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Abstract

This paper presents a two phase methodology to analyze the
morphology of abnormal leukocytes images for the
classification of acute leukemia subtypes using image
processing and data mining techniques. In the first phase we
propose a segmentation algorithm that uses color and
texture information in order to extract leukocytes and their
respective nucleus and cytoplasm from bone marrow images
with heterogeneous staining. As usual, these images show a
high cell population, we suggest using conical shapes to
separate overlapped blood elements. In the second phase we
perform feature extraction to the regions segmented and use
these attributes to classify the cells into leukemia subtypes.
In our experiments we achieved an average accuracy of
95% in the evaluation of the segmentation process. An
overall accuracy of 92% was reached in the supervised
classification of acute leukemia types, 84% in lymphoblastic
subtypes, and 92% in myeloblastic subtypes.

Keywords: cell segmentation, cell separation, leukemia
classification, image analysis, data mining.

1. Introduction

Leukemia is a cancer that begins in the bone marrow. It is
caused by an excessive production of immature leucocytes
that replace normal blood cells (leukocytes, red blood cells,
and platelets). It causes the body to be exposed to many
diseases with no possibility to fight them for lack of
defenses.

Without treatment, this cancer is the cause of many
deaths. In Mexico, according to statistics reported by
(NIEGI 2006), leukemia was the fifth and sixth cause of
death in men (7%) and women (5.8%) with cancer, and it
was the first cause of death in children with cancer
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between 1-4 and 5-14 years old, with 48.5% and 52.2% of
deceases, respectively.

Leukemia is curable if it is detected and treated in at
early stage. Its detection starts with a complete blood
count. If there are abnormalities in this count, a study of
morphological bone marrow smear analysis is done to
confirm the presence of leukemic cells. In this study, a
pathologist observes some cells under a light microscopy
looking for abnormalities presented in the nucleus or
cytoplasm of the cells in order to classify the abnormal
cells in their particular types and subtypes of leukemia.
This classification is very important as it determines which
treatment is given. This study has an error rate between
30% and 40% depending on the pathologist experience and
the difficulty to distinguish leukemia types and subtypes
(Morales 2006). A flow cytometry test is highly accurate to
classify leukemias but it is very expensive and not all the
hospitals have the equipment to perform it.

The classification of leukemia types and subtypes
facilitate the physicians’ work in deciding what treatment
is the best for a given cell type (lymphocytic or
myelogenous) and disease progress (acute or chronic).

In this work we are especially interested in automatically
determining the type and subtype of acute leukemias by
analyzing information contained in digital images. There
are 3 subtypes of acute lymphocytic leukemia (ALL): LI1-
L3, and 8 subtypes of acute myelogenous leukemia
(AML): M0-M7.

Few solutions have been proposed to the classification
of leukemia cells. (Morales 2006) and (Galindo 2008)
extracted geometric, statistical, and texture features from
whole cells and classified them into types and subtypes of
acute leukemia, respectively, obtaining promising results.
In this paper we propose a leukemia cells classification
method by means of a more detailed description of the
cells. This requires processing the image pixels to segment
the cells and separate their respective nucleus and
cytoplasm in order to extract from them features that help
to improve the classification among leukemia subtypes.



Segmenting the nucleus and cytoplasm of leukocytes
from bone marrow images is a very difficult task, as the
images show heterogeneous staining and high-cell
population. Some segmentation techniques such as
thresholding, edge detection, pixel clustering, and growing
regions have been combined to extract the nucleus and
cytoplasm of leukocytes (Kim et al. 2001, Won et al. 2004,
Theera-Umpon 2005, Colantonio et al. 2007, and Dorini et.
al 2007). These techniques could be applied as the images
showed uniform backgrounds and high contrast that
appropriately defined the objects of interest. Conversely, in
our work there are images with low contrast among cell
elements and a variety of colors and textures that make
cellular elements difficult to distinguish. For this reason,
we propose a segmentation algorithm based on color and
texture pixels features that can work in bone marrow
images showing heterogeneous staining.

Regarding the problem of overlapped blood cells few
algorithms have been proposed. These algorithms split
cells either by joining concave points using separating lines
(Won et al. 2004 and Wang 2007) or by eroding and
growing regions retaining the shape (Hengena et al. 2002
and Dorini et al. 2007). In this paper we also propose a
cell separation algorithm that keeps the original shape of
the blood cell and uses information of this shape to split
the overlapped regions by drawing a conical curve.

This paper is organized as follows. Section 2 describes
the proposed method for segmenting and separating
leukocytes, and identifying their respective nucleus and
cytoplasm. Section 3 lists the descriptive features of the
cells that are used to identify acute leukemia types and
subtypes. Section 4 shows the segmentation and
classification results. Finally, conclusions are presented in
Section 5.

2. Cell Segmentation Model

In this section we propose a segmentation model in order
to separate leukocytes into their nucleus and cytoplasm.
This model includes three main steps: 1) segmentation of
cellular elements, 2) identification of nucleus and
cytoplasm, and 3) separation of overlapped blood cells.
Good results in this process are very important as we will
extract descriptive features to these elements, analyze
them, and obtain useful information to classify acute
leukemias.

2.1. Segmentation of cellular elements

With the help of an expert, we analyzed the features of
samples of bone marrow cell images with different staining
in order to design an algorithm that can segment
appropriately leukocytes and their respective nucleus. In
this analysis we observed some color and texture features
that we used to distinguish between blood cells such as: 1)
red blood cells get shades of orange and rose, and
leukocytes exhibit tonalities of purple in their nucleus, and
blue and rose tones in the cytoplasm of lymphocytes and
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myelocytes, respectively, 2) the color intensities acquired
by the nucleus are darker than the cytoplasm, and 3) the
texture of the nucleus and cytoplasm of leukocytes, red
blood cells, and background are different among them.

2.1.1. Color features. According to these features, we
decided to use the CIE L*a*b* color space because it
highlights the visual differences among colors, and it
provides accuracy and a perceptual approach in the color
difference calculation. Since our image collection is in the
RGB color space, a transformation from RGB to the CIE
L*a*b* space was done using the formulas presented in
(Paschos 2001). Figures 1(a) and 1(b) show the
representation of a bone marrow cell image in the RGB
and CIE L*a*b* color space, respectively.
RGB Image CIE L*a*b* Image
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Figure 1. Blood smears in the RGB and CIE L*a*b* color
spaces.

As we can see in figure 1(b), the CIE L*a*bh* color
model provides an adequate nucleus color representation
by means of its luminosity channel L*, because it allows
identifying objects with different light reflection. We can
also notice that channel b* provides a suitable color
representation of cells, because it highlights elements with
purple and blue tonalities. Since channels L* and b*
contain valuable information about the nucleus and the
cells respectively, they were used to create two similar
groups in their channel intensity values. The first group
was established by applying the k-means -clustering
algorithm with k=2 and k=3, and choosing (from the 5
generated clusters) the cluster that better represented the
nucleus or cell information. All the pixels that do not
correspond to the first group fall into the second one. We
finally calculated the mean and standard deviation of the
channel intensity values for each group in order to
incorporate them as color features in the segmentation
model.

2.1.2. Texture model. We use the Wold decomposition
model (Francos 1993), as a texture analysis, to separate
texture into its structural and stochastic components. We
chose this model because blood cells images present
heterogeneous textures, hence both periodical and random
textures can be found in such images. Additional
motivations for choosing this model were its similarity
relation with the human visual perception system, and its
invariant properties to translation, rotation, and scale.

The Wold decomposition model interprets the image
texture by means of the sum of three mutually orthogonal
components: a harmonic field, a generalized evanescent



field, and a stochastic field (Francos 1993). The perceptual
characteristics of these fields can be described as:
periodicity, directionality, and randomness, respectively,
according to the three most important human perception
dimensions identified by (Rao 1993). Figure 2 shows a
diagram of the orthogonal components of the Wold de-
composition model for a selected channel.
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Figure 2. Wold decomposition texture model.

In order to parameterize the harmonic field we used the
method proposed by (Francos 1993). We first solved the
sinusoidals using the discrete Fourier transform (DFT);
next we located harmonic peaks by identifying the largest
isolated peaks in the harmonic frequencies. We established
a value of 10 as the amplitude threshold (experimentally),
which is sufficient to find the peaks that were considered
harmonic components in the cell images. Finally, the
harmonic field parameterization was done by evaluating
the amplitude and phase values of the DFT from the
frequencies identified as peaks.

In the parameterization of the generalized evanescent
field we used the algorithm proposed by (Liu and Picard
1999). In this algorithm, the DFT without harmonic
components is used to find four evanescent lines using a
Hough transform. The parameterization is carried out by
evaluating the amplitude and phase values of the DFT from
the frequencies of the evanescent lines identified.

The texture structural component is the sum of the
harmonic and generalized evanescent fields. The stochastic
component parameterization is done by evaluating the
amplitude and phase values of the residual DFT once the
structural component is removed.

2.1.3. Color and texture segmentation. In this work we
propose a segmentation method that uses contextual color
and texture information to classify pixels corresponding to
cell elements in bone marrow images with heterogeneous
staining. For this, we first represent a channel using a
binary Markov Random Field model which consists of a
label field and three observation fields (channel intensity,
structural texture, and stochastic texture fields). After that,
according to the Bayes theorem, we represented the
segmentation problem as a Maximum a Posteriori (MAP)
estimation of the label field. Theoretical details can be
consulted in (Li 2000).

Based on the Iterated Conditional Model algorithm
(Kato 1994), we solved the MAP estimation using the
procedure shown in table 1.
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Table 1. MAP estimation for cell segmentation.

1. Initialize the label field f° by usingeq. 1 and seti=0.

2
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20k
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where x; is the intensity value of the selected channel,
and o, are the mean and standard deviation of the group
k ={1,2} created in section 2.1.1.

2. For each labeling configuration of f| that differs in at least
one neighbor configuration fy,,, calculate the energy U,

for each class &k = {1,2} using eq. 2.
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Where w; and v, :‘vs —vr‘ are the spatial variation
parameters of the stochastic W and structural V' texture
components, respectively, defined over second order cliques.

3. Update the labeling configuration fsi by selecting the
configurations with minimum energy of f),, using eq. 3:

[ =argminU (k) 3)
‘ k=020

4. Gotostep2with i=i+1 ,until i=10 or /' = f™*.

2.2. Identification of nucleus and cytoplasm

The goal of this step is identifying leukocytes through the
recognition of their nucleus and cytoplasm. From the
regions obtained in the segmentation process, we analyzed
their shape, color, and spatial relation with respect to other
regions to determine whether an analyzed region is a
nucleus or a leukocyte.

The features that were used to recognize cellular
elements are: circularity to measure the perimeter
complexity of a circular object (circularity= perime-
ter’/(4m-area)), eccentricity to find out how much the object
deviates from being circular (eccentricity= dist(center,
focus)), color to determine if a region is darker than other,
and containment proportion to establish whether a region
contains or is contained by another region. Using these
features and a priori knowledge about the cellular elements
structure we designed the rule-based classifiers presented
in tables 2 and 3 to label nucleus and cells. We selected a
subset of 20 regions with regular shapes (nucleus and cells)
and 20 regions with irregular shapes (overlapped regions)
and we generated classification rules (using Weka) that
discriminate between these types of forms. These rules
gave us an idea of the threshold values to use to determine
if a region is likely to be a cellular element. Then, we
added the color relation and containment proportion rules
so that we could match the cells with their respective
nucleus. We established a containment proportion
threshold of 95% because some pixels are missed in the
cell segmentation or in the separation of overlapped
regions.



Table 2. Decision rules to identify nucleus.

if color(region,) < color(region,) and containment proportion
(region, region;) > 95%
then if eccentricity(region,) < 0.5 and circularity(region;) < 1.5
then region; is a nucleus.
else region, likely is an overlapped nucleus.
else if eccentricity(region;) > 0.5 and circularity(region;) > 1.5
then region, is not a region of interest.
if eccentricity(regiony) > 0.5 and circularity(region,) > 1.5
then region; is not a region of interest.

Table 3. Decision rules to identify cells.

if color(region,) >color(region,) and containment proportion
(region, region,) > 95%
then if eccentricity(region,) < 0.5 and circularity(region;) < 1.5
then region; is a cell.
else region, likely is an overlapped cell.
else if eccentricity(region,) > 0.5 and circularity(region,) > 1.5
then region, is not a region of interest.
if eccentricity(regiony) > 0.5 and circularity(region,) > 1.5
then region, is not a region of interest.

2.3. Separation of overlapped blood cells

Figure 3 summarizes the process of cell separation once
the overlapped region is identified. In order to split the
overlapped regions we obtain the edges of the region and
its centroid and we provide some concave points as points
of separation. Then we transform edges from a cartesian to
a polar space, and we interpolate discontinuous points
using a linear interpolation. This allows completing cell
borders with a conical shape once we come back to the
cartesian space. Finally, we join some edges discontinuities
by applying morphological operations.

Figure 3. Cell separation procedure.

3. Classification of Acute Leukemia Cells

The suitable recognition of leukemia cells requires the
definition of good descriptive features that facilitate their
classification. In this phase we extract geometric,
statistical, texture, and size ratio features from regions
obtained in the segmentation process (nucleus, cytoplasm,
and whole cell) and we analyze these features to identify
types and subtypes of acute leukemia. It is important to
mention that we do not normalize the images to extract
these features, since the size and color of the cells are
important characteristics to distinguish among subtypes of
leukemia. Table 4 shows these features. All the geometric
features mentioned in table 4 were extracted from each
nucleus and cell. Since many of the cytoplasm features are
included in the cell, we only calculated its area. Due to the
morphological analysis performed by the expert, these
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features are not relevant to the classification of cells. In
case of the nucleus, cytoplasm, and cells, we extracted
statistical and texture features from the channels of the
RGB image and the gray scale image. We obtained another
set of features applying principal components analysis to
the images corresponding to the nucleus and the cell. We
used as features the firsts 10 eigen values for the channels
of the RGB image and gray image, which represent at least
the 80% of the data variability in each region. The analysis
of these features to classify acute leukemia cells was done
using different training and testing sets, attributes
selection, and classification algorithms available in (Weka
2009). These tests are described in section 4.3.

Table 4. Representative features for the cell description.

Geometrical features
area, perimeter, circularity, weight, height, elongation, major
axis length, minor axis length, eccentricity, extension,
equivalent diameter, Euler number, convex area, and solidity.
Color features
sum, mode, mean, standard deviation, and variance.
Texture features
homogeneity, contrast, correlation, energy, and entropy.

Size ratio
area ;cjeus area, cjeus d perlmeternuc]eus
5 , an N .
areacytop]asm area perlmetercell

4.1. Data sets description

In this work we used the MSSI cells image collection that
contains 633 bone marrow leukemia cells images with
different color staining. These images were digitalized by
(Morales et al. 2005) using a digital camera connected to a
Carl Zeiss optical microscope with a 100x objective.
Hence, all images have the same resolution. Table 5 shows
the number of examples of each type and subtype of acute
leukemia included in the collection.

Table 5. Samples of acute leukemia types and subtypes.

Type /
Subtype | AUL | L1 | L2 | AML | M2 | M3 | M
Number | 55 | 105 | 135 | 338 | 95 | 47 | s6
of images

4.2. Cell Segmentation Results

The proposed method showed good qualitative
segmentation results allowing the extraction of the 633
leukocytes and their respective nucleus and cytoplasm. In
order to measure the accuracy of the segmentation
algorithm in a quantitative way, we tested it on a subset of
the original images collection, which contains 20 leukemia
cells images with a size of 256 x 256 pixels. It is important
to notice that this test set includes different samples of
images with color variations in their staining; furthermore,
there are leukocytes overlapping with other blood cells.
Table 6 shows the results of the evaluation of the
algorithm. This evaluation was obtained by comparing our
automatic cells segmentation algorithm with cells manually
segmented by an expert. The metrics used for evaluating



the segmentation were: Precision = TP/P, FP Rate = FP/P,
and FN Rate = FN/N, where TP and FP are the number of
pixels correctly and incorrectly classified as cellular
elements respectively, P is the number of pixels classified
as cellular elements, FN is the number of pixels incorrectly
classified as background, and N is the number of pixels
classified as background.

Table 6. Evaluation of the cells segmentation algorithm.

Precision FP Rate FN Rate
nucleus 95.87% 4.13% 2.33%
cell 95.75% 3.16% 3.83%

Experimental results show that the proposed methodology
allows the extraction of the leukocytes and their respective
nucleus from cells with good accuracy when
experimenting with real bone marrow leukemia cells
images. Figure 4 shows some examples with the results
of the cell segmentation and identification.

Phase 1:
Segmentation
RGB Image Channel 5* Channel L*

Phase 2:
Cell identification
Cell Nucleus
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Figure 4. Examples of the results of the segmentation and
identification of cells in images with different staining and cell
population.
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As we can see in figure 4, the leukemia cell images that we
want to classify show different colors and textures, and
leukocytes are overlapped with other blood cells. The
images in previous cell segmentation algorithms do not
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consider these conditions, so these algorithms were not
able to work in images with variation in color staining and
high-cell population. This is the reason that we didn't
compare our results with previous works.

4.3. Cell Classification Results

Experiments were performed by analyzing the nucleus,
cell, and cytoplasm features as we propose in this work,
and also by using only features of whole cells as proposed
in (Galindo 2008).

In each experiment we established different
classification tasks to distinguish among types of acute
leukemia (ALL and AML), subtypes of ALL (L1 and L2),
and subtypes of AML (M2, M3, and M5). In the case of
AML subtypes we analyzed the behavior of a subtype with
respect to the others performing binary and multiclass
classifications. For each classification problem, we
performed experiments using different types of features
such as geometric, statistical, texture, size ratio, and eigen
values. The classification was carried out using instance
based classifiers, decision trees, regression functions as
well as metaclassifiers available in (Weka 2009). Some of
these are: k-Nearest Neighbor (IBk), Random Forest (RF),
Simple Logistic (SL), SMO, and Random Committee
(RC), which were chosen because they were able to obtain
the best results for leukemia subtypes classification in the
work of (Galindo 2008).

The evaluation of the classification models was done
using 10 cross-validations. The criteria for evaluating
classifiers were: overall percentage of correct
classifications, true positive rate (TPR), true negative rate
(TNR), and area under the ROC curve. Table 7 shows the
best classifier for each experiment. These results were
achieved using geometric, color, texture, and size ratio
features as attributes. The eigen values did not represent
useful information to distinguish among leukemia
subtypes.

Table 7. Results of the best classifier for each type or subtype of
acute leukemia cells.

Classification Clas- | Fea- | Prec.

Problem sifier | tures % AL A
ALLvsAML SMO | N&C | 92.20 | 0.920 | 0.924 | 0.921
ALLvSAML SL C 81.32 | 0.822 | 0.803 | 0.899

L1vsL2 1Bk N&C | 84.40 | 0.835 | 0.853 | 0.907

L1vsL2 SL C 76.78 | 0.667 | 0.845 | 0.814

M2vs(M3&MS5) |RC.RF | N&C | 9245 | 0.883 | 0.962 | 0.959
M2vs(M3&MS5) | RC.RF C 7424 | 0.706 | 0.778 | 0.805
M3vs(M2&M5) 1Bk N&C | 91.89 | 0.805 | 0.955 | 0.880
M3vs(M2&MS5) | RC.RF C 80.79 | 0.390 | 0.940 | 0.788
M5vs(M2&M3) 1Bk N&C | 91.89 | 0.870 | 0.938 | 0.955
M5vs(M2&M3) RF C 84.37 | 0.730 | 0.890 | 0.866

M2vsM3vsM5 |RC.RF| N&C | 88.39 | 0.904 | 0.894 | 0.945

M2vsM3vsM5 | RC.RF C 66.63 | 0.801 | 0.612 | 0.784

Comparing the results obtained in the classification of
leukemia cells using nucleus and cytoplasm features with
the results obtained using only cell features, it can be
clearly seen that the cell is better described by using
features from its cellular elements.



5. Conclusions

In this paper we proposed a novel method that uses color
and texture information of images pixels in order to
segment leukocytes and their respective nucleus and
cytoplasm from bone marrow leukemia cells images.

We used the CIE L*a*b* color space and the 2D-Wold
decomposition texture model as they allow us to analyze
blood cells images in a similar way to the human visual
perception system. We modeled the color and texture
information by using a Markov Random Field in order to
obtain regions of cell elements. We then extracted some
color, shape, and containment proportion information, and
we used a cell identification algorithm to recognize cells
and their respective nucleus and cytoplasm as well as
overlapped regions. When there were cells or nucleus
overlapping other cell elements, we separated them by
using a cell separation algorithm based on linear
interpolation in the polar space to provide a conical shape.

It is important to note that our method can be applied to
images that show heterogeneous color and texture staining
and high-cell population, a desirable property when
working with bone marrow smears. Experimental results
show that our method (with this type of images) achieves a
segmentation accuracy of 95% (average) when it is
compared with a manual segmentation performed by an
expert.

With respect to the cell classification process, we can
demonstrate that the use of descriptive features of the
nucleus and cytoplasm of the cells improved their
representation, allowing the classification of acute
leukemia types and subtypes to increase significantly its
accuracy (from 7% to 22 %) compared with that obtained
when we only use descriptive features of the cell.

Our future work involves the design of a decision
algorithm that combines different leukemia cell classifiers
in order to provide an automatic diagnosis for a patient by
analyzing the information of all the available samples of
the patient's cells.
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