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Abstract 
When data instances are inter-related, as are nodes in a 
social network or hyperlink graph, algorithms for collective 
classification (CC) can significantly improve accuracy. 
Recently, an algorithm for CC named Cautious ICA (ICAC) 
was shown to improve accuracy compared to the popular 
ICA algorithm. ICAC improves performance by initially 
favoring its more confident predictions during collective 
inference. In this paper, we introduce ICAMC, a new 
algorithm that outperforms ICAC when the attributes that 
describe each node are not highly predictive. ICAMC learns a 
meta-classifier that identifies which node label predictions 
are most likely to be correct. We show that this approach 
significantly increases accuracy on a range of real and 
synthetic data sets. We also describe new features for the 
meta-classifier and demonstrate that a simple search can 
identify an effective feature set that increases accuracy.  

 Introduction   

In many classification tasks, the instances to be classified 
(such as web pages or people in a social network) are 
related in some way.  Collective classification (CC) is a 
methodology that jointly classifies such instances (or 
nodes). CC algorithms can attain higher accuracies than 
non-collective methods when nodes are interrelated 
(Neville and Jensen 2000; Taskar, Abbeel, and Koller 
2002). Several CC algorithms have been studied, including 
relaxation labeling (Chakrabarti, Dom, and Indyk 1998), 
the Iterative Classification Algorithm (ICA) (Sen et al. 
2008), loopy belief propagation (LBP) (Taskar et al. 2002), 
and Gibbs sampling (Jensen, Neville, and Gallagher 2004). 
 We focus on ICA because it is a popular and 
computationally efficient algorithm that has good 
classification performance (Sen et al. 2008). It makes 
initial label predictions for each node vi, then iteratively re-
computes them based on the predictions for every node that 
links to vi. Recently, a variant of ICA named Cautious ICA 
(ICAC) (McDowell et al. 2007, 2009) was shown to often 
attain higher accuracies than ICA. ICAC is based on the 
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observation that, since some label predictions will be 
incorrect, ICA’s use of all predictions may sometimes 
decrease accuracy. To counter this effect, ICAC instead 
initially uses only some label predictions. By “cautiously” 
choosing only those predictions that appear more likely to 
be correct, ICAC can increase accuracy vs. ICA.  
 In this paper, we introduce Meta-Cautious ICA (ICAMC), 
which is exactly like ICAC except in how it selects the set 
of predicted labels to use during classification. In 
particular, ICAMC learns a meta-classifier to predict the 
likelihood that a label prediction is correct. By carefully 
constructing a meta-training set from the original training 
set, ICAMC can learn this classifier and use it to select more 
reliable predicted labels than ICAC, increasing accuracy. 
 Our contributions are as follows. First, we present 
ICAMC, a novel algorithm that can significantly increase 
accuracy compared to ICAC, especially when the attributes 
that describe each node are not very predictive. Second, we 
introduce a technique to improve accuracy by generating 
more training examples for ICAMC’s meta-classifier. Third, 
we describe new features for the meta-classifier and 
demonstrate that, while the most effective meta-features 
for ICAMC are task-dependent, a simple search identifies an 
effective set that increases accuracy. Empirical evaluations 
using real and synthetic datasets support our claims. 
 We next review CC and the ICA and ICAC algorithms. 
Then we introduce ICAMC. Finally, we present our 
experimental evaluation and discuss future research issues. 

Collective Classification  

Assume we are given a graph G = (V,E,X,Y,C), where V is 
a set of nodes, E is a set of (possibly directed) edges, each 
xi∈X is an attribute vector for node vi∈V, each Yi∈Y is a 
label variable for vi, and C is the set of possible labels. We 
are also given a set of “known” label values YK for nodes 
VK⊂V, so that YK = {yi | vi∈VK}. Finally, assume that we are 
given a training graph GTr, which is defined similarly to G 
except that every node in GTr is a “known” node. Then the 
task is to infer YU=Y−YK, which are the values of Yi for the 
nodes in G whose labels are unknown. For each node vi, let 
yi be the true label and �i be the predicted label. 
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 For example, consider the task of predicting whether a 
web page belongs to a professor or a student. Conventional 
supervised learning approaches ignore the links and 
classify each page using attributes derived from its content 
(e.g., words present in the page). In contrast, a technique 
for relational classification explicitly uses the links to 
construct additional features for classification (e.g., for 
each page, include as features the words from hyperlinked 
pages). These relational features can increase classification 
accuracy, though not always (Chakrabarti et al. 1998). 
Alternatively, even greater (and usually more reliable) 
increases can occur when the class labels of the linked 
pages are used to derive relevant relational features (Jensen 
et al. 2004). However, using features based on these labels 
is challenging because some or all of these labels are 
initially unknown. Thus, their labels must first be predicted 
(without using relational features) and then re-predicted in 
some manner (using all features). This process of jointly 
inferring the labels of interrelated nodes is known as 
collective classification (CC). 
 We next describe two existing collective inference 
algorithms, ICA and ICAC, and then introduce ICAMC. 
Each algorithm relies on a given node classifier (MAR) that 
predicts a node’s label using both attributes and relations. 

ICA: Inference using all predicted labels  
Figure 1 shows pseudocode for ICA, ICAC, and ICAMC 
(depending on AlgType). Step 1 is a “bootstrap” step that 
predicts the class label �i for each node in VU using only 
attributes (confi records the confidence of this prediction, 
but ICA does not use it). ICA then iterates (step 2). During 
each iteration, it selects all available label predictions (step 
3), computes the relational features’ values based on them 
(step 4), and then re-predicts the class label of each node 
using both attributes and relational features (step 5). Step 6 
is ignored for ICA. After iterating, step 7 returns the final 
set of predicted class labels and their confidence values. 

ICAC:  Inference using some predicted labels  
In steps 3-4 of Figure 1, ICA assumes that the predicted 
node labels are all equally likely to be correct. When 
AlgType is instead ICAC, the inference becomes more 
cautious by only considering more confident predictions. 
Specifically, step 3 “commits” into Y′ only the most 
confident m of the currently predicted labels; other labels 
are considered missing and are ignored. Step 4 computes 
the relational features using only the committed labels, and 
step 5 performs classification using this information. Step 
3 gradually increases the fraction of predicted labels that 
are committed per iteration. Node label assignments 
committed in an iteration h are not necessarily committed 
again in future iterations (and may in fact change). 

ICAC requires a confidence measure (confi in Figure 1) 
to rank the current label predictions. As with prior work 
(Neville and Jensen 2000, McDowell et al. 2007), we set 
confi to be the posterior probability of the most likely class 

for each node vi. This is computed by the node classifier 
MAR based on the attributes and relational features of vi. 
 ICAC performs well on a variety of real and synthetic 
data, and attains higher accuracies than ICA and similar 
accuracies as more time-consuming algorithms such as 
Gibbs sampling or LBP (McDowell et al. 2009). However, 
ICAC’s ability to select the “best” predicted labels depends 
entirely on the confidence value estimates from the node 
classifier. Accuracy may decrease if a misclassified node is 
nonetheless assigned a high confidence value. 

Improving ICAC with Meta-Caution 

To address this potential problem with ICAC, we created 
ICAMC. They are identical except that ICAMC uses a 
separate “meta classifier” to predict how likely each 
prediction �i is to be correct. Below we describe ICAMC’s 
use of this meta-classifier, methods for generating its 
training data, and methods for constructing its features.  

ICAMC:  Inference using predicted correct labels  

Figure 1 shows that ICAMC changes ICAC only in step 6. In 
particular, after using the node classifier to predict the label 
�i (and associated confidence confi) for every node, ICAMC 
computes the meta-feature values and then uses the meta-
classifier MM to predict how likely �i is to be correct. These 
predictions serve as the new confidence values that are 
then used in Step 3 of the next iteration to select the 

ICA_classify(V,E,X,YK,MAR,MA,MM,n,AlgType,Φ) = 
// V=nodes; E=edges; X=attr. vectors; YK=labels of known nodes
// MAR=node classifier (uses attrs. & relations); MA= classifier  
// that uses attrs. only; MM=meta-classifier (predicts correctness) 
// n=# iters; AlgType=ICA, ICAC, or ICAMC; Φ=est. class distr. 
1 for each node vi∈VU do            // Bootstrap 

   (�i,confi) ← MA(xi)
2 for h = 0 to n do  

3    // Select node labels for computing relational feat. values 
   if (AlgType = ICA)  // Use all labels: Known or predicted 
       Y′ ← YK ∪ {�i | vi∈VU} 
   else                           // ICAC or ICAMC: Use known and m   
       m ← |VU| * (h/n)  // most confident predicted labels  
       Y′ ← YK ∪ {�i | vi∈VU ∧ rank(confi) ≤ m} 

4     for each node vi∈VU do 
       fi ←calcRelatFeats(V,E,Y′) 

// Use labels selected above 
// to compute feat. values 

5     for each node vi∈VU do 
       (�i,confi) ←MAR(xi,fi) 

// Re-predict labels using  
// attributes and features 

6 if (AlgType = ICAMC)             
   ZU ←{(�i,confi) | vi∈VU} 
   for each node vi∈VU do    

// Compute meta-features;  
// use to re-estimate conf.  
// values for each node 

         mfi ← calcMetaFeatures(i,V,E,X,Y′,YK,ZU,MA,Φ)       
           confi ← MM(mfi) 

7 // Return most likely label (and conf. estimate) for each node 
return { (�i,confi) | vi∈VU} 

Figure 1: Pseudocode for ICA, ICAC, or ICAMC. Based on prior 
work (McDowell et al. 2009), we set n=10 iterations.  
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committed set Y′. If the meta-classifier’s confidence 
predictions more accurately identify those nodes whose 
labels are correctly predicted (compared to ICAC’s simple 
confidence values), then accuracy should increase. 

Generating meta-training data 

Learning the meta-classifier requires constructing 
appropriate meta-training data, which we represent as a set 
of vectors. Figure 2 shows the pseudocode for this task, 
whose algorithm employs a holdout graph (a subset of the 
training set) with nodes V, edges E, attributes X, and true 
labels Y. For each of T trials, step 3 randomly selects lp% 
of the nodes to be known; this value is chosen to replicate 
the fraction of known labels that are present in the test set. 
It then executes ICAC on the graph, given the known nodes 
(step 4). This yields the set ZU, which contains the label 
predictions and associated confidence values for each node 
in VU. Using these and the expected class distribution Φ 
(from the training set), it then generates a meta-training 
vector per node (steps 5-7). This vector includes eight 
meta-features (described later) and a Boolean value that 
indicates whether prediction �i is correct. This training data 
is later used to learn the meta-classifier that predicts the 
correctness of the �i estimates given the values of the meta-
features.  
 We set T=10 to conduct ten trials with different known 
nodes each time. The goal is to reduce the bias that might 
otherwise occur due to the particular selection of YK in step 
3. We later compare this with the one-trial approach (T=1). 

Generating meta-features from meta-training data 

ICAMC needs useful meta-features to predict when the node 
classifier has correctly classified a node. The constructed 
features are based on two key premises. First, we assume 
that the data exhibits relational autocorrelation 
(correlation of class labels among interrelated nodes, 
Jensen et al., 2004) for use by the node classifier. Thus, 
each node’s predicted label will be influenced by the 
predictions of its neighboring labels. Second, since ICAMC 
(like ICAC) exploits only some of the predicted labels 
during each iteration, not all neighbor labels will affect the 
prediction for vi. We assume that the accuracy of prediction 
�i for iteration j is affected only by the neighbors of vi that 
were included in the committed set Y′ during that same 
iteration. Let Ni refer to the set of such neighbors for vi.  
 Based on these two premises and additional intuitions 
described below, we designed eight features for this initial 
study of ICAMC. The first three features are based on ones 
used by Bilgic and Getoor (2008) for a related problem that 
is discussed later. Future work should examine these 
choices and others in more detail. 
  Suppose the CC algorithm predicts �i to be the label 
for node vi, with confidence confi. Then vi’s features are: 

1. Local score: The CC algorithm’s predictions should 
differ from those of an attribute-only classifier (e.g., MA 
in Figure 1), or there is no point in executing CC. 
However, if MA and the node classifier MAR agree on a 
prediction, then it is more likely to be correct. This 

heuristic is captured by using, for each vi, MA’s 
confidence value for the �i that was predicted by MAR. 
“Known” nodes are assumed to be fully correct (score 
of 1), though this could be reduced to account for 
possible noise: 
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2. Relational score: If a node is surrounded by nodes 
whose predictions are more likely (e.g., have high lf 
scores), then its prediction is also more likely: 

3.  Global score: Let Prior(c) be the fraction of training 
nodes with class label c, and Posterior(c) be the fraction 
of test set labels predicted as c by the CC algorithm. If 
Posterior(c) is much higher than Prior(c), then many 
nodes with predicted label c may be incorrect. Thus, the 
global score measures whether class yi is over or under-
represented in the posterior distribution: 
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4. Node confidence: If the node classifier is confident in 
some prediction �i (high posterior probability), then this 
suggests that �i is more likely to be correct:  
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If only this feature is used, ICAMC devolves to ICAC. 

5. Neighbor confidence: As with the relational score, more 
confident neighbor predictions suggest that a node’s 
prediction is more likely to be correct: 
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generateMetaVectors(V,E,X,Y,MAR,MA,n,T,lp,Φ) = 
// V=nodes, E=edges, X=attribute vectors, Y=node labels 
// MAR = node classifier (uses attrs. & relats), MA = classifier 
//    (attrs. only), n=# ICAC iters., T=# randomized trials to use 
// lp=labeled proportion, Φ = expected class distribution 
1 MetaTrainVecs ← ∅ 

2 for j =1 to T do  

3   // Randomly select some nodes to be “known” 

   YK ← randomSelectSomeNodes(V, Y, lp) // Randomize

   VU ← {vi | ∃yi∈Y-YK}  // Nodes used for prediction

4   // Run ICAC to predict labels and compute confidences 

   ZU ← ICA_classify(V,E,X,YK,MAR,MA,∅,n,ICAC,Φ) 

5   for each vi∈VU  do // Calc. and store meta-feature vectors  

6         mfi ← calcMetaFeatures(i,V,E,X,Y,YK,ZU,MA,Φ) 

7         MetaTrainVecs ← MetaTrainVecs ∪ mfi 

8 return MetaTrainVecs // return all vectors of meta-features 

Figure 2: Pseudocode to generate training vectors for the meta 
classifier used by ICAMC. 
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6. Neighbor agreement: If most of node vi’s neighbors 
have the same predicted label, this may indicate that �i 
is more likely to be correct. Let count1(Ni) and 
count2(Ni) indicate the count of the two most frequent 
label predictions in Ni. If the former value is large and 
the latter is small, then neighbor agreement is high: 
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7. Known neighbors: Having many “known” neighbors 
increases the chances that a node’s prediction is correct:  
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8. Known vicinity: A node’s prediction may also be 
influenced by known nodes that are linked to it by one 
or more intervening nodes. We use a simple measure 
that favors direct known neighbors, then counts (with 
reduced weight) any known nodes reached via one 
additional node v′: 
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Each of these eight features may not be useful for every 
dataset. However, ICAMC needs only some of the features 
to be useful – the meta-classifier (we use logistic 
regression) will learn appropriate parameters for each 
feature based on their predictive accuracy on the meta-
training data. Also, features that provide no benefit are 
discarded by the feature search process described later. 

Evaluation 

Hypotheses. By default, ICAMC uses feature search and ten 
randomized training data trials. This ICAMC attains higher 
accuracies than ICAC (Hypothesis #1), ICAMC without such 
trials (#2), ICAMC without feature search (#3), and ICAMC 
with just the three features used by Bilgic and Getoor (#4).  

Data Sets. We used the following data sets (see Table 1): 

1. Cora (see Sen et al. 2008): A collection of machine 
learning papers categorized into seven classes.  

2. CiteSeer (see Sen et al. 2008): A collection of research 
papers drawn from the CiteSeer collection. 

3. WebKB (see Neville and Jensen 2007): A collection of 
web pages from four computer science departments.  

4. Synthetic: We generate synthetic data using Sen et al.’s 
(2008) graph generator. Similar to their defaults, we use 
a degree of homophily of 0.7 and a link density of 0.4.  

Table 1:  Data sets summary 

Characteristics Cora CiteSeer WebKB Syn.
Total nodes 2708 3312 1541 n.a. 
Avg. # nodes per test set 400 400 385 250 
Avg. links per node 2.7 2.7 6 3.3 
Class labels 7 6 6 5 
Non-rel. features avail. 1433 3703 100 10 
Non-rel. features used  10 10 10 10 
Relational features used 2 2 3 1 
Folds 5 5 4 25 

Feature Representation. Our node representation includes 
relational features and non-relational attributes, as 
described below. 

Non-relational (content) attributes: The real datasets are 
all textual. We use a bag-of-words representation for the 
textual content of each node, where the feature 
corresponding to a word is assigned true if it occurs in the 
node and false otherwise.  
 Our version of the WebKB dataset has 100 words 
available. For Cora and CiteSeer, we used information gain 
to select the 100 highest-scoring words, based on 
McDowell et al. (2007), which reported that using more 
did not improve performance. Our focus is on the case 
where relatively few attributes are available (or the 
attributes are not very predictive) as may occur in large 
real-world networks (c.f., Macskassy and Provost 2007, 
Gallagher et al. 2008). Thus, for most of our experiments 
we randomly select 10 of the 100 available words to use as 
attributes. We also briefly discuss results when using 100 
attributes.  For the synthetic data, ten binary attributes are 
generated using the technique described by McDowell et 
al. (2009). This model has a parameter ap (attribute 
predictiveness) that ranges from 0.0 to 1.0; it indicates how 
strongly predictive the attributes are of the class label. We 
evaluate ap using the values {0.2, 0.4, 0.6}. 

Relational features: Each relational feature value is a 
multiset. For instance, a possible feature value is {3 A, 2 B, 
1 missing}, which indicates that a node links to 3 other 
nodes whose predicted label is A, 2 nodes whose prediction 
is B, and 1 node labeled missing. During inference, each 
label in the multiset (excluding missing labels) is 
separately used to update the probability that a node has 
label c. This is the “independent value” approach that was 
introduced by Neville et al. (2003), used by Neville and 
Jensen (2007), and shown to be superior to “count” or 
“proportion” features by McDowell et al. (2009). See 
Neville et al. (2003) for more details. 
 For Cora and CiteSeer, we compute a “multiset” feature 
using only incoming links, and a separate such feature 
using only outgoing links. For WebKB, we also compute 
one such feature using “co-citation” links (a co-citation 
link exists between nodes i and j if some node k links to 
both of them). For the synthetic data, the links are 
undirected, so there is a single relational feature. 

Classifiers. For the node classifier, we used a naïve Bayes 
classifier. McDowell et al. (2009) reported that, using 
multiset features, it attained higher accuracies than did 
alternatives such as logistic regression.  For the meta-
classifier, we used logistic regression, as did Bilgic and 
Getoor (2008). Future work should consider other choices. 

Test Procedure. We conducted an n-fold cross-validation 
study for each tested algorithm. For WebKB, we treated 
each of the four schools as a separate fold. For Cora and 
CiteSeer, we created five disjoint test sets by using 
“similarity-driven snowball sampling” (McDowell et al. 
2009). This is similar to the approach of Sen et al. (2008).  
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For all 3 datasets we tested on one graph, trained on two 
others, and used the remaining two (one for WebKB) as a 
holdout set for learning the meta-classifier and performing 
the meta-feature search. 
 For the synthetic data, we performed 25 separate trials. 
For each trial we generated three disjoint graphs: one test 
set, one training set, and one holdout set. 
 We randomly selected lp=10% of each test set to form 
VK (nodes with known labels). This is a “sparsely labeled” 
task, which is common in real data (Gallagher et al. 2008). 
 To search for which of the eight meta-features to use 
with ICAMC, we use the simple, greedy Backwards 
Sequential Elimination (BSE) algorithm (Kittler, 1986). It 
evaluates accuracy on the holdout set with ICAMC, then 
recursively eliminates any meta-feature whose removal 
increases accuracy. To increase robustness, accuracy is 
averaged over ten executions of ICAMC, each time using a 
different set of initial “known” labels (as done for T=10 in 
Figure 2). The final set of meta-features is used for testing. 

Tested Algorithms. We tested ICA, ICAC, and ICAMC. In 
addition, to assess the utility of ICAMC’s design decisions, 
we also tested three of its ablated variants:  
1.  “1 trial instead of 10”: this uses only one randomized 

trial to collect meta-training data (i.e., T=1 in Figure 2) 
and only one evaluation trial for the meta-feature search. 

2.  “No meta-feature search”: This skips search and uses all 
eight meta-features that were previously described.  

3.  “Only Bilgic meta-feats”: This uses just features #1, #2, 
and #3 – the set used by Bilgic and Getoor (2008). 

Performance Measure. We compared all the algorithms 
on their average classification error rate on the test sets. 

Analysis. We performed independent analyses for each 
prediction task and joint analyses by pooling the 
observations, either for all the real data sets or for all the 
synthetic data conditions shown. Our analysis uses one-
tailed paired t-tests accepted at the 95% confidence level.  

Results. Table 2 displays the classification error rates 
averaged over all the folds for each algorithm. For each 
(data set, algorithm) pair, the best result is shown in bold.  

Result 1: ICAMC significantly outperforms ICAC and ICA 
when attribute predictiveness is low: Comparing ICAMC 
with ICAC, we find that ICAMC reduces classification error 
by 2.3-8.0% for the real data, and 1.9-6.9% for the 
synthetic data. This improvement is significant in every 
case (p < .03 for the real data and p < .045 for the synthetic 
data). In addition, the pooled analyses found significant 
gains for both the real and synthetic data. Therefore, we 
accept Hypothesis #1. 
 For the synthetic data, the gains clearly decrease as 
attribute predictiveness (ap) increases. This is consistent 
with the results of McDowell et al. (2009), who report that 
the cautious use of relational information is more important 
for CC algorithms when ap and/or the number of attributes 
is small. Since ICAMC is even more cautious than ICAC, 
ICAMC has larger gains over ICAC when ap is small (the 
same   relative   trend  exists  between  ICAC  and  the  non- 

cautious ICA). Nonetheless, ICAMC continues to provide a 
small gain even when ap is high − a gain of 0.9% when 
ap=0.8 (results not shown). 
 For the real data, ICAMC provides gains for all three 
datasets, where the largest gain is with WebKB. WebKB 
has more complex and numerous linking patterns 
(Macskassy and Provost 2007). For this reason, ICAMC’s 
careful selection of which neighboring labels to use for 
prediction may be especially important with WebKB. 
 We repeated these experiments with real data using 2, 5, 
or 20 attributes (instead of 10) and found similar results. In 
every case pooled analyses found a significant gain for 
ICAMC over ICAC (average gains ranging from 3.2- 6.9%), 
with the largest gains occurring with WebKB. As with the 
synthetic data, these gains diminish when the attributes are 
more predictive. For instance, when 100 attributes are used 
the gains of ICAMC remained but were small (0.2-1.0%) 
and statistically insignificant. These results suggest that 
ICAMC is especially helpful when the attributes alone are 
not very predictive, and at least does no harm otherwise.  
Result 2: ICAMC with randomized trials and meta-feature 
search outperforms simpler variants: The bottom of Table 
2 shows results with the variants of ICAMC that do not use 
multiple randomized trials or do less or no meta-feature 
search. ICAMC outperforms the “1 trial instead of 10” and 
“Only Bilgic meta-feats” variants, often significantly, and 
pooled analyses find that ICAMC outperforms both, for the 
real and for the synthetic data. Thus, we accept Hypotheses 
#2 and #4. ICAMC also significantly outperforms the variant 
that uses all eight meta-features (“No meta-feat. search”) 
for the real data, but not for the synthetic data (perhaps 
because simpler, undirected linking patterns were used in 
the synthetic data). Thus, we reject Hypothesis #3. 

Despite the rejection of one hypothesis, ICAMC always 
outperformed all three variants (or lagged by at most 0.2%) 
and significantly outperformed all three variants on the real 
datasets. Some of the variants that simplify ICAMC’s search 
process sometimes performed notably worse than even 
ICAC. Together, these results suggest that the complete 
ICAMC, with randomized trials and feature search, is the 
most robust performer. 

Table 2:   Average % classification error rate 

Core Algorithms 
“Real” datasets Synthetic data 

Cora CS 
Web
KB ap=.2 ap=.4 ap=.6

ICA 51.5† 61.0† 60.3† 53.3† 35.9† 22.6†

ICAC 36.2† 37.6† 32.5† 38.8† 27.8† 18.3†

ICAMC 31.3 35.3 24.5 31.9 25.0 16.4 

Gain* 4.9 2.3 8.0 6.9 2.8 1.9 

Variants of ICAMC 

1 trial instead of 10 35.4† 35.8 30.0† 36.4† 27.5† 17.2 

No meta-feat. search   35.9† 37.6† 31.5† 33.5 24.9 16.2 
Only Bilgic meta-feats 42.1† 47.1† 26.4 37.3† 27.8† 18.2†

† indicates significantly worse behavior than ICAMC.  
* indicates gain from meta-caution (ICAC – ICAMC) 
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Discussion 

ICAMC increased accuracy compared to ICA and ICAC. 
However, why does ICAMC’s meta-classifier more 
effectively identify reliable predictions than does ICAC’s 
node classifier? First, the meta-classifier’s task is simpler: 
choosing between two values (correct or incorrect) vs. 
between all possible class labels. Second, the meta-
classifier can use additional information, such as the 
number of known labels, which has no obvious utility for 
predicting a particular label, but does help estimate the 
correctness of the resultant prediction. Finally, using two 
different classifiers helps to reduce the bias due to using 
the Naïve Bayes node classifier alone. 
 Meta-feature search often significantly increased 
ICAMC’s accuracy. However, is the same set of features 
almost always chosen? On average, the “global score” and 
“node confidence” features were selected most often, and 
“known neighbor” least often. This varied substantially, 
however, with some features selected 90% of the time for 
one dataset and never for another. These results, combined 
with the results from Table 2, suggest that search is 
essential to make ICAMC robust across different data, even 
if the default set of meta-features is further refined. 
 We are not aware of any other work that uses a meta-
classifier to improve the operation of a CC inference 
algorithm, although Bilgic and Getoor (2008) did use a 
similar predictor to identify the least likely CC label 
predictions (in order to “purchase” the correct labels for 
them). In contrast, we seek the most likely predictions (to 
favor them for inference). They considered three features 
for this different task, which our search algorithm selected 
for ICAMC 62%, 67%, and 91% of the time, respectively. 
Thus, their features are also useful for our task, although 
the results of the previous section show that using only 
those features leads to very poor performance for ICAMC.  
 Compared to ICAC, ICAMC requires additional 
computation: to execute ICAC when collecting meta-
training data, to execute ICAMC for feature selection, and to 
train the meta-classifier for each combination of meta-
features that are considered. However, in many real-world 
graphs each node links to at most k other nodes, in which 
case each of these steps is linear in the number of nodes. In 
addition, once the meta-classifier is learned, ICAMC 
requires little additional time for inference compared to 
ICAC (i.e., it needs only one additional execution of the 
meta-classifier per iteration).  

Conclusion 

We demonstrated that Meta-Cautious ICA (ICAMC) 
significantly outperforms ICAC for many tasks. Moreover, 
we showed that aspects of ICAMC – in particular, its use of 
multiple randomized training data trials and its use of 
search for selecting meta-features – were essential to 
achieving performance that was robust across a range of 
datasets. Since ICAC has already been shown to be a very 
effective CC algorithm, these results suggest that ICAMC 
should be seriously considered for CC applications, 

particularly when attributes alone do not yield high 
predictive accuracy. 
  Further work is needed to confirm our results using 
other datasets, meta-features, and classifiers, and to 
consider how meta-caution might be extended to other CC 
algorithms. In addition, we intend to consider techniques 
for further reducing the time complexity of ICAMC 
compared to ICAC.  
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