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Abstract

The increasing mortality rate due to breast cancer is a global
concern. Several research groups have proposed different
methods to detect breast cancer in an early stage (such as
microcalcifications detection methods). In this work, we
present a supervised microcalcifications detection method
that takes into account the breast density. Using this
information and Fisher’s Linear Discriminant, our method is
able to detect microcalcifications even in mammograms
where there is not contrast between microcalcifications and
breast tissue. We tested our method with two mammogram
databases and we evaluated each of the main phases of the
method. The obtained specificity and sensitivity results
reached 90% for each of the phases.

Keywords: microcalcifications detection, breast density,
segmentation, data mining.

1. Introduction

Breast cancer is the most common cause of death among
women. The American Cancer Society estimates that each
year in the United States, 40,170 women die from breast
cancer.

Although there are risk factors associated with breast
cancer, no woman is safe from this disease. For this reason,
physicians recommend periodical clinical revisions (such
as mammograms) to detect its presence in an early stage.

Microcalcifications are the symptom that tells us with
more anticipation the probable beginning of a malignant
process inside the breast (breast cancer). They can be
observed in mammograms and they look like little bright
points of different tones, shapes, and sizes.

For twenty years, several research groups have proposed
different automatic methods to segment
microcalcifications. These methods can be divided,
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depending on the segmentation technique used, in four
categories: thresholds (Mousa et al. 2005, Wang et al.
1998, Wu et al. 2006), regions (Kim and Park 1997,
Morrow et al. 1992, Woods et al. 1997), model or
supervised segmentation (Nishikawa et al. 2002, Perner
1999, Zhang et al. 1998) and contours based methods (Fu
et al. 2005, Lee et al. 2004, Zhao et al. 1992).

The thresholds based methods are the most popular.
Most of these methods use a wavelet transformation to
highlight microcalcifications to then apply a threshold.
These methods only work well when there is a high
contrast between microcalcifications and the surrounding
region (breast tissue).

There are also region based methods that look for some
distinctive  value of the pixels that form a
microcalcification. However, finding this value is very
difficult due to the different tones between
microcalcifications and the different types of breast tissue
(fat and glandular).

Other methods use information about the objects to be
segmented; this segmentation technique is known as
supervised segmentation or model based segmentation.
This technique is used when the objects to segment have a
geometric pattern as we can see in the case of
microcalcifications. The main problem of these methods is
the strong dependency between the identification results
and the images used to learn the model (even more when
such a model is based on the image tonalities).

Finally, there are methods that try to detect the borders
of microcalcifications. These methods are not commonly
used because finding those borders is difficult when there
is a low contrast between microcalcifications and the breast
tissue.

As we could notice, all the methods described before
have a common problem: the detection results depend on
the contrast between microcalcifications and their
surrounding region (the breast tissue). The tone difference
in a mammogram is caused by the type of tissue (fat or



glandular) that composes the majority of the breast. For
this reason, we proposed a detection method that takes into
account the breast density (the predominant breast tissue).
Using this information and Fisher’s Linear Discriminant,
our method is able to detect microcalcifications of any
tone, size, and shape. In the last phase of our method, we
extract descriptive characteristics from the detected
microcalcifications to reduce the number of false positives.

In section 2 we describe how Fisher's Linear
Discriminant works and in section 3 we describe the
proposed method to detect microcalcifications. The
mammogram databases that we used to test our method are
shown in section 4 and in section 5 we present our results.
Finally, in section 6 we show our conclusions.

2. Fisher’s Linear Discriminant

The main idea of Fisher’s Linear Discriminant (FLD) is to
find a space where the projected samples from different
classes are well separated. In other words, this method
selects the projection U such that the ratio of the average
between-class scatter over the average within-class scatter
is maximal.

Let the between-class scatter matrix be defined as
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Once the optimum linear transformation is found, the
examples are projected into this new space.

In order to classify a new object, it is projected to the
discriminant space and we calculate Euclidean distance
from this new object to each of the means of the different
classes. The class assigned to the new object is the one
with the closest distance to it. In the next section we
describe how we use Fisher’s Linear Discriminant to detect
microcalcifications.
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3. Microcalcifications Detection Method

Our detection method (see figure 1) is composed by three
main phases: breast density classification,
microcalcifications segmentation, and the phase to reduce
the number of false positives generated in segmentation

phase.
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Figure 1. Structure of the proposed detection method.

Microcalcifications
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In the first phase, the method identifies the breast
predominant tissue and classifies it as either fat or dense.
Then, using this information (the breast density), the

method selects the discriminant space that better
differentiates between microcalcifications and breast
tissue.

The next step is the microcalcifications segmentation. In
this phase, the breast is analyzed using a fixed size
window; the image inside the window is projected into the
selected discriminant space and we classify the image as
microcalcification or breast tissue. If the image is
identified as microcalcification, this area is marked in the
mammogram indicating the presence of a possible
microcalcification. This procedure is repeated until the
entire breast image has been analyzed.

In the last phase, we reduce the amount of false positives
generated in the segmentation step. To do this, we extract
different descriptive characteristics from the regions
identified as microcalcifications and we use a classification
algorithm. In the next subsections we describe in more
detail each of the main phases of the method.

3.1. Breast Density Classification

The type of tissue that mainly composes the breast is
important for us because the contrast between the
microcalcification and the breast tissue depends on it.

The breast density phase (see pseudo code 1) begins
with the separation of the breast and the mammogram
background (line 3 of pseudo code 1) using the fuzzy c-
means algorithm (Bezdek 1981). If we only consider two
groups, one of them contains all those pixels that belong to
the breast and the other those pixels that are part of the
background of the mammogram. The image is divided into
sub-regions and we only keep the largest one
(corresponding to  the  breast). Small regions
(corresponding to labels with patient information) are
eliminated.



Because the image tone is the main radiological
characteristic that differentiates fat from glandular tissue,
we use attributes from the breast histogram in order to
identify which is the predominant tissue (tone) of the
breast (line 4 of pseudo code 1). The breast image
histogram is divided in seven static intervals and for each
of them we obtain its mean, frequency, and standard
deviation (line 5 of pseudo code 1). All of the frequency
values were obtained in proportion to the breast size. The
mean value tells us the average level of luminosity in the
interval, frequency is the number of pixels inside the color
interval, and the standard deviation corresponds to the
difference in contrast inside the interval. We selected these
attributes because we experimentally identified that they
provide us significant information for our task.

Using the extracted characteristics and a classification
algorithm our method identifies the breast category (fat or
dense) (line 6 of pseudo code 1).

Pseudo code 1. Breast Density Classification
. Breast Density (New Mammogram)
.Mammo New Mammogram;
.Breast Fuzzy cmeans (Mammo, 2);
. Hist histogram (Breast);
. Intervals divided (Hist);
. Characteristics  extract characteristics (Intervals);
. Density classifier (Characteristics);
. Return Density;
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3.2. Microcalcifications Segmentation using FLD

The second phase of our method consists of the
microcalcifications segmentation. In the training step of
this phase, we use Fisher’s Linear Discriminant (FLD) to
create two discriminant spaces that allow us differentiate
between a microcalcification image and a breast tissue
image. In order to generate the discriminant spaces, we
create two microcalcifications databases. Both of them
contain microcalcifications images and breast tissue
images, but one database has images from fat breasts and
the other has images from dense breasts. The images of the
microcalcifications database are stored in jpg format and
they have a size of 12 x 12 pixels.

The procedure to find a discriminant space using FLD
(see pseudo code 2), begins with a set of N images with the
same size; where N, images belong to the
microcalcification class and N, images belong to the breast
tissue class. After that, each image is represented as a
column vector (in our case a vector of 144 pixels), line 2 of
pseudo code 2. Using these vectors, we calculated the
general mean and the mean of each class (see equations 3
and 4), lines 3-5 of pseudo code 2.

Then, we calculate the between-class scatter matrix S,
and the within-class scatter matrix S,, (see equations 1 and
2), lines 10-11 of pseudo code 2. In order to find the linear
transformation matrix U, we obtain the eigenvectors of the
product of S, and S,,/(see equation 5), line 14 of pseudo
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code 2. If we directly apply FLD to our images, we fall
into a problem; the inter-class dispersion matrix S, is
always singular. This happens because the number of
pixels » is higher than the number of images M, and the
maximum range of S,, is (M-k), so S,, is always singular. In
order to solve this problem, the space is reduced using
Principal Component Analysis (PCA) before applying FLD
(Belhumeur et al. 1997), lines 7-8 of pseudo code 2. After
this, the optimum linear transformation U consists of the
eigenvectors of (U, SWU,.,)) (U p.,SbU ., -

This procedure to create a discriminant space is repeated
twice, the first one using the database with images from fat
breasts and the second one using the database with images
from dense breasts.

Pseudo code 2. Microcalcifications discriminant space
l1.Microcalcifications Discriminant Space(image base)
/ The image base contains images of microcalcifications and
Images of breast tissue.
P. Transform each image into a vector X; ;
B. Mean general mean (X,...,Xp);
#. Mean calc mean (images of class 1);
5. Mean tissue mean (images of class 2);
b
7
B

.matrix [ Xy,..,X];

.M matrix" * matrix;

. [eigevectors,eigenvalues] eigenvectors(M);
D.V  matrix * eigenvectors;

/I Mv Kv

10.Sg  calculate Sb ( Mean_general, Mean_calc, Mean_tissue);
11.Sy  calculate Sw ( Mean_calc, Mean_tissue);

12.S, VT*Sp*V;

13.8,  V#Sy*V;

14.[Eigenvec, Eigenval] /] Sy S,Av
15.U V * Eigenvec;

16.Project all images in U;  //(Y; UT™*X))ioi

17.Mean class calc mean (images class 1);

18.Mean class tissue mean (images class 2);

19.Save U, Mean class calc, Mean class tissue;

eigenvectors(Sy,Sy);

Once the two discriminant spaces were generated, in the
microcalcifications segmentation step (see pseudo code 3),
we use a window of 12 x 12 pixels to analyze the breast to
look for microcalcifications (line 4 of pseudo code 3). The
region inside the window is projected to the corresponding
discriminant space (line 7 of pseudo code 3) depending on
the breast density classification. Then, using the Euclidian
distance we identify if there is more similarity between the
image and the microcalcifications or the breast tissue class
(line 8 of pseudo code 3). If the region inside the window
is classified as microcalcification (lines 9-10 of pseudo
code 3), this area is marked in the mammogram; otherwise,
we only move the window. The segmentation step finishes
when the window has analyzed the whole breast.



3.3. False Positives Reduction

The false positives reduction is the last phase of our
method. In this phase we extract descriptive characteristics
including statistical (i.e. minimum and maximum gray
levels) and morphological (i.e. area, perimeter, convex
area, orientation, minor axe length, major axe length, and
solidity) from the microcalcifications segmented in the
segmentation step.

Pseudo code 3. Microcalcifications detection using FLD
1. Detection using FLD (New Mammography Image)
P. Density Breast Density (Mammo);
. Load U, Mean class calc, Mean class tissue corresponding to
Density;
. For each no overlapping window from top left to bottom rigth
Region window (Mammo);
. VRegion vector column (Region);
.NewIm U"* VRegion;
. Dist Min Euclid (NewIm, Mean_class_calc, Mean_class_tissue)
D. if(Dist Mean class calc)
10.  Highlight (Region);
[1.end for

oI

Since we used a sliding window during the segmentation
phase, the segmented microcalcifications contain a small
region of breast tissue. Due to this, we need to segment the
region of interest using the Otsu method in order to
calculate its descriptive characteristics (Otsu 1979). Using
these characteristics and a classifier we reduce the amount
of false positives.

4. MIAS and SSSIESSP Databases

In this work we used two mammogram databases, the
mini-MIAS and the SSSIESSP databases. The mini
Mammographic Image Analysis Society (MIAS) is a public
database that contains 322 images of medium lateral
mammograms (Suckling et al. 1994). The MIAS database
has an information document associated to each
mammogram that describes its characteristics such as:
breast density, the anomaly found in the mammogram, the
anomaly malignity, the coordinates of the center of the
anomaly and the approximate radius in pixels of the circle
that encloses the anomaly. The size of each image is of
1024 x 1024 pixels and the images are stored in pgm
format.

The second database that we used is known as the
SSSIESSP database. This database was created with
mammograms from the X-rays laboratory of the Social
Services and Security Institute of Employees to the Service
of the State of Puebla (SSSIESSP). This database has 84
cases, each case has 4 mammograms: 2 medium lateral
angle mammograms (right and left) and 2 cranium-caudal
mammograms (right and left). These mammograms were
digitized with a special scanner for negatives (Epson
Expression 1680 Professional Firewire) with a resolution
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of 1600 dpi. The size of the images is of 1024 x 1024
pixels and the images are stored in the jpg format.

With the help of a domain expert (a radiologist), the
mammograms were analyzed and the anomalies were
classified.

5. Results and Discussion

We tested our method with the MIAS and the SSSIESSP
databases described in section 4. Each of the main phases
of the method was evaluated in order to measure its
performance. The following subsections describe the
experiments performed and the obtained results.

5.1. Breast Density Classification Results

For the evaluation of this phase we used mammograms
with and without microcalcifications. We used as our
learning set 150 mammograms from the MIAS and 145
from the SSSIESSP databases. We tested three learning
algorithms: a rule based classifier (PART), a neural
network (MultiLayer Perceptron), and an instance based
classifier (IB1). As evaluation measures we used the
sensitivity (true positives rate) and specificity (true
negatives rate) generated by each classifier. In this phase of
our method, the positive class corresponds to the fat class
and the negative class to the dense class. Table 1 shows the
results obtained in these experiments to classify the breast
density for each of the mammograms database.

For both mammograms databases the classification
results for the fat class (sensitivity value) was lower than
that of the dense class (specificity). This happened because
some fat breast mammograms contain a large area of the
pectoral muscle and the classifier erroneously cataloged
them as dense mammograms.

Table 1. Results of breast density classification.

Mammograms with microcalcifications

Classifiers MIAS Database SSSIESSP Database
Sensitivity | Specificity | Sensitivity | Specificity

MLPerceptron 0.8 0.93 0.84 0.91

PART 1 1 0.75 0.87

IB1 0.8 0.93 0.88 0.91

Mammograms without microcalcifications

MLPerceptron 0.85 0.93 0.83 0.95

PART 1 0.93 0.83 0.91

IB1 0.9 0.9 0.91 0.95

5.2. Microcalcifications Segmentation Results

In this experiment we only used mammograms that
contained microcalcifications (20 from the MIAS and 50
from the SSSIESSP database). We tested our method with
and without considering the breast density knowledge
obtained in the previous phase. The performance
evaluation was done with the FROC analysis, using as
evaluation measures the proportion of true positive marks



(TPR) and the proportion of false positive marks per image
(FPI).

A true positive mark corresponds to the location of a
microcalcification detected by the segmentation algorithm,
while a false positive mark corresponds to the location of
breast tissue that was erroneously classified as a
microcalcification by the segmentation algorithm. In figure
2 we show examples of microcalcifications regions
detected in some mammograms. Table 2 shows the results
obtained in the microcalcifications segmentation phase.

Images with Microcalcifications

&=

l& |

Images with detected Microcalcifications

L&

Figure2. Examples of breast regions where microcalcifications
were detected.

\

Table 2. Results of the segmentation phase showing the TPR and
FPI measures for the MIAS and SSSIESSP databases.

Microcalcifications Detection Phase

MIAS Database SSSIESSP Database
Fat Dense Fat Dense
Breast Breast Breast Breast
TPR | FPI | TPR | FPI| TPR | FPI | TP | FPI
R
Using FLD
and breast 91.8 1 909 | 4 |943 6.1 | 92 |74
density
Using FLD
without 88.9 | 18 70 |21 165123 | 83 |53
breast density

It is important to note that the TPR obtained with our
method was higher than 90% for both databases, even with
difficult breasts (dense breasts). Our method obtained a
TPR 10% higher than when we do not take into account
the breast density. Moreover, we can see that taking into
account the breast density, our method generated a lower
false positives rate.

5.3. False Positive Reduction Results

The evaluation of this phase was also performed using
mammograms with and without microcalcifications. We
used 3 classifiers: a neuronal network (Multi Layer
Perceptron), an instance based classifier (IB1) and a rule
based method (PART). We used sensitivity and specificity
as evaluation measures. Table 3 shows the results obtained
in this test. In the false positives reduction phase the
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method showed a good performance. Using mammograms
with microcalcifications the true positive rate (sensitivity)
and the true negative rate (specificity) were around 0.9.
While for mammograms without microcalcifications the
true negative rate was 0.92. We write NA in some
sensitivity results of table 3 because a sensitivity value is
not applicable to mammograms without
microcalcifications.

Finally, table 4 shows the results of the global
performance of the proposed method.

Table 3. False Positive Reduction showing Sensitivity and

Specificity results.
False Positive Reduction Phase
MIAS Database
MLPerceptron PART IB1
Sens | Spec | Sens | Spec | Sens | Spec
Mammograms — with | oo | o9 | o4 | o5 |87 |8
microcalcifications
M‘ammogfams.wnhout NA | 99 NA | 87 NA | 95
microcalcifications
SSSIESSP Database
Mammograms — with | | g9 | 99 | 99 | 90 |.98
microcalcifications
Mammograms without
. e NA |.92 NA | .88 |NA |.92
microcalcifications
Table 4. Results of the global performance.
Global Performance of the Proposed Method
Sensitivity Specificity
MIAS Database 0.88 0.90
SSSIESSP Database 0.9 0.90

The average of the microcalcifications detection rate per
mammogram was around 0.9 while the average of false
positives rate per image was of 0.1.

6. Conclusions

In this work we presented a method to detect
microcalcifications based on Fisher’s Linear Discriminant
that considers information about the breast density for the
segmentation step and allows reducing the amount of false
positives generated during the segmentation phase.
Experimental results were satisfactory in each phase,
showing performances over 90%. It is important to notice
that our method is able to identify very bright and opaque
microcalcifications, even in very dark mammograms
without the need of preprocessing the image. We can also
notice that the use of knowledge about the breast density in
our method increases the microcalcifications detection rate
in more than 10%, allowing their identification in dense
breasts (known to be difficult for this task) without
incrementing the amount of false positives generated.

As future work, we will improve the breast density
classification phase to identify which regions of the breast



corresponds to fat tissue and which others correspond to
glandular tissue. In this way we can improve our method to
use the two discriminant spaces in an adaptable way.

We will also develop a diagnosis phase that considers
features such as shape, number, and location of the
microcalcifications in order to identify their malignancy
level.

On the other hand, when we analyzed the literature for
this work, we could see that some works only present the
result of the false positives reduction (the classification
step) but it is also important to consider that the number of
microcalcifications that the false positives reduction phase
processes depends on the number of microcalcifications
identified in the segmentation phase, then, the performance
of the false positives reduction phase is affected by the
cumulative error carried from the segmentation phase. For
this reason we propose to generate a new evaluation
scheme for microcalcifications detection methods, in
which we can evaluate all of the method phases in a fair
way and then obtain their global performance.
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