
A System for Relational Probabilistic Reasoning on Maximum Entropy

Matthias Thimm
Department of Computer Science
Technische Universität Dortmund,

Germany

Marc Finthammer
Department of Computer Science

FernUniversität in Hagen,
Germany

Sebastian Loh
Department of Computer Science
Technische Universität Dortmund,

Germany

Gabriele Kern-Isberner
Department of Computer Science
Technische Universität Dortmund,

Germany

Christoph Beierle
Department of Computer Science

FernUniversität in Hagen,
Germany

Abstract

Comparisons of different approaches to statistical relational
learning are difficult due to the variety of the available con-
cepts and due to the absense of a common interface. The
main objective of the KREATOR toolbox introduced here is to
provide a common methodology for modelling, learning, and
inference in a relational probabilistic framework. As a sec-
ond major contribution of this paper, we present the RME ap-
proach to relational probabilistic reasoning which applies the
principle of maximum entropy to groundings of a relational
knowledge base and which is also supported by KREATOR.

1. Introduction

Probabilistic inductive logic programming (or statistical re-
lational learning) is a very active field in research at the in-
tersection of logic, probability theory, and machine learning,
see (De Raedt and Kersting 2008; Getoor and Taskar 2007)
for some excellent overviews. This area investigates meth-
ods for representing probabilistic information in a relational
context for both reasoning and learning. Many researchers
have developed liftings of propositional probabilistic mod-
els to the first-order case in order to take advantage of meth-
ods and algorithms already developed. Among these are the
well-known Bayesian logic programs (BLPs) (Getoor and
Taskar 2007, Ch. 10) and Markov logic networks (MLNs)
(Getoor and Taskar 2007, Ch. 12). Other approaches also
employ Bayes nets for their theoretical foundation like re-
lational Bayesian networks (Jaeger 2002); or they are in-
fluenced by other fields of research like probabilistic rela-
tional models (Getoor et al. 2001) by database theory. There
are also some few approaches on applying maximum en-
tropy methods to the first-order case (Bacchus et al. 1996;
Kern-Isberner and Lukasiewicz 2004), and, more recently,
(Loh, Thimm, and Kern-Isberner 2010; Thimm 2009). But
because of this variety of approaches and the absence of a
common interface there are only few comparisons of dif-
ferent approaches, see for example (Muggleton and Chen
2008). No formal knowledge representation criteria exist
to date for such comparisons. Hence, applying methods

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to benchmark examples is an important means for the pur-
pose of comparing and evaluating. However, even seem-
ingly small examples need to be computed by a machine,
due to the size explosion caused by grounding, and each of
these approaches comes with its own computational pecu-
liarities. What is urgently needed to advance and combine
research work in this area is a system that is capable of han-
dling different representation frameworks in parallel.

In this paper, we introduce the KREATOR toolbox, a ver-
satile integrated development environment for knowledge
engineering in the field of statistical relational learning.
KREATOR is currently under development and part of the
ongoing KREATE project1 which aims at developing a com-
mon methodology for learning, modelling and inference in
a relational probabilistic framework. As statistical relational
learning is a (relatively) young research area there are many
different proposals for integrating probability theory in first-
order logic, some of them mentioned above. Although many
researchers have implementations of their approaches avail-
able, most of these implementations are prototypical, and
in order to compare different approaches one has to learn
the usage of different tools. The KREATOR system is to
provide a common interface for different approaches to sta-
tistical relational learning and to support the researcher and
knowledge engineer in developing knowledge bases and us-
ing them in a common and easy-to-use fashion. Currently,
KREATOR already supports BLPs and MLNs, and in partic-
ular a new approach for using maximum entropy methods
in a relational context. So, as a second major contribution
of this paper, we present the so-called RME approach to re-
lational probabilistic reasoning which applies the principle
of maximum entropy to groundings of the relational knowl-
edge base. In contrast to e. g. (Bacchus et al. 1996), we
assume the probabilities to be subjective, without any sta-
tistical interpretation. RME is in some sense similar to the
approach pursued in (Kern-Isberner and Lukasiewicz 2004)
in that instantiations of the knowledge base are used. How-
ever, we do not employ a closed world assumption, and
the RME semantics is parametrized by a grounding oper-
ator which is needed to resolve conflicts. In (Kern-Isberner
and Lukasiewicz 2004), conflicts are avoided by considering

1www.fernuni-hagen.de/wbs/research/kreate/

116

Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010)

interval-valued probabilities, while RME is based on point-
wise probabilities.

As an illustration, we will use KREATOR to compare
RME with BLPs and MLNs on the following benchmark
example taken from (Pearl 1998).
Example 1 We consider a scenario where someone—let’s
call him James—is on the road and gets a call from his
neighbor saying that the alarm of James’ house is ringing.
James has some uncertain beliefs about the relationships be-
tween burglaries, types of neighborhoods, natural disasters,
and alarms. For example, he knows that if there is a tornado
warning for his home place, then the probability of a tor-
nado triggering the alarm of his house is 0.9. A reasonable
information to infer from his beliefs and the given informa-
tion is “What is the probability of an actual burglary?”.
The rest of this paper is organized as follows. In Sec. 2 we
introduce our relational maximum entropy approach RME
and give an overview on BLPs and MLNs. Sec. 3 presents
the KREATOR system, Sec. 4 reports on comparing BLP,
MLN and RME in the burglary example, and Sec. 5 con-
cludes.

2. Relational Probabilistic Knowledge

Representation

In this section, we briefly describe some approaches to gen-
eralize propositional probabilistic knowledge representation
for the first-order context. We start by presenting a method
that applies the principle of maximum entropy to a grounded
version of the relational knowledge base. We continue by
recalling the basics of Bayesian logic programs (Getoor and
Taskar 2007, Ch. 10) and of Markov logic networks (Getoor
and Taskar 2007, Ch. 12).

Relational Maximum Entropy (RME)

As a base of our first-order probabilistic language, we use
a fragment of a classical first-order language without func-
tion symbols and without quantifiers. As we use a many-
sorted setting, constants and variables are partitioned into
disjoint sorts; note that this easily covers also the unsorted
case by simply using a single sort. An RME signature Σ =
(S,U,Pred) consists of a finite set of sorts S, a finite S-
indexed set of constants U , and a finite S∗-indexed set of
predicates Pred ; for p ∈ Preds1...sn

we write p(s1, . . . , sn).
All formulas and all substitutions must be well-sorted in the
usual sense. A grounding substitution instantiates variables
with constants. The first-order language generated by Σ is
denoted by LΣ or just by L.

The basic idea of our relational maximum entropy frame-
work (RME) is to make use of propositional maximum en-
tropy techniques (Kern-Isberner 1998; Rödder and Meyer
1996) after grounding the knowledge base appropriately.
The entropyH is an information-theoretic measure on prob-
ability distributions and is defined as a weighted sum on
the information encoded in every possible world ω ∈ Ω:
H(P) = −∑

ω∈Ω P (ω) logP (ω). By employing the prin-
ciple of maximum entropy one can determine the single prob-
ability distribution that is the optimal model for a consis-
tent knowledge base R in an information-theoretic sense:

PME
R = arg maxP |=RH(P). However, this depends cru-

cially on R being consistent, for otherwise no model of R
exists, let alone models with maximum entropy. This prob-
lem is all the more difficult in a first-order context with free
variables, as groundings may introduce non-trivial conflicts.
We will not go into more detail here, but refer to a com-
panion paper (Loh, Thimm, and Kern-Isberner 2010) that
focusses on grounding strategies. In this paper, we will only
consider knowledge bases that allow a straightforward con-
sistent grounding for RME knowledge bases since the aim
of this paper is to present the basic properties of the RME
framework and compare it to other probabilistic relational
logics such as MLNs and BLPs for which the problem of in-
consistent grounding does not exist. To avoid conflicts and
to alleviate comparisons, we restrict the language of condi-
tional formulas and associate meta-constraints for possible
groundings to them.

Definition 1 (RME conditional) An RME conditional r =
(φ | ψ)[α][c] over Σ = (S,U,Pred) consists of a head lit-
eral φ ∈ L, a list of n body literals ψ = ψ1, . . . , ψn ∈ L
which is understood as the conjunction ψ1∧ . . .∧ψn, n ≥ 0,
a real value α ∈ [0, 1], and a list of meta-constraints
c = c1, . . . , cm, which allows the restriction of the substi-
tution for certain variables. A meta-constraint is either an
expression of the form X �= Y or X /∈ {k1, . . . , kl}, with
variables X,Y and {k1, . . . , kl} ⊆ U . An RME conditional
r is called ground iff r contains no variables.

(L | L)RME is the set of all RME conditionals built from
L, and the set of all ground RME conditionals is referred to
by (L | L)RME

U .

Remark that although we use an underlying quantifier-free
language variables appearing in conditionals are implicitly
universally quantified over the whole conditional. RME
knowledge bases are sets of RME conditionals, together
with the basic structures of the language.

Definition 2 (RME knowledge base) An RME knowledge
base KB is a quadruple KB = (S,U,Pred ,R) with an
RME signature Σ = (S,U,Pred) and a finite set of RME
conditionalsR over Σ.

For the purpose of illustration, we represent Ex. 1 as an RME
knowledge base.

Example 2 Let KB contain sorts S = {Person,Town,
Status}, constants UPerson = {james, carl} of sort
Person , UTown = {yorkshire, austin} of sort Town ,
UStatus = {bad , average, good} of sort Status , pred-
icates Pred = {alarm(Person), burglary (Person),
lives in(Person,Town), nhood(Person, Status)}, and
conditionalsR = {c1, . . . , c7}, as listed below:

c1 = (alarm(X) | burglary(X)) [0.9]
c2 = (alarm(X) | lives in(X,Y), tornado(Y)) [0.9] }
c3 = (burglary(X) | nhood(X, bad)) [0.6]
c4 = (burglary(X) | nhood(X, average)) [0.4]
c5 = (burglary(X) | nhood(X, good)) [0.3]

c6 = (nhood(X,Z) | nhood(X,Y)) [0.0] [Y �= Z]
c7 = (lives in(X,Z) | lives in(X,Y)) [0.0] [Y �= Z]

117

Notice, that conditionals c6 and c7 ensure mutual exclusion
of the states for literals of “nhood” and “lives in ′′.

As sketched above, semantics are given to RME knowledge
bases by grounding R with a grounding operator (GOP)
G : P((L | L)RME) → P((L | L)RME

U) which maps
knowledge bases to ground knowledge bases; here P(S) de-
notes the power set of a set S.

Ground conditionals r ∈ (L | L)RME
U can be interpreted

as in the propositional case, i.e. P |= (φ|ψ)[α] iff P (φ|ψ) =
α and P (ψ) > 0, where P is a probability distribution over
the Herbrand base of L, and P (φ) =

∑
ω∈Ω,ω|=φ P (ω) for

any classical formula φ. Here Ω is the set of all Herbrand in-
terpretations of L and provides a possible worlds semantics
for the classical part of L. Non-conditional formulas (φ)[α]
with φ being a literal can be considered consistently as con-
ditionals with empty premise (φ | �)[α], so that no explicit
distinction between conditionals and flat formulas is neces-
sary in the following.

If the ground knowledge base G(R) is consistent, PME
G(R)

can be calculated as in the propositional case (Rödder and
Meyer 1996). An RME conditional q ∈ (L | L)RME

is RME entailed by the RME knowledge base R under the
grounding G, in symbols

R |=ME
G q iff PME

G(R) |= G(q),

i. e. iff for all q∗ ∈ G(q), PME
G(R) |= q∗.

Relational KB:
R ⊆ (L | L)rel

Query:
q ∈ (L | L)rel

Grounding operator:
G : P((L | L)rel) → P((L | L)rel

U)

ME-Inference:
PME
G(R) = arg max

P |=G(R)
H(P) PME

G(R) |= G({q}) ?

qR

G(R) G({q})

PME
G(R)

Figure 1: The RME inference process

The RME inference process can be divided into three steps
(cf. Fig. 1): 1.) ground the knowledge base with a grounding
operator G, 2.) calculate the probability distribution PME

G(R)

with maximum entropy for the grounded instance G(R), and
3.) calculate all probabilistic implications of PME

G(R). More
details on RME semantics can be found in (Loh, Thimm,
and Kern-Isberner 2010).

Example 3 Let KB = (S,U,Pred ,R) be the RME
knowledge base as described in Ex. 2. Let Q1 =
(alarm(james) | E1) a query with the evidences
E1 = {lives in(james, austin), tornado(austin), neighbor-
hood(james, average)}.

InitiallyR andQ1 are grounded by a GOP G. In this case
we just use universal substitution of all occurring variables
with all possible constants. The grounding of Q1 is simply
the identity Gχ(Q1) = Q1 as Q1 does not contain any vari-
ables. Then PME

Gχ(R) can be calculated and the probability of
the query Q1 can be given as

PME
G(R)(alarm(james) | E1) = 0.8951 .

Bayesian Logic Programs

Bayesian logic programming combines logic programming
and Bayesian networks (Getoor and Taskar 2007, Ch. 10). In
contrast to first-order logic, Bayesian logic programs (BLPs)
make use of multi-valued Bayesian predicates from which
Bayesian atoms can be built by using constants and vari-
ables. Each ground Bayesian atom represents a single ran-
dom variable. If A is a Bayesian atom of the Bayesian pred-
icate p, we denote the set of possible values, or states, that
p, or A, can take by S(p) = S(A).

The basic structure for knowledge representation in
Bayesian logic programs are Bayesian clauses which model
probabilistic dependencies between Bayesian atoms.
Definition 3 (Bayesian Clause) A Bayesian clause c is
an expression (H |B1, . . . , Bn) with Bayesian atoms
H,B1, . . . , Bn. To each such clause, a function cpdc :
S(H) × S(B1) × . . . × S(Bn) → [0, 1] is associated
such that

∑
h∈S(H) cpdc(h, b1, . . . , bn) = 1. for all b1 ∈

S(B1), . . . , bn ∈ S(Bn). cpdc is called a conditional prob-
ability distribution.
A function cpdc for a Bayesian clause c expresses the condi-
tional probability distributionP (head(c) | body(c)) and thus
partially describes an underlying probability distribution P .
Example 4 We represent Ex. 1 as a set {c1, c2, c3} of
Bayesian clauses with

c1 : (alarm(X) | burglary(X))
c2 : (alarm(X) | lives in(X,Y), tornado(Y))
c3 : (burglary(X) |nhood(X))

where S(tornado/1) = S(lives in/2) = S(alarm) =
S(burglary) = {true, false} and S(nhood) = {good,
average, bad}. For each Bayesian clause ci, we define
a function cpdci

which expresses our subjective beliefs,
e. g., for clause c2 we define cpdc2

(true, true, true) = 0.9,
cpdc2

(true, true, false) = 0.01, cpdc2
(true, false, true) =

0.0, and cpdc2
(true, false, false) = 0.0.

In order to aggregate probabilities that arise from applica-
tions of different Bayesian clauses with the same head (cf.,
e.g., clauses c1 and c2 in Ex. 4), BLPs make use of combin-
ing rules. A combining rule crp for a Bayesian predicate p/n
is a function crp that assigns to the conditional probability
distributions of a set of Bayesian clauses a new conditional
probability distribution that represents the joint probabil-
ity distribution obtained from aggregating the given clauses.
For example, given clauses c1 = (b(X) | a1(X)) and c2 =
(b(X) | a2(X)) the result f = crb({cpdc1

, cpdc2
}) of the

combining rule crb is a function f : S(b)×S(a1)×S(a2) →
[0, 1]. Appropriate choices for such functions are average or
noisy-or, cf. (Getoor and Taskar 2007, Ch. 10).

118

Definition 4 (Bayesian Logic Program) A Bayesian logic
program B is a tuple B = (C,D,R) with a (finite) set
of Bayesian clauses C = {c1, . . . , cn}, a set of condi-
tional probability distributions (one for each clause in C)
D = {cpdc1

, . . . , cpdcn
}, and a set of combining func-

tions (one for each Bayesian predicate appearing in C)
R = {crp1 , . . . , crpm

}.
Semantics are given to Bayesian logic programs via transfor-
mation into propositional forms, i. e. into Bayesian networks
(Pearl 1998). Given a specific (finite) universe U a Bayesian
network BN can be constructed by introducing a node for
every ground Bayesian atom in B and computing the cor-
responding (joint) conditional probability distributions. For
a more detailed description of Bayesian Logic Programs we
refer to (Getoor and Taskar 2007, Ch. 10).

Markov Logic Networks

Markov logic (Getoor and Taskar 2007, Ch. 12) establishes a
framework which combines Markov networks (Pearl 1998)
with first-order logic to handle a broad area of statistical re-
lational learning tasks. The Markov logic syntax complies
with first-order logic where each formula is quantified by
an additional weight value. Semantics are given to sets of
Markov logic formulas by a probability distribution over
propositional possible worlds that is calculated as a log-
linear model over weighted ground formulas. The funda-
mental idea in Markov logic is that first-order formulas are
not handled as hard constraints but each formula is more or
less softened depending on its weight. These weights induce
a kind of priority ordering on the formulas of the knowledge
base that determines their respective influence on the prob-
abilities of the log-linear model. In contrast to the RME
approach presented above, the weights of the formulas have
no declarative probabilistic semantics.

Definition 5 (Markov logic network) A Markov logic net-
work (MLN) L is a set of first-order logic formulas Fi,
where each formula Fi is quantified by a real value wi. To-
gether with a set of constants C it defines a Markov network
ML,C as follows:

• ML,C contains a node for each possible grounding of
each predicate appearing in L.

• ML,C contains an edge between two nodes iff their
ground atoms appear together in at least one grounding
of one formula in L.

• ML,C contains one feature (function) for each possible
grounding of each formula Fi in L. The value of the fea-
ture for a possible world x is 1, if the ground formula is
true for x (and 0 otherwise). Each feature is weighted by
the weight wi of its respecting formula Fi.

According to the above definition, an MLN defines a tem-
plate for constructing ground Markov networks. To each
ground Markov network ML,C , a probability distribution

P (X = x) =
1
Z

exp

(∑
i

wini(x)

)

over possible worlds x is associated, where Z is a normal-
ization factor and ni(x) compactly expresses the number of
true groundings of Fi in the possible world x.

Example 5 In the following example, we model the rela-
tions described in Ex. 1 as an MLN (using the Alchemy
syntax (Kok et al. 2008) for MLN files). The “!” op-
erator used in the predicate declarations of lives in and
nhood enforces that the respective variables will have mu-
tually exclusive and exhaustive values, i. e. that every per-
son lives in exactly one town and one neighborhood (in
terms of ground atoms). The weights of the formulas express
the subjective strength of each rule. We declare the typed
predicates alarm(person), nhood(person, hood state!),
lives in(person, town!), burglary(person), the types and
constants person = {James,Carl}, town = {Yorkshire,
Austin}, hood state = {Bad ,Average,Good}, and add
the following weighted formulas:

2.2 burglary(x) =>alarm(x)
2.2 lives in(x, y) ∧ tornado(y) =>alarm(x)

−0.8 nhood(x,Good) =>burglary(x)
−0.4 nhood(x,Average) =>burglary(x)

0.4 nhood(x,Bad) =>burglary(x)

Note that, in contrast to BLPs (Ex. 4) and RMEs (Ex. 2)
MLNs do not support conditional probabilities (Fisseler
2008), so the rule-like knowledge from Ex. 1 has to be mod-
eled as material implications.

For computing the examples from the previous subsections
we employed KREATOR which we will now present in the
following section.

3. The KREATOR System

KREATOR is an integrated development environment for
representing, reasoning, and learning with relational prob-
abilistic knowledge. Still being in development KREATOR
aims to become a versatile toolbox for researchers and
knowledge engineers in the field of statistical relational
learning. KREATOR is written in Java and designed using
the object-oriented programming paradigm. It employs sev-
eral specialized reasoning tools like Alchemy (Kok et al.
2008) for processing MLNs and SPIRIT (Rödder and Meyer
1996) for (propositional) reasoning with maximum entropy.

System Architecture and Design KREATOR is modular
and extensible with respect to several components. First,
KREATOR separates between the internal logic and the user
interface using an abstract command structure. Each top-
level functionality of KREATOR is internally represented
and encapsulated in an abstract KReatorCommand . Con-
sequently, the user interface can be exchanged or modified in
an easy and unproblematic way, because it is separated from
the internal program structure by this KReatorCommand
layer. Second, KREATOR was designed to support many dif-
ferent approaches for relational knowledge representation,
cf. Sec. 2. As a consequence, KREATOR features very ab-
stract notions of concepts like knowledge bases, queries and
data sets that can be implemented by a specific approach. At

119

the moment, KREATOR supports knowledge representation
using BLPs, MLNs, and RMEs. Other formalisms will be
integrated in the near future.

An important design aspect of KREATOR and especially
of the graphical user interface is usability. While proto-
typical implementations of specific approaches to relational
probabilistic knowledge representation (and approaches for
any problem in general) are essential for validating results
and evaluation, these software solutions are often very hard
to use and differ significantly in their usage. Especially
when one wants to compare different solutions these tools
do not offer an easy access for new users. KREATOR fea-
tures a common and simple interface to different approaches
of relational probabilistic knowledge representation within
a single application. As an additional convenient feature
KREATOR can export knowledge base files also as formatted
LATEX output.

Working with KREATOR KREATOR comes with a
graphical user interface and an integrated console-based in-
terface. The main view of KREATOR is divided into the
menu and toolbars and four main panels: the project panel,
the editor panel, the outline panel, and the console panel.
KREATOR helps the knowledge engineer to organize his
work by structuring all data into projects, which may contain
e. g. knowledge bases, scripts, and sample/evidence files.
The project panel of KREATOR gives a complete overview
on the project the user is currently working on. The files of a
project can be viewed and edited in the editor panel, which
provides syntax-highlighting and syntax-check for all sup-
ported file types. The outline panel shows information on
the logical components of a knowledge base, such as used
predicates, constants, and sorts.

KREATOR features its own scripting language:
KREATORSCRIPT incorporates commands for all
KREATOR functionalities, so every sequence of work-
ing steps can be expressed as an appropriate command
sequence in a KREATORSCRIPT file. Every action exe-
cuted in KREATOR (via GUI or console) is logged as a
KREATORSCRIPT command in a report. Arbitrary parts of
the report can easily be saved as a script file and be executed
again when experiments have to be repeated and results
have to be reproduced.

Querying Knowledge Bases One of the most impor-
tant tasks when working with knowledge bases is to ad-
dress queries to a knowledge base, i. e. to infer knowledge.
For that reason, KREATOR provides several functionalities
which simplify the dealing with queries and make it more
efficient. KREATOR permits the processing of queries ex-
pressed in a unified query syntax. This query syntax ab-
stracts from the respective syntax which is necessary to ad-
dress a “native” query to a BLP, MLN, or RME knowledge
base (and which also depends on the respective inference
engine). That way, a query in unified syntax can be passed
to an appropriate BLP, MLN, and RME knowledge base as
well. The idea behind this functionality is, that some knowl-
edge (cf. Ex. 1) can be modeled in different knowledge rep-
resentation approaches (cf. Ex. 2, 4, 5) and the user is able to
compare these approaches in a more direct way. Such a com-

�������	 �

���

�����

	
��

���

�����

	
��

���

�����

	
��

�������	

	�����

�	���

������

�	
�
�

�
�����

����
�����
����

�	�����

���
����	
��

�
�
���	�

���

�����

�������

���

�����

�������

���

�����

�������

�������
�������

��
�������

���
�����

�	
������

���
�����

�	
������

���
�����

�	
������

Figure 2: Processing query in unified syntax

parison can then be done by formulating appropriate queries
in unified syntax, passing them to the different knowledge
bases, and finally analyzing the different answers, i. e. the
probabilities. For each supported knowledge representation
formalism, KREATOR internally converts a query in unified
syntax to the syntax required by the respective inference en-
gine. KREATOR also converts the respective output results
to present them in a standardized format to the user. Figure 2
illustrates the processing of a query in unified syntax.

4. Comparing RME with Bayes and Markov

Because the knowledge bases in examples 2, 4, and 5 con-
tain just generic knowledge, we add some evidence about the
individuals james and carl , in order to make differences in
knowledge propagation apparent that are caused by having
different informations for distinct individuals:

lives in(james, yorkshire), lives in(carl , austin),
burglary(james), tornado(austin),
nhood(james) = average,nhood(carl) = good

The following table shows three queries and their respective
probabilities inferred from each of the example knowledge
bases and the given evidence:

BLP MLN RME
alarm(james) 0.900 0.896 0.918
alarm(carl) 0.550 0.900 0.880
burglary(carl) 0.300 0.254 0.362

Although each of the three knowledge bases models the
same generic knowledge by a different knowledge represen-
tation formalism, the inferred probabilities are quite similar,
except for the significant lower BLP probability of the query

120

alarm(carl). This results from using noisy-or as an external
combing rule in the BLP calculations while RME and MLN
use a more internal information propagation.

Doing further computations in the different for-
malisms is conveniently supported by KREATOR. For
example, dropping tornado(austin) from the evi-
dence yields, as expected, the values for the query
alarm(james) as given in the table above; whereas the
values for alarm(carl) drop dramatically. Replacing
burglary(james) by alarm(james) in the evidence and
asking for burglary(james) as in Ex. 1, yields 0.400 (BLP),
0.411 (MLN), and 0.507 (RME).

However, one has to be careful when directly comparing
the resulting probabilities, as in fact, each formalism uses
different information. Only RME is based on declarative
probabilistic conditionals as constraints. The conditional
distributions of BLP’s carry more information than the MLN
and RME knowledge bases, and BLP’s are also enriched
by conditional independence assumptions. The numbers of
MLN formulas are not even probabilities. So, it is more the
relative differences of probabilities within each framework
that should be compared and interpreted. Again, the BLP
shows a result that is most unexpected when comparing the
probability of the queries alarm(james) and alarm(carl),
whereas MLN and RME behave similar even with respect to
relative differences.

5. Summary and Future Work

In this paper we presented the RME approach to relational
probabilistic reasoning, applying the principle of maximum
entropy to groundings of a relational knowledge base, and
introduced the KREATOR system. KREATOR is a versatile
toolbox for probabilistic relational reasoning and alleviates
the researcher’s and knowledge engineer’s work with differ-
ent approaches to statistical relational learning. It already
supports Bayesian logic programs, Markov logic networks,
and relational maximum entropy.

The integration of adequate learning algorithms will be
one of our major tasks in the near future, as our main focus
so far was the integration of reasoning components. We also
plan to integrate an extended version of the CONDOR sys-
tem (Fisseler et al. 2007) and other formalisms for relational
probabilistic knowledge representation such as and proba-
bilistic relational models (Getoor et al. 2001), as well as to
use KREATOR as a testbed to evaluate other approaches for
relational probabilistic reasoning under maximum entropy.

While KREATOR already provides a unified query syntax
we plan on introducing a unified knowledge base format as
well. Having this functionality available will dramatically
improve the handling and comparison of different knowl-
edge representation formalisms.

KREATOR is available under the GNU General Public Li-
cense and can be obtained from http://ls1-www.cs.
uni-dortmund.de/ie/kreator/.

Acknowledgements. The research reported here was par-
tially supported by the Deutsche Forschungsgemeinschaft
(grants BE 1700/7-1 and KE 1413/2-1).

References

Bacchus, F.; Grove, A.; Halpern, J.; and Koller, D. 1996.
From statistical knowledge bases to degrees of belief. Arti-
ficial Intelligence 87(1-2):75–143.
De Raedt, L., and Kersting, K. 2008. Probabilistic Induc-
tive Logic Programming. In De Raedt, L.; Kersting, K.;
Landwehr, N.; Muggleton, S.; and Chen, J., eds., Proba-
bilistic Inductive Logic Programming. Springer. 1–27.
Fisseler, J.; Kern-Isberner, G.; Beierle, C.; Koch, A.; and
Müller, C. 2007. Algebraic Knowledge Discovery using
Haskell. In Practical Aspects of Declarative Languages, 9th
International Symposium. Springer.
Fisseler, J. 2008. Toward markov logic with conditional
probabilities. In Wilson, D. C., and Lane, H. C., eds., Pro-
ceedings of the 21st International FLAIRS Conference, 643–
648. AAAI Press.
Getoor, L., and Taskar, B., eds. 2007. Introduction to Statis-
tical Relational Learning. MIT Press.
Getoor, L.; Friedman, N.; Koller, D.; and Tasker, B. 2001.
Learning Probabilistic Models of Relational Structure. In
Brodley, C. E., and Danyluk, A. P., eds., Proc. of the 18th In-
ternational Conf. on Machine Learning (ICML 2001). Mor-
gan Kaufmann.
Jaeger, M. 2002. Relational Bayesian Networks: A Survey.
Electronic Transactions in Artificial Intelligence 6.
Kern-Isberner, G., and Lukasiewicz, T. 2004. Combining
probabilistic logic programming with the power of maxi-
mum entropy. Artificial Intelligence, Special Issue on Non-
monotonic Reasoning 157(1-2):139–202.
Kern-Isberner, G. 1998. Characterizing the principle of min-
imum cross-entropy within a conditional-logical framework.
Artificial Intelligence 98:169–208.
Kok, S.; Singla, P.; Richardson, M.; Domingos, P.; Sumner,
M.; Poon, H.; Lowd, D.; and Wang, J. 2008. The Alchemy
System for Statistical Relational AI: User Manual. Depart-
ment of Computer Science and Engineering, University of
Washington.
Loh, S.; Thimm, M.; and Kern-Isberner, G. 2010. Ground-
ing techniques for first-order probabilistic conditional logic.
(in preparation).
Muggleton, S., and Chen, J. 2008. A Behavioral Compar-
ison of some Probabilistic Logic Models. In Raedt, L. D.;
Kersting, K.; Landwehr, N.; Muggleton, S.; and Chen, J.,
eds., Probabilistic Inductive Logic Programming. Springer.
305–324.
Pearl, J. 1998. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.
Rödder, W., and Meyer, C.-H. 1996. Coherent Knowledge
Processing at Maximum Entropy by SPIRIT. In Proceedings
UAI 1996, 470–476.
Thimm, M. 2009. Representing Statistical Information and
Degrees of Belief in First-Order Probabilistic Conditional
Logic. In Workshop on Relational Approaches to Knowledge
Representation and Learning, Proceedings.

121

