti-
mal control of annealing entails some form of search among
mappings from annealing states to annealing actions for one
that approximates optimal control. For this we apply pol-
icy evaluation and improvement techniques of reinforcement
learning (Sutton & Barto 1998).

Experiments and Observations

We describe two annealing agents; a parameter-learning
agent demonstrates that simple reinforcement learning tech-
niques can be applied to existing annealing schedules to find
approximately optimal parameter settings, subject to a user-
defined utility measure. We then describe a more complex
annealing control agent that demonstrates how reinforce-
ment learning may be used to obtain problem-specific, adap-
tive annealing schedules.
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First, we present an overview of the annealing problems
used to evaluate our learning agents.

Annealing Problems

Three combinatorial optimization problems were used for
our experiments: the traveling salesman problem, the clus-
tered traveling salesmen problem, and a scheduling prob-
lem. Both of the traveling salesmen problems and Lin and
Kernighan’s next state generation function are described in
(Kirkpatrick, Gelatt, & Vecchi 1983). In both cases, 400
cities were distributed on a 350-by-350 grid.

Each randomly generated instance of our simple course-
scheduling problem consists of 2500 students, 500 courses,
and 12 time slots. Each student is enrolled in 5 unique ran-
dom courses. Each state of the problem is represented as a
list containing the time slot for each course. Next states are
generated by randomly changing the time slot of one course.
The energy function E(s) is defined as the total number of
course conflicts, i.e. the total number of class pairs in each
student’s enrollment which occur in the same time slot.

For all of our tests, we define our measure of the object-
level utility of a state UO(s) such that changes in energy at
low energy states are weighted more heavily than changes
at high energy states: UO(st) = −log10(E(st)). Our time
cost function UI(t) = ct, where c is a fixed cost per iteration
and t is the number of iterations completed. This allows us
to compare results generated on different machines.

In previous work (Neller & Hettlinger 2003), we have
shown that a preliminary version of a decision-theoretic an-
nealing agent was capable of learning a rapid-cooling sched-
ule, i.e. “simulated quenching”. For these experiments, we
wished to demonstrate learning of a non-extreme behav-
ior which is neither quenching, nor close to thermal equi-
librium. We found that for all problems, an iteration cost
c = 2.2× 10−8 achieved this objective.

A Simple Parameter-Learning Agent

In this section, we present a parameter-learning agent (Fig-
ure 1(a)) which is both simple to implement and aids in
understanding the more complex dynamic control agent of
the next section. Our agent treats an annealing schedule or
autonomous annealing controller as a black box with pa-
rameters. We assume a reasonable, finite set of parameter
choices A with |A| = n. The agent attempts to find the op-
timal parameter values through experimentation.2 There are
many different action selection approaches for balancing ex-
plorative versus exploitative actions (Sutton & Barto 1998).
Since our purpose is pedagogical, we will describe a simple
ε-greedy agent.3

2We can view this experimental task as an n-armed bandit
problem with conditional dependencies. Numerous studies, e.g.
(Horowitz 1973; Meyer & Shi 1995; Anderson 2001; Gans, Knox,
& Croson 2004), have shown that human experimentation on such
problems is suboptimal in predictable ways. This further reinforces
the usefulness of automated approaches.

3Our softmax agent had faster convergence to optimal behav-
ior, but this would require us to have two separate applications of
Boltzmann distributions with two temperature parameters.
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Figure 1: Metalevel learning of annealing control
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Our agent learns parameter selection over random rep-
resentative sets of problems. Let Qt(a) be the average
decision-theoretic net utility of all complete trials at learn-
ing iteration t using parameter choice a ∈ A. When no
trials have been performed with a, we define Qt(a) = 0.

Each iteration of learning proceeds as follows. With
probability ε, we uniformly, randomly select a parameter
a ∈ A. Otherwise, we select the a having the highest ex-
pected net utility (i.e. the “greedy” action), that is, we select
argmaxa∈AQt(a). We run the algorithm with the selected
a, and incrementally update our average Qt(a) with the ex-
perienced net utility.

Our simple ε-greedy agent used ε = .1. No effort was
made to tune ε in order to show that this metalevel control
did not itself need metalevel control.

For each annealing trial, the parameter to be selected is
m, the number of annealing iterations. Parameter set A con-
sists of 9 choices for m, equally-spaced logarithmically be-
tween 105 and 107 (inclusive). The annealing schedule was
a simple geometric schedule, where α was computed to take
the temperature from a fixed T0 and Tm−1 in m iterations.
The starting temperature T0 was derived using the method
described in (White 1984; Huang, Romeo, & Sangiovanni-
Vincentelli 1986), where one performs random walks on ini-
tial states, computing the standard deviation σ of the ΔE’s.
Then, an initial temperature of T0 = 20σ is sufficiently
high to accept virtually all ΔE’s, and serves as a reason-
able starting temperature. The final temperature was derived
similarly, such that any positive ΔE for a problem would
be almost certainly rejected. Starting and ending tempera-
tures for the traveling salesman problems were 2× 104 and
1 × 10−4 respectively; for the scheduling problem, starting
and ending temperatures were 1× 103 and 1× 10−3 respec-
tively.

For each experiment, learning occurs over 16384 (214)
simulated annealing trials with randomly generated in-
stances of a given problem. After each trial that is a power
of 2, a greedy policy is logged based on the current Qt(a)
estimates. These policies were then later tested with a ran-
domly generated benchmark set of 100 problems. All figures
show the tested utility means and 90% confidence intervals
from bootstrapping with 10000 resamples. The progress of
ε-greedy learning is shown in Figure 2.

In each case, we see that there is an initial period of ex-
perimentation after which the quality greatly increases to the
optimal setting. This jump occurred between 64 and 128
iterations for traveling salesman problems, and between 32
and 64 iterations for the scheduling problem. After the jump,
the policy changed slightly (except in the case of the clus-
tered TSP) and fixed on the optimal selection for the remain-
der of trials, which is 106 iterations for the clustered TSP
and 5.6 × 105 for the other problems. Peak mean utilities
for the TSP, clustered TSP, and scheduling problems were
1.078, 1.263, and 0.5798 respectively.

We do not claim that such ε-greedy action selection is op-
timal sampling for this number of trials. Rather, we view
this as one of an array of reasonable choices for online learn-
ing that serves as a simple and valuable wrapper for anneal-
ing schedule black boxes which require parameter tuning.
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(a) Traveling salesman problem
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(b) Clustered TSP
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(c) Scheduling problem

Figure 2: ε-greedy learning of geometric schedules
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This is significant from a software engineering standpoint,
as adding very little, simple code can obviate the need for a
tedious and bias-prone tuning task.

If one desires a faster convergence, there are many op-
tions. In our experiences, softmax action selection pro-
vides faster convergence but greater policy instability with-
out parametric adjustment through learning. Optimistic ini-
tial values of Q0(a) = 1.5 cause all choices to be tested in
the first 9 trials, leading to convergence to the optimal pa-
rameter selection within 32 iterations for the TSP and 16
iterations for the other problems. However, this approach
leverages domain knowledge. Indeed, there are many better
sampling techniques, but we have opted for a naı̈ve, simple
approach for generality and ease of exposition.

Annealing Control Agent

The simple agent of the previous section treated the anneal-
ing process as a black box with parameter tuning as control.
The choice was between a number of geometric schedules
through a given temperature range. In this section, we show
the viability of dynamic control of annealing temperature.

For easy illustration, we choose to formulate the control
problem with a slight and important difference from the sim-
ple agent. We subdivide the temperature range into sub-
ranges, allowing the controller agent to dynamically choose
from a number of geometric schedules for each temperature
subrange when it transitions from one to another. Thus, the
agent dynamically chooses monotonic piecewise-geometric
schedules (Figure 1(b)).

For our experiments, the temperature ranges used earlier
were logarithmically partitioned into 10 subranges. For each
subrange, the agent could, as before, choose the number of
iterations it would take to decay the temperature geometri-
cally from the highest to the lowest temperature of the range.
Since there were ten partitions, these choices were logarith-
mically distributed between 104 and 106 (inclusive), so that
the agent’s most extreme fast and slow annealing schedules
were identical to those of the simple agent.

The learning algorithm was the tabular SARSA learning
algorithm of (Rummery & Niranjam 1994), described in
(Sutton & Barto 1998), with α = 0.1 and γ = 1. Our evalu-
ation of this agent’s learning, shown in Figure 3, is the same
as before except for one significant difference. During peri-
odic greedy evaluations of the policy, we allowed annealing
to self-terminate if the expected utility of future iterations
was negative. This ability to self-terminate at the “point of
diminishing returns” is an interesting advantage of such dy-
namic control.

The peak mean utility for the clustered TSP was 1.271.
While the added flexibility did not significantly increase the
overall utility of annealing, we do note that convergence to
near optimal annealing was significantly faster, achieving
approximately optimal net utility after only a few trials. This
faster convergence was observed consistently across multi-
ple learning trials.

Again, we do not suggest that this agent represents the
optimal means of controlling annealing. Rather, this combi-
nation of decision-theory and reinforcement learning is the
first of a new class of algorithms we believe merits further
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Figure 3: ε-greedy learning of piecewise geometric temper-
ature control for the clustered TSP

investigation. We next consider degrees of design freedom
for this class of decision-theoretic simulated annealing algo-
rithms.

Future Work

The general annealing agent (Figure 1(c)) is essentially an
adaptive mapping from annealing process information to an-
nealing actions. Over time, the agent seeks to maximize its
expected utility. We have made simple choices for states and
actions for our experiments. In this section, we consider the
many possibilities for future research.

States: One could represent the SA process as a Markov
decision process (MDP) based on each search state st. To
condition our decisions on actual states of the search space
requires knowledge of the state space (i.e. domain-specific
knowledge) that would make our technique less general. We
have instead opted, as with other automatic annealing con-
trollers, to approximate optimal control by use of an ap-
proximating MDP. In general, one can base the approximat-
ing MDP on an abstraction of the current state of the SA
process itself, considering only the most important domain-
independent features such as time t, temperature T , energy
E(st), specific heat (Kirkpatrick, Gelatt, & Vecchi 1983),
or various Markov chain statistics. We have simply used the
temperature as an abstraction of the process. One impor-
tant open research question is which domain-independent
annealing process features are most significant for decision-
theoretic annealing control.

Actions: At intervals during annealing, the annealing
agent may choose whether and how to proceed with anneal-
ing. This includes both an annealing policy and the duration
of that policy. For example, an agent may decide to perform
1000 iterations of annealing at a specific fixed temperature.
It may instead, as we have described, decide to perform 100
iterations with a fixed temperature decay rate. The agent
may also decide to raise the temperature for a period (i.e.
simulated tempering), or may decide to terminate the SA

54



process.
While it is possible to have the annealing agent choose a

temperature for each iteration of simulated annealing, this is
unnecessary and introduces significant computational over-
head. This is decision-making at a fine-grained extreme
where all annealing schedules can be expressed. At the same
time, this yields a vast space of potential SA state-action
mappings to consider, posing problems for learning.

Another important open research question is which an-
nealing control actions are most beneficial, and which con-
ditions should trigger the controller’s intervention.

Conclusions

The most important contribution of this work is that we have
posed the simulated annealing control problem decision-
theoretically for the first time. Given the extreme practical
importance of the time versus quality tradeoff, it is surpris-
ing that the simulated annealing literature has not previously
framed this problem decision-theoretically.

We have also introduced both simple and complex agents
for learning parameter selection and dynamic control of an-
nealing respectively. One important simple application of
this work is to add a layer of metalevel control to existing
optimization algorithms in order to tune parameters for op-
timal balance of time versus quality.

However, we have shown that beyond adding to existing
algorithms, we can develop entirely new algorithms for dy-
namic control of temperature throughout the annealing pro-
cess. The unexplored possibilities are exciting, as a single
algorithm could flexibly learn to hill-climb, anneal, temper,
or terminate as appropriate for maximizing utility.
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