
On the Episode Duration Distribution in
Fixed-Policy Markov Decision Processes

Itamar Arel, Andrew Davis

Department of Electrical Engineering and Computer Science
The University of Tennessee

Knoxville, TN 37996
itamar@ece.utk.edu, adavis72@utk.edu

Abstract

This paper presents a formalism for determining the episode
duration distribution in fixed-policy Markov decision pro-
cesses (MDP). To achieve this goal, we borrow the notion
of obtaining the n

th-step first visit probability from queuing
theory, apply it to a Markov chain derived from the MDP, and
arrive at the distribution of the episode durations between any
two arbitrary states. We illustrate the proposed methodology
with an agent navigating a 25-state maze, demonstrating the
applicability of the method.

Introduction

A wide range of engineering applications, ranging from au-
tomotive systems to robotics, employ Markov decision pro-
cesses (MDPs) (Sutton & Barto 1998) as an underlying for-
malism to determine the optimal policy, or control scheme,
in a dynamic stochastic environment. An MDP is defined
as a quadruple 〈|S| , A, PA, R〉, where |S| denotes a finite
state space, A contains all possible actions that can be taken
at a particular state, PA represents the probability transition
function |S| × |S| × A → [0, 1], and R represents the map-
ping of state-action pairs to rewards, R : |S| × A → R.
The MDP quadruple serves as a perfect model for an appli-
cation space, whereas the actual planning, which involves
determining an optimal set of actions that must be taken to
accumulate maximum reward, is referred to as a dynamic
programming (DP) problem.

Occasionally, we may find a particular interest in evalu-
ating the expected duration of a trajectory from state i to
state j. For example, in an episodic task a starting state can
be arbitrary, but the terminal state may be fixed. In such
cases it would be interesting to determine the expected du-
ration from start to terminal/goal state. To date, there has not
been a formal method for ascertaining such trajectory dura-
tion distributions. This paper presents such a methodology
for the general case of MDPs with fixed policies, i.e. poli-
cies in which the transition probabilities do not change over
time.
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Obtaining the Episode Duration Distribution

The framework proposed for obtaining the episode duration
distribution in fixed-policy MDPs is as follows: (1) We ex-
tract a Markov chain from the MDP, which expresses the
expected transition probabilities from any state to any other
state that is directly reachable. (2) Next, we obtain the prob-
ability generating function of the expected transition proba-
bility matrix. (3) Finally, we utilize the queuing theory result
pertaining to the nth-step first visit probability to derive the
episode duration distribution. The following sections pro-
vide more detail on this methodology.

Extracting the Expected Transition Probability
Matrix

An MDP is fully defined by a state space, S, and action
set A, along with two constructs: the action-dependent state
transition probabilities,

P a

ss′ = Pr [s′|s, a] , (1)

and the expected reward, Ra

ss′ , which expresses the expected
reward to be received when transitioning from state s to s′.
The policy, π(s, a), defines the mapping between states and
actions, such that π(s, a) = Pr [a|s] . Based on the above,
let the expected transition probability matrix be defined as:

Gss′ =
∑

a∈A(s)

π(s, a)P a

ss′ , (2)

which reflects the average rate of transition from state s to
state s′ in S. where A(s) denotes the action set that is per-
missible at state s. It should be noted that in some cases, not
all transitions are possible, so therefore some elements of G
may be zero. It is also assumed that the policy is stochastic
yet stationary in that its elements do not change over time.

Deriving the nth-step First Visit Distribution
Function

Once we obtain G, the next step is to find the probability-
generating function (PGF) of the matrix,

H(z) = [I − Gz]−1, (3)

We note that H(z) requires matrix inversion, which is an
O(N3) operation. It has been shown (Hunter 1998) that we
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can obtain the PGF of an nth-step first transition probability
distribution through the following expression:

F (z) =
Hss′(z) − δss′

Hs′s′(z)
, (4)

where δ denotes the Kronecker delta. Element (s, s′) of
the nth-step first transition probability matrix expresses the
likelihood that a transition from state s to state s′ will oc-
cur in precisely n steps. This is the exact interpretation of
episodes, if s is the starting state and s′ the terminal state.
Thus, the inverse PGF transform on F (z) is expected to
yield the episode duration probability mass function - the
metric which we seek. The relationship between F (z) and
the probability mass function for the episode duration is

f(k) =
F (k)(0)

k!
, (5)

where F (k)(0) denotes the kth derivative with respect to z
evaluated at zero and k! is k factorial.

Example

We illustrate the methodology described using simple 25-
state maze, as illustrated in Figure 1. At each state, four
actions are permissible: Up, Down, Left, and Right. If the
agent chooses an action that results in the collision with a
wall, the agent will remain in the same state.

Figure 1: “The 25-state Maze Example, MDP.”

First, we must convert the policy and environment into
a Markov chain. By (2), the probability of moving into a
state’s neighbor is simply the probability that the agent will
take that action. The probability of looping back into the
same state is the sum of the probability of all actions that
would result in a collision with a wall. By evaluating this
simple computation, we now have the MDP of the maze ex-
ample.

Figure 2 shows the MDP derived from the Markov chain,
where the numbers preceding the arrows transitioning into
the adjacent cells indicate the probability of taking that ac-
tion, and the numbers in the top left corner of each cell in-
dicate the probability of colliding with a wall and remaining
in that state.

Figure 2: “The 25-state Maze Example, cast into a Markov
chain.”

Now that we have the expected transition probability ma-
trix G, we obtain H(z) by applying (3). Next, we must ob-
tain Hss′(z) and Hs′s′(z) by defining the initial state and the
goal state, which will be (1,1) and (5,5), respectively. Ap-
plying these two functions to (4) gives us F (z), the PGF of
the probability mass function. Finally, we can apply (5) to
obtain the probability mass function (see Figure 3).
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Figure 3: “The Episode Duration Distribution of the Maze
Example.”

In conclusion, this paper presented a methodology for an-
alytically determining the episode duration distribution of
a Markov decision process. An agent could use the dis-
tribution as a simple discriminator between two policies -
if episode brevity is of utmost importance, the agent could
compare the expected episode duration of two different poli-
cies derived from the episode duration distribution. The
agent would then choose the policy with the shorter expected
value. MDPs that offer a reward at the terminal state are
especially applicable to this discriminator, so this methodol-
ogy could be applied to any problem in this subset of MDPs.
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