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Abstract

Probabilistic decision graphs (PDGs) are probabilistic graph-
ical models that represent a factorisation of a discrete joint
probability distribution using a “decision graph”-like struc-
ture over local marginal parameters. The structure of a PDG
enables the model to capture some context specific indepen-
dence relations that are not representable in the structure of
more commonly used graphical models such as Bayesian net-
works and Markov networks. This sometimes makes op-
erations in PDGs more efficient than in alternative models.
PDGs have previously been defined only in the discrete case,
assuming a multinomial joint distribution over the variables
in the model. We extend PDGs to incorporate continuous
variables, by assuming a Conditional Gaussian (CG) joint
distribution. The CG model can be factorised as a product
of conditionals. The conditional distribution of each discrete
variable is multinomial while for each continuous variable it
is Gaussian.

Introduction

The Probabilistic Decision Graph (PDG) model was intro-
duced by (Bozga and Maler 1999) as an efficient repre-
sentation of probabilistic transition systems. In this study,
we consider the more general version of PDGs proposed in
(Jaeger 2004).

PDGs are probabilistic graphical models that can repre-
sent some context specific independencies that are not effi-
ciently captured by conventional graphical models, such as
Markov Network or Bayesian Network (BN) models. Fur-
thermore, probabilistic inference can be carried out directly
in the PDG structure and has a time complexity linear in the
size of the PDG model.

So far, PDGs have only been studied as representations
of joint distributions over discrete categorical random vari-
ables, showing a competitive performance when compared
to BN or Naı̈ve BN models (Nielsen and Jaeger 2006). The
PDG model has also been successfully applied to supervised
classification problems (Nielsen, Rumı́, and Salmerón 2009)
and unsupervised clustering (Flores, Gámez, and Nielsen
2009).

In this paper, we introduce an extension of PDG mod-
els that incorporates continuous variables, and therefore ex-
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pands the class of problems that can be handled by these
models. More precisely, we define a new class of PDG mod-
els, called conditional Gaussian PDGs and show how they
represent a joint distribution over a set of discrete and con-
tinuous variables, of class conditional Gaussian. We also
show how probabilistic inference can be carried out over
this new structure, taking advantage of the efficiency already
shown for discrete PDGs.

The Conditional Gaussian model (CG)

We will use uppercase letters to denote random variables,
and boldfaced uppercase letters to denote random vectors,
e.g. X = {X0, X1, . . . , Xn}. By R(X) we denote the set
of possible states of variable X , and similarily for random
vectors, R(X) = ×Xi∈XR(Xi). By lowercase letters x
(or x) we denote some element of R(X) (or R(X)). When
x ∈ R(X) and Y ⊆ X, we denote by x[Y] the projection
of x onto coordinates Y. Throughout this document we will
consider a set W of discrete variables and a set Z of contin-
uous variables, and we will use X = W ∪ Z.

The Conditional Gaussian (CG) model (Lauritzen 1992;
Lauritzen and Wermuth 1989) allows a factorised represen-
tation of a joint probability distribution over discrete and
continuous variables, and that factorisation can be encoded
by a Bayesian network with the restriction that discrete vari-
ables are not allowed to have continuous parents.

In the CG model, the conditional distribution of each dis-
crete variable W ∈ W given their parents is a multinomial,
whilst the conditional distribution of each continuous vari-
able Z ∈ Z with discrete parents E ⊆ W and continuous
parents V ⊆ Z, is given by

f(z|E = e,V = v) = N (z; α(e) + β(e)T v, σ2(e)) , (1)

for all e ∈ R(E) and v ∈ R(V), where α and β are the
coefficients of a linear regression model of Z given its con-
tinuous parents which could be a different model for each
configuration of the discrete variables E.

Discrete Multinomial PDGs

PDGs were introduced in (Jaeger 2004) as probabilistic
graphical models of joint distributions over discrete vari-
ables.

In order to introduce the structure of a PDG model, we
need to establish some graph-related notation. Let G be a
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directed graph over nodes V. Let V ∈ V, we then de-
note by paG(V ) the set of parents of node V in G, by
chG(V ) the set of children of V in G, by deG(V ) the set
of descendants of V in G and we use as shorthand notation
de∗

G(V ) = deG(V )∪ V . By pa∗
G(V ) we understand the set

of predecessors of V in G. The structure is formally defined
as follows:

Definition 1 (The PDG Structure (Jaeger 2004)) Let F
be a forest of directed tree structures over a set of discrete
random variables W. A PDG-structure G = 〈V,E〉 for W

w.r.t. F is a set of rooted DAGs, such that:

1. Each node ν ∈ V is labelled with exactly one W ∈ W.
By VW , we will refer to the set of all nodes in a PDG
structure labelled with the same variable W . For every
variable W , VW �= ∅, and we will say that ν represents
W when ν ∈ VW .

2. For each node ν ∈ VW , each possible state w ∈ R(W )
and each successor Y ∈ chF (W ) there exists exactly one
edge labelled with w from ν to some node ν′ representing
Y . Let U ∈ chF (W ), ν ∈ VW and w ∈ R(W ). By
succ(ν, U, w) we will then refer to the unique node ν′ ∈
VU that is reached from ν by an edge with label w.

A PDG-structure is instantiated by assigning a real func-
tion fν to every node ν in the structure. The function must
have the signature fν : R(Wi) → R, where ν ∈ VWi

.
An instantiated PDG structure G over the discrete vari-

ables W is called a Real Function Graph (RFG). It de-
fines the (global) real function fG with the signature fG :
R(W) → R, by the following recursive definition:

Definition 2 Let G be an RFG over discrete variables W,
and let ν ∈ VW . We then define the local recursive func-
tions:

fν
G(w) := fν(w[W ])

∏
Y ∈chF (W )

f
succ(ν,Y,w[W ])
G (w), (2)

for all w ∈ R(W). fG is then defined on R(W) as:

fG(w) :=
∏

ν:ν is a root

fν
G(w). (3)

The recursive function of Eq. (2) defines a factorisation
that includes exactly one factor fν for each W ∈ W. It will
sometimes be convenient to be able to directly refer to the
factor that is associated with a given element w ∈ W. The
function reach defines exactly this association:

Definition 3 (Reach) A node ν representing variable Wi in
G is reached by w ∈ R(W) if

1. ν is a root in G, or

2. Wj = paF (Wi), ν′ representing Wj is reached by w and
ν = succ(ν′, Wi,w[Wj ]).

By reachG(Wi,w) we denote the unique node representing
Wi reached by w in PDG-structure G.

Using Def. 3, we can given an alternative definition of fG:

fG(w) :=
∏

Wi∈W

f reachG(Wi,w)(w[Wi]) . (4)

When all the local functions fν in an RFG G over W de-
fine probability distributions, the function fG (Def. 2) de-
fines a joint multinomial probability distribution over W
(see (Jaeger 2004)). In fact, fν

G in Eq. (2) defines a multino-
mial distribution over variables W ∪de∗

F (W ). We will refer
to such RFGs as PDG models:

Definition 4 (The PDG model (Jaeger 2004)) A PDG
model G is a pair G = 〈G, θ〉, where G = 〈V,E〉 is a valid
PDG-structure (Def. 1) over some set W of discrete random
variables and θ = {fν : ν ∈ V} is a set of real functions,
each of which defines a discrete probability distribution.

ν0W0

ν1 ν2W1 ν3 ν4W2

ν5 ν6 ν7W3

0
1 0

1

01
0 1

Figure 1: A PDG structure for variables W0, W1, W2 and
W3.

Example 1 Consider the PDG structure in figure 1. It
encodes a factorisation of the joint distribution of W =
{W0, W1, W2, W3}, with

fν0 = P (W0), fν4 = P (W2|W0 = 1),
fν1 = P (W1|W0 = 0), fν5 = P (W3|W0 = 0, W1 = 1),
fν2 = P (W1|W0 = 1), fν6 = P (W3|W1 = 0),
fν3 = P (W2|W0 = 0), fν7 = P (W3|W0 = 1, W1 = 1).

Conditional Gaussian PDGs

In this section we introduce an extension of the discrete
multinomial PDG model defined in the previous section.
The extension includes continuous variables in the model,
and we will show afterwards that the factorisation now is a
conditional Gaussian probability function.

Definition 5 (CG-PDG model) A Conditional Gaussian
PDG (CG-PDG) model is constructed over variables X by
first constructing a forest F of trees such that no continuous
variable has a discrete variable as child. Next, the discrete
part of the structure is initialised as a PDG model accord-
ing to Def. 4. The continuous part is subject to the following
constraints:

1. For each node ν representing a continuous variable Z and
for each variable Zc ∈ chF (Z), exactly one unique edge
from ν to some ν′ ∈ VZc

exists, and ν′ has no other
parents than ν.

2. A node ν representing a continuous variable Z for which
pa∗

G(Z) ∩ Z = U, is parameterised with a vector
(αν , βν , σ2

ν), meaning that fν(z) = f(z|x) = N (z; αν +
βT

ν u, σ2
ν) . So fν is a Gaussian density with mean μZ =

αν + βT
ν u and variance σ2

Z = σ2
ν , where βν is a vector
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of |U| real values, and u is a vector of observations of
variables U.

It is clear that when Z = ∅, a CG-PDG model reduces
to a PDG model. Also, observe that in a CG-PDG, for all
ν’s representing some Z ∈ Z where Zi ∈ chF (Z), the
relation succ(ν, Zi, z) is “constant” or invariant in z. We
can therefore leave out the z argument and unambiguously
write succ(ν, Zi). Moreover, we have that reachG(Z,x) =
reachG(Z,x[W]) for any X ∈ X, x ∈ R(X) and Z ∈ Z.

We will extend the meaning of an RFG to include any
graph with the structural syntax of Def. 5 and where nodes
contain any real-valued function with the appropriate do-
main. The definition of the global function fG in Def. 2
is still valid for such general RFGs and in particular for CG-
PDG models.

The following proposition establishes that when G is a
CG-PDG model, then fG as defined in Def. 2 represents a
CG distribution.

Proposition 1 Let G be a CG-PDG model with structure G
over variables X = (W,Z) w.r.t. variable forest F . Func-
tion fG defines a Conditional Gaussian density over X.

Proof: We have to show:

1. f(x) ≥ 0 for all x ∈ R(X).

2. ∑
w∈R(W)

∫
R(Z)

fG(w, z)dz = 1.

3.
∫

R(Z)
fG(x)dz is a multinomial distribution.

4. For each w ∈ R(W), fG(w, z) is a multivariate Gaussian
over Z.

1. Trivially, fG(x) ≥ 0, since it is a product of non-negative
terms.

2. We will show this by induction. First, as G is a CG-PDG
over discrete variables W and continuous variables Z, it
is clear that G \ Z is a valid PDG over discrete variables
W. Therefore, by proposition 3.3 in [3], we know that:

∑
w∈R(W)

fG\Z(w) = 1 .

Then, adding a single continuous variable Z ∈ Z as a
leaf, we get:

∑
w∈R(W)

∫
R(Z)

fG\{Z\Z}(w, z)dz =

∑
w∈R(W)

fG\Z(w)

∫
R(Z)

f reach(Z,w)(z)dz = 1 .

This addition of continuous variables can be repeated until
we get G, and thus

∑
w∈R(W)

∫
R(Z)

fG(w, z)dz = 1.

ν0W0

ν1 ν2W1 ν3 ν4Z0

ν5 ν6 ν7W2 ν8 ν9Z1

0
1 0

1

10
1 0

Figure 2: Sturcture of a CG-PDG with three discrete and
two continuous variables.

3. If we fix a configuration w ∈ R(W), then fG is just a
product of functions of the form fν , where ν is a con-
tinuous parameter node, and therefore, fG is a product
of conditional Gaussians in each branch of the trees in
the forest of variables restricted to w, and therefore fG

is a multivariate Normal over the continuous variables Z.
Thus,∫

R(Z)

fG(w, z)dz = fGW
(w)

∏
ν′∈V

∫
R(Z)

fν′

G (z)dz = fGW
(w),

where V is the set of parameter nodes representing a con-
tinuous variable with either no parent or a discrete par-
ent in the variable structure and GW is the PDG obtained
from structure G by keeping only the variables in W.

4. It was shown in the previous step.

�

Before going further, we will give an example of how a
CG-PDG model naturally captures the structure of a prob-
lem domain.

Example 2 A newspaper delivery van has two possible de-
livery routes, one of them covering only city A and the other
covering city B as well. A 70% of the days, the selected
route is the one including only city A. Let us denote by
W0 the delivery route (0 = A, 1 = A − B). Cities A and
B are connected by a pay motorway, with a toll fee of 3
Euro. City B is known to be a busy city traffic much more
dense than A, so that the probability of suffering a traffic
jam (denoted as W1, with values 0=no and 1=yes) when
the selected route includes B is 0.05, and 0.01 otherwise.
If the van suffers a traffic jam, the probability of complet-
ing the delivery on time (W2, with values 0=no, 1=yes) is
only 0.5 regardless of the selected route. If there are no
traffic jams, the probability of completing the job on time
is 0.95 for route A and 0.8 for route A − B. The cost
of the delivery (Z1) depends on the selected route and on
the gas consumption (Z0). The gas consumption follows a
Gaussian distribution with mean equal to 5 litres and vari-
ance of 1 litre2 for route A, whilst the mean is 10 and the
variance 1.2 for the other route. The cost also follows a
Gaussian distribution, with mean equal to 1.1 times the con-
sumed litres and variance 0.5 when the route is A, and if the
route is A − B, the mean is increased by the toll fee. The
structure in figure 2 represents the dependence structure de-
scribed in this example. A parameterisation of that struc-
ture, according to definition 5 and the information given
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above is as follows: fν0 = P (W0) = (0.7, 0.3), fν1 =
P (W1|W0 = 0) = (0.99, 0.01), fν2 = P (W1|W0 = 1) =
(0.95, 0.05), fν3 = f(z0|W0 = 0) = N (z0; 5, 12), fν4 =
f(z0|W0 = 1) = N (z0; 10, 1.22), fν5 = P (W2|W0 =
0, W1 = 0) = (0.05, 0.95), fν6 = P (W2|W1 = 1) =
(0.5, 0.5), fν7 = P (W2|W0 = 1, W1 = 0) = (0.2, 0.8),
fν8 = f(z1|z0, W0 = 0) = N (z1; 1.1z0, 0.52), fν9 =
f(z1|z0, W0 = 1) = N (z1; 3 + 1.1z0, 0.52).

The efficiency of the PDG model over exclusively discrete
domains stems from their structure which is a special kind
of decision graph only containing chance nodes. The first
PDG version presented by (Bozga and Maler 1999) extends
Binary Decision Diagrams (BDDs) and thereby inherits the
efficiency of BDDs, which lies in compact representation
and efficient manipulation of boolean functions.

ν0X0

ν1 ν2X1

1 0

ν3 ν4X2

0
1

0
1

ν5 ν6X3

0
1

0
1

Figure 3: PDG-
representation of
the parity function.

In Fig. 3, a PDG over 4 binary
variables is depicted. The struc-
ture encodes the model where X4

is determined by the parity func-
tion over the remaining 3 variables
that are marginally independent.
Adding more variables to the par-
ity function only makes the model
grow in size by a small linear fac-
tor. Modelling the parity function
using a BN model would yield a
model that grows by an exponen-
tial factor when adding more vari-
ables to the function.1

The efficiency of the discrete
PDG, exemplified by the repre-
sentation of the parity function
(Fig. 3) is inherited by the CG-
PDG model. The addition of con-

tinuous variables does not restrict the discrete part of the
CG-PDG in any way, and the properties of this part of the
model stays intact.

Operations over CG-PDGs

One of the main advantages of the PDG model is that ef-
ficient algorithms for exact inference that operate directly
on the PDG structure are known. In this section we will
show how the original algorithm for exact inference in dis-
crete PDGs by (Jaeger 2004) can be almost directly applied
to CG-PDGs.

We will first consider the problem of computing the prob-
ability of some set of variables Y ⊂ X being in the joint
state y ∈ R(Y) when the joint distribution P (X) is repre-
sented by a CG-PDG model G with structure G. The com-
putation that we wish to perform is what is usually called
marginalisation or restriction:

P{Y = y} =
∑

w∈R(W\Y)

∫
R(Z\Y)

fG(w, z,y)dz . (5)

1By including suitable artificial latent variables in the domain,
there exists an efficient transformation of any PDG into an equiva-
lent BN model (Jaeger 2004).

The next definition is the first step towards efficient com-
putation of Eq. (5).

Definition 6 (Restriction) Let G be a CG-PDG over vari-
ables X, let Y ⊆ X and let y ∈ R(Y). The restriction of
G to Y = y, denoted as GY=y is an RFG obtained from G
such that

1. G and GY=y has equivalent structure.

2. For all ν representing some variable X ∈ X \ Y, fν

remains unchanged.

3. For every discrete variable W ∈ Y ∩ W and each node
ν ∈ VW , the function fν(w) in GY=y is unchanged from
G for w = y[W ] and for any w �= y[Y ] we set fν(w) =
0.

4. For every continuous variable Z and every node ν ∈ VZ

a real vector uν is constructed. uν is indexed by the vari-
ables U = pa∗

F (Z) ∩ Z and with values u[U ] = y[U ]
if U ∈ Y and u[U ] = ανU

(where νU is the unique pre-
decessor node of ν representing U ). Then a (conditional)
mean μν is computed as μν = αν + βT

ν u. Once μν has
been computed, in all nodes ν representing Z ∈ Y ∩ Z,
we replace fν with the function value fν(y[Z]).

We call the resulting model a restricted CG-PDG.

From a restricted CG-PDG GY=y we can compute the
probability of the evidence P{Y = y} as:

P{Y = y} =
∑

w∈R(W)

∫
R(Z)

fGY=y
(w, z)dz . (6)

In the first part of this section we will show how (6) is com-
puted by local computations in the nodes.

We define the outflow as the accumulated function value
of the real function fν

G defined recursively at ν by Eq. (2)
over its full domain.

Definition 7 Let G be a (possibly restricted) CG-PDG with
structure G over variables X w.r.t. forest F . The outflow of
ν is defined as:

ofl(ν) :=
∑

w∈R(W∩de∗

F
(Xi))

∫
R(Z∩de∗

F
(Xi))

fν
G(w, z)dz. (7)

Notice that in an unrestricted CG-PDG the outflow of all
nodes is 1. Also notice that Eq. (6) is equal to the product of
outflows of all root nodes in the structure.

The next proposition is central in the efficient computa-
tion of outflow:

Proposition 2 Let G be a (possibly restricted) CG-PDG
with structure G w.r.t. forest F over variables X. The out-
flow is recursively computed as follows:

1. If ν is a parameter node of a discrete variable W :

ofl(ν) =
∑

w∈R(W )

fν(w)
∏

Y ∈chF (W )

ofl(succ(ν, Y, w)) . (8)

2. If ν is a parameter node of a continuous variable Z:

ofl(ν) =

∫
R(Z)

fν(z)
∏

Y ∈chF (Z)

ofl(succ(ν, Y ))dz . (9)

552



Proof: Item 1 is shown in (Jaeger 2004, Lemma 4.3). To
prove item 2 we just have to remember that, in a RFG con-
taining continuous variables, all the variables below any
continuous variable are continuous as well. Therefore, we
have to instantiate Eq. (7) to the case in which there are no
discrete variables involved and hence the summation disap-
pears and we are left with only the integration of function
fν

G. Expanding fν
G using Eq. (2) we get Eq. (9). �

Extending previous results of (Jaeger 2004, Theorem 4.4),
Proposition 2 and the fact that Eq. (6) equals the product of
outflows of root nodes, yields an efficient computation of
P{Y = y}.

We will now turn to the computation of posterior prob-
ability distribution P (W |Y = y) and posterior densities
f(z|Y = y). We will need to be able to talk about parts of
a domain R(U), U ⊆ X, that reach a specific node, so we
define a Path-relation as follows:

Definition 8 (Path) Let G be a (possibly restricted) CG-
PDG model with structure G w.r.t. forest F over variables
X and let ν represent X ∈ X and let pa∗

F (X) ⊆ Y ⊆ X.
Then

PathG(ν,Y) := {y ∈ R(Y) such that

∃x ∈ R(X) : (reachG(x, X) = ν and x[Y] = y)} . (10)

The inflow of a node ν is the accumulation of values of
fG over the part of the domain that reaches ν, and we define
it formally as follows:

Definition 9 Let G be a CG-PDG model with structure G
over variables X = (W,Z) and forest F . Let ν ∈ VXi

,
G \ Xi be the structure obtained from G by removing every
node labelled with Xi and their descendants, W′ = W \
de∗F (Xi) and Z′ = Z \ de∗F (Xi). The inflow of ν is defined
as:

ifl(ν) :=
∑

w∈PathG(ν,W′)

∫
R(Z′)

fG\Xi
(w, z)dz . (11)

When {W′ ∪ Z′} = ∅, we define ifl(ν) = 1.

For a node ν in a CG-PDG with structure G over X, the
set PathG(ν,X) is the part of the domain in which the lo-
cal function fν is included as a factor in the global function
fG. The inflow and outflow of a node ν factorises the ac-
cumulated function value of fG over PathG(ν,X) in two
independent factors.

Lemma 1 Let G be a (possibly restricted) CG-PDG with
structure G over variables X. For any node ν in G, it holds
that

ifl(ν)ofl(ν) =
∑

w∈PathG(ν,W)

∫
PathG(ν,Z)

fG(w, z)dz. (12)

Proof: We wish to compute the product ifl(ν)ofl (ν) for
an arbitrary node ν in a CG-PDG. Let node ν repre-
sent variable Xi, then PathG(ν,W) can be decomposed
as PathG(ν,W) = PathG(ν,W \ de∗

F (Xi)) × R(W ∩

de∗
F (Xi)), and obviously R(Z) can be decomposed as

R(Z) = R(Z \ de∗
F (Xi)) × R(Z ∩ de∗

F (Xi)). Then:

ifl(ν)ofl (ν) =
∑
w∈

PathG(ν,W)

∫
R(Z)

fG\Xi
(w′, z′)fν

G(w′′, z′′)dz ,

where w′ (and z′) are projections of w (and z) onto
X \ de∗

F (Xi), while w′′ (and z′′) are projections onto
de

∗
F (Xi). Finally, from Def. 2 we have that the product

fG\Xi
(w′, z′)fν

G(w′′, z′′) equals fG(w, z). �

The next proposition establishes the basis for probabilistic
inference in CG-PDGs.

Proposition 3 Let GY=y be a CG-PDG model restricted to
evidence Y = y. When ifl and ofl values have been com-
puted for all nodes in GY=y, the following holds. For any
discrete variable W ∈ W where W �∈ Y,

P{W = w|Y = y} =

γ
∑

ν∈VW

fν(w)ifl (ν)
∏

U∈chF (W )

ofl(succ(ν, U, w)) . (13)

For any continuous variable Z ∈ Z, Z �∈ Y, it holds that

f(z|Y = y) =

γ
∑

ν∈VZ

fν(z)ifl(ν)
∏

U∈chF (Z)

ofl(succ(ν, U)) . (14)

Furthermore,

E[Z|Y = y] =

γ
∑

ν∈VZ

μν ifl(ν)
∏

U∈chF (Z)

ofl(succ(ν, U)) , (15)

and

Var(Z|Y = y) =

γ
∑

ν∈VZ

σ2
ν ifl(ν)2

∏
U∈chF (Z)

ofl(succ(ν, U))2 . (16)

In all equations γ is the normalising factor 1
P{Y=y} . In

Eq. (15), μν is computed during restriction (see Def. 6).

Proof: Equations (13) and (14) are a direct consequence of
lemma 1. Also, note that f(z|Y = y) in equation (14) is a
mixture of Gaussian densities, and therefore the expectation
of Z is trivially the one in equation (15) and its variance is
the one in equation (16). �

The next proposition is central in the efficient computa-
tion of inflow.

Proposition 4 Let G be a (possibly restricted) CG-PDG
with structure G w.r.t. forest F over variables X. The in-
flow is recursively computed as follows:

1. If ν is a root,

ifl(ν) =
∏

ν′ �=ν,ν′ is root

ofl(ν′) . (17)
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2. If ν is not a root, and Xp = paF (Xi), and Xp is discrete:

ifl(ν) =
∑

x∈R(Xp)

∑
ν′:

ν=succ(ν′,Xi,x)

[ifl(ν′)fν′

(x)

∏
Y ∈chF (Xp)\Xi

ofl(succ(ν′, Y, x))] . (18)

3. If ν is representing continuous variable Xi, ν is not a root,
Xp = paF (Xi), Xp is continuous and ν′ is the parent of
ν:

ifl(ν) = ifl(ν′)
∏

Y ∈chF (Xp)\Xi

ofl(succ(ν′, Y )) . (19)

Proof: Items 1 and 2 are shown in (Jaeger 2004, Lemma
4.3). Item 3 follows by realizing that continuous parameter
nodes only have one outgoing arc, at most, towards each
child variable. �

Proposition 5 Computing inflow and outflow for all nodes
in a (possibly restricted) CG-PDG can be done in time linear
in the number of edges of the model.

Proof: The proof is a simple extension of the proof of the
result (Jaeger 2004, Theorem 4.4). �

Propositions 3 and 5 demonstrate that typical probabilistic
queries can be answered in time linear in the size of the CG-
PDG. The main concern in achieving efficient inference can
therefore be directly focused on constructing a small model,
which of course may be difficult or even impossible. The
size may be exponential in the number of discrete variables
in the domain. However, it is considered an advantage to
be able to determine complexity of inference directly in the
model, as opposed to BN models where inference complex-
ity depends on the size of a secondary Junction Tree model
as opposed to the BN model itself.

Example 3 (CG-PDG belief updating) Consider Ex. 2.
Assume we have evidence that the route was not finished
in time (W2 = 0), and we then want to update our beliefs
of the remaining unknown variables. Restricting the model
to evidence {W2 = 0} results in the following changes:
fν5(1) = fν6(1) = fν7(1) = 0, μν8

= 5.5 and μν9
= 8.5.

After restricting our model, we compute outflows, here we
list values consecutively as {ofl(ν0), ofl(ν1) . . . ofl(ν9)}:
{0.10265, 0.0545, 0.215, 1, 1, 0.05, 0.5, 0.2, 1, 1}. Once
outflows are computed, inflows can be computed: {1, 0.7,
0.3, 0.03815, 0.0645, 0.693, 0.022, 0.285, 0.03815, 0.0645}.

First, as mentioned earlier, the probability of evidence is
just the product of outflows of root nodes which in this ex-
ample means just ofl(ν0) = P{W2 = 0} = 0.10265. Next,
computing the posterior expectations of the continuous vari-
ables is done top down from the root to the leaves using
Eq. (15) with γ = 1

P{W2=0} , and we get E[Z0|W2 = 0] ≈

8.14 and E[Z1|W2 = 0] ≈ 7.39.
Posterior variances are computed as a weighted average

of the variances stored in nodes representing the given vari-
able using Eq. (16), which yields: Var[Z0|W2 = 0] ≈ 0.07
and Var[Z1|W2 = 0] ≈ 0.01.

Finally, computing the marginal distributions for the
two unobserved categorical variables W0 and W1 we use
Eq. (13) and get: P{W0|W2 = 0} ≈ {0.37, 0.63} and
P{W1|W2 = 0} ≈ {0.89, 0.11}.

Concluding remarks

In this paper we have introduced the CG-PDG model, an ex-
tension of PDSs able to represent hybrid probabilistic mod-
els with joint conditional Gaussian distribution. The new
model keeps the expression power and representational effi-
ciency of its predecessor in what concerns the discrete part,
and the continuous part is also compactly represented with
a number of parameter linear on the number of continuous
variables once the discrete part is fixed.

We have shown how probabilistic inference can be carried
out efficiently by using the concepts of inflow and outflow of
nodes, and taking advantage of the recursive computations
of both quantities.

In the near future we plan to extend the PDGs to another
hybrid model, namely the MTE (mixture of truncated ex-
ponentials) model (Moral, Rumı́, and Salmerón 2001), in
which no structural restrictions, regarding arrangement of
discrete and continuous variables, are imposed.
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